JPH0218803A - Formation of thin film of na+ ion conductive solid electrolyte - Google Patents

Formation of thin film of na+ ion conductive solid electrolyte

Info

Publication number
JPH0218803A
JPH0218803A JP63167109A JP16710988A JPH0218803A JP H0218803 A JPH0218803 A JP H0218803A JP 63167109 A JP63167109 A JP 63167109A JP 16710988 A JP16710988 A JP 16710988A JP H0218803 A JPH0218803 A JP H0218803A
Authority
JP
Japan
Prior art keywords
group
thin film
mixed solution
compounds
propoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63167109A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuda
松田 良夫
Tatsuhiko Suzuki
達彦 鈴木
Keisuke Kobayashi
小林 啓佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63167109A priority Critical patent/JPH0218803A/en
Publication of JPH0218803A publication Critical patent/JPH0218803A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make it possible to provide Na<+> ion electrolytic thin film excellent in its homogeneity by preparing a mixed solution including compounds of groups A, B, C, D, E and F of specified composition, forming a thin film of this mixed solution on a heat resistant base, drying same, and baking it under oxide atmosphere. CONSTITUTION:A mixed solution including A, B, C, D, E and F compounds each having components shown in the below is prepared. The compounds thereof are used as the main ingradients of NASICON. Next, on a heat resistant base, a thin film of the compounds are formed and dried, then baked under oxide atmosphere. It is restrained that each compound is precipitated as hydroxide or oxide in the form of microparticles due to hydrolysis action at every step to the baking process. The F compound acts as a solvent. Further one kind is selected from the groups A-D.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、耐熱性基体上に、ナトリウム−q1黄電池
、ナトリウムセンサ等の用途に好適な、般式N a1+
x Z r2 P3−x S i x012 (0≦X
≦3)で表わされるNa+イオン伝導伝導性固体電解膜
薄膜成する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) This invention provides a method for forming a compound of the general formula Na1+ on a heat-resistant substrate, which is suitable for use in sodium-q1 yellow batteries, sodium sensors, etc.
x Z r2 P3-x S i x012 (0≦X
The present invention relates to a method for forming a thin conductive solid electrolyte membrane having Na+ ion conductivity represented by ≦3).

(従来の技術) 一般式N al、 Z r 2 P3−x S ! X
 012 (0≦X≦3)で表わされる3次元Na+イ
オン伝導性固体電解質は、縮合酸素酸イオンが形成する
骨格構造の検討から生み出されたもので、一般にNAS
 I CON (Ha−super 1onic co
nductor)と呼ばれている。Na  イオン伝導
性固体電解質としてよく知られているβ−アルミナは、
2次元であり、導電率ばかりか、熱膨張係数や機械的特
性にも異方性がおり、また、微結晶の配向に偏りがある
と導電路が局在化して通電による局部的劣化現象が起こ
り、さらに、湿度に対する安定性が低いが、NAS I
C0Nは、導電率はβ−アルミナと同程度であるものの
、導電路が3次元的であるので上述した局部的劣化現象
がなく、また、耐湿性にも優れているという利点がおる
。そのため、特にナトリウム−硫黄電池やナトリウムセ
ンサ等において、インピーダンスを下げ、コンパクト化
や低温作動を可能にするものとして注目されている。
(Prior art) General formula N al, Z r 2 P3-x S ! X
The three-dimensional Na + ion conductive solid electrolyte expressed by 012 (0≦X≦3) was created from the study of the skeletal structure formed by condensed oxygen acid ions, and is generally used for NAS
I CON (Ha-super 1onic co
It is called a conductor. β-alumina, which is well known as a Na ion conductive solid electrolyte, is
It is two-dimensional and has anisotropy not only in its conductivity but also in its thermal expansion coefficient and mechanical properties, and if the orientation of the microcrystals is biased, the conductive path becomes localized and local deterioration due to current flow occurs. NAS I
Although C0N has a conductivity comparable to that of β-alumina, it has three-dimensional conductive paths, so it does not suffer from the above-mentioned local deterioration phenomenon, and has the advantage of being excellent in moisture resistance. Therefore, it is attracting attention as a device that lowers impedance and enables compactness and low-temperature operation, particularly in sodium-sulfur batteries, sodium sensors, and the like.

さて、そのようなNASICONの薄膜を形成する方法
としては、従来、CVD法(化学気相蒸着法)、スパッ
タリング法、PVD法(物理蒸着法)、プラズマ溶剣法
等が知られている。ところが、NASI CONは構成
元素の数が多く、しかも、形成過程におけるNa2Oや
P2O5が揮発性であるために、上述した方法は、いず
れも、組成の制御や単一相の形成が極めて難しいという
問題があり、特に10μm以下の薄膜の形成には無理が
ある。
Now, conventionally known methods for forming such a thin film of NASICON include CVD method (chemical vapor deposition method), sputtering method, PVD method (physical vapor deposition method), and plasma melting method. However, since NASI CON has a large number of constituent elements, and Na2O and P2O5 are volatile during the formation process, all of the above methods have the problem that it is extremely difficult to control the composition and form a single phase. In particular, it is difficult to form a thin film of 10 μm or less.

このような問題を解決しようとして、特開昭56−99
979号発明においては、原料粉末の固相反応によるN
ASI CON粉末にNa2CO3粉末を混合したもの
をターゲットとし、Na2Oの揮発を防ぎつつスパッタ
リング法によって薄膜化している。しかしながら、この
方法による薄膜は、組成の均質性に問題がおり、イオン
伝導性が大変低い。また、電気的な絶縁性の問題から、
厚みが5μm程度以下の薄膜の形成は難しい。
In an attempt to solve such problems, Japanese Unexamined Patent Application Publication No. 56-99
In the No. 979 invention, N is produced by solid phase reaction of raw material powder.
A mixture of ASI CON powder and Na2CO3 powder is used as a target, and the film is thinned by sputtering while preventing Na2O from volatilizing. However, the thin film produced by this method has problems with compositional homogeneity and has very low ionic conductivity. Also, due to electrical insulation issues,
It is difficult to form a thin film with a thickness of about 5 μm or less.

(発明が解決しようとする課題) この発明の目的は、従来の方法の上述した問題点を解決
し、基体上に、簡単な操作で均質性に優れたNa  イ
オン伝導性固体電解質薄膜を形成する方法を提供するに
ある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems of the conventional method and form a highly homogeneous Na ion conductive solid electrolyte thin film on a substrate with a simple operation. We are here to provide you with a method.

(課題を解決するための手段) 上記目的を達成するために、この発明においては、下記
A群、8群、0群、0群、E群およびE群の化合物を含
む混合溶液を調製する工程と、A群:Naの、メトキシ
ド、エトキシド、プロポキシド、ブトキシド、メトキシ
エトキシドまたはエトキシエトキシド B8¥:Zrの、メ]・キシド、エトキシド、プロポキ
シド、ブトキシド、メトキシエトキシドまたはエトキシ
エトキシド 0群:Pの、メトキシド、エトキシド、プロポキシド、
ブトキシド、メトキシエトキシドまたはエトキシエトキ
シド 0群:Sjの、メトキシド、エトキシド、プロポキシド
、ブトキシド、メトキシエトキシドまたはエトキシエト
キシド E群:モノエタノールアミン、ジェタノールアミン、ト
リエタノールアミン、モノ2−プロパノールアミン、ジ
2−プロパノールアミン、アセチルアセトン、■ヂレン
グリコール、ジエチレングリコール、プロピレングリコ
ール、ジプロピレングリコール E群:メタノール、エタノール、プロパノール、ブタノ
ール、メトキシエタノール、エトキシエタノール 耐熱性基体上に上記混合溶液の薄膜を形成する工程と、 上記薄膜を乾燥する工程と、 上記乾燥薄膜を酸化性雰囲気中で焼成する工程と、 を含むことを特徴とする、Na イオン伝導性固体電解
質薄膜の形成方法が提供される。すなわち、この発明の
方法によれば、一般にNASICONと呼ばれる、一般
式”a1+X Zr2 P3−X S 1x012(0
≦X≦3)で表わされるNa  イオン伝導性固体電解
質の薄膜が得られるものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a step of preparing a mixed solution containing the following compounds of group A, group 8, group 0, group 0, group E, and group E. and Group A: Na, methoxide, ethoxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide B8: Zr, methoxide, ethoxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide 0 Group: P, methoxide, ethoxide, propoxide,
Butoxide, methoxyethoxide or ethoxyethoxide Group 0: Sj, methoxide, ethoxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide Group E: Monoethanolamine, jetanolamine, triethanolamine, mono-2-propanol Amine, di2-propanolamine, acetylacetone, ■ Dilene glycol, diethylene glycol, propylene glycol, dipropylene glycol Group E: methanol, ethanol, propanol, butanol, methoxyethanol, ethoxyethanol A thin film of the above mixed solution is applied on a heat-resistant substrate. Provided is a method for forming a Na ion-conducting solid electrolyte thin film, the method comprising: forming the thin film, drying the thin film, and firing the dried thin film in an oxidizing atmosphere. That is, according to the method of the present invention, the general formula "a1+X Zr2 P3-X S 1x012(0
≦X≦3) A thin film of Na ion conductive solid electrolyte is obtained.

さて、NAS I CON、つまりN a 1+x Z
 r 2P3−xSi8012(O≦X≦3)は、Na
Zr2(PO4)3およびNa42r2 (S io+
 >3の仝率固溶体、Vなりち、[’l−(X/3)]
NaZr2(PO4)3 ・(x/3)Na4Zrz 
(SiO4)3とみなすことができる。ここで、Naz
r2 (PO4)3 (X=Oの菱面体晶系〉は、縮合
酸素酸イオンを形成する骨格構造が3次元的に発達して
いるので(PO4四面体とZro2ハ面体とが互いに頂
点を共有して3次元的に連結されている)、Na  イ
オンの伝導には都合のよい結晶構造であるが、導電率は
めまり高くない。これは、結晶格子中に存在する2種類
のNa イオンサイトのうち、一方のみが選択的に;箇
たされ、はとんどのNa イオンがそこに固定されてい
るためで市ると推定されるが、それにNa4Zr2 (
SiO+>3を固溶させるともう一方のサイトがNa 
 イオンによって部分的に満たされるようになり、高い
イオン伝導性が現われるようになる。導電率は、Xが2
の付近の固溶体、づ゛なわらNa4Zr2PO4・(S
 i 04 )2(単斜晶系)で最も大きくなり、30
0’Cで3×10−1Ω−1・Clll−1種度になる
。Xが2よりも大きくなると、導電率は低下してくる。
Now, NAS I CON, that is, N a 1+x Z
r2P3-xSi8012 (O≦X≦3) is Na
Zr2(PO4)3 and Na42r2 (S io+
>3 fractional solid solution, V becomes ['l-(X/3)]
NaZr2(PO4)3 ・(x/3)Na4Zrz
(SiO4)3. Here, Naz
r2 (PO4)3 (rhombohedral crystal system with Although the crystal structure is convenient for conduction of Na ions, the conductivity is not very high.This is because two types of Na ion sites exist in the crystal lattice. Of these, only one is selectively released; the other is presumed to be viable because most of the Na ions are fixed there;
When SiO+>3 is dissolved in solid solution, the other site becomes Na
It becomes partially filled with ions and exhibits high ionic conductivity. The conductivity is X is 2
The solid solution near Na4Zr2PO4・(S
i 04 )2 (monoclinic system) has the largest value, 30
At 0'C, the degree is 3 x 10-1 Ω-1 Clll-1. When X becomes larger than 2, the conductivity decreases.

以下、この発明を各工程別にざらに詳しく説明する。Hereinafter, this invention will be roughly explained in detail for each step.

混合溶液の調製工程: この発明においては、まず、下記A、B、C1D、E、
「各群の化合物を含む混合溶液を調製する。
Preparation process of mixed solution: In this invention, first, the following A, B, C1D, E,
“Prepare a mixed solution containing each group of compounds.

A群:Naの、メトキシド、工1〜キシド、プロポキシ
ド、ブトキシド、メトキシエト1シトまたはエトキシエ
トキシド s群:zrの、メトキシド、エトキシド、プロポキシド
、ブトキシド、メトキシエトキシドまたはエトキシエト
キシド C?!T:Pの、メトキシド、エトキシド、プロポキシ
ド、ブトキシド、メトキシエトキシドまたはエトキシエ
トキシド D群:Siの、メトキシド、エトキシド、プロポキシド
、ブトキシド、メトキシエトキシドまたはエトキシエト
キシド ヒ詳:モノエタノールアミン、ジェタノールアミン、ト
リエタノールアミン、モノ2−プロパノールアミン、ジ
2−プロパノールアミン、アセチルアセトン、エチレン
グリコール、ジエヂレングリコール、プロピレングリコ
ール、ジプロピレングリコール 「g:メタノール、エタノール、プロパノール、ブタノ
ール、メトキシエタノール、エトキシエタノール 上記A、B、C,D各群におけるプロポキシドは、1−
プロポキシド、2−プロポキシドのいずれでおってもよ
い。また、ブトキシドは、1−ブトキシド、2−ブトキ
シド、イソブトキシド、t−ブトキシドのいずれでおっ
てもよい。さらに、E群のプロパノールは、1−プロパ
ノール、2プロパノールのいずれであってもよい。ざら
にまた、ブタノールは、1−ブタノール、2−ブタノー
ル、イソブタノール、t−ブタノールのいずれであって
もよい。
Group A: Na, methoxide, oxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide Group S: Zr, methoxide, ethoxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide C? ! T: P, methoxide, ethoxide, propoxide, butoxide, methoxyethoxide, or ethoxyethoxide Group D: Si, methoxide, ethoxide, propoxide, butoxide, methoxyethoxide, or ethoxyethoxide Details: Monoethanolamine, Tanolamine, triethanolamine, mono-2-propanolamine, di-2-propanolamine, acetylacetone, ethylene glycol, diethyl glycol, propylene glycol, dipropylene glycol (g: methanol, ethanol, propanol, butanol, methoxyethanol, ethoxy Ethanol Propoxide in each of the above groups A, B, C, and D is 1-
It may be either propoxide or 2-propoxide. Moreover, butoxide may be any of 1-butoxide, 2-butoxide, isobutoxide, and t-butoxide. Furthermore, the propanol of Group E may be either 1-propanol or 2-propanol. Furthermore, butanol may be any of 1-butanol, 2-butanol, isobutanol, and t-butanol.

上記A、B、C,D各群の化合物は、NΔ5ICONの
主成分となるものでおる。
The compounds of the above groups A, B, C, and D are the main components of NΔ5ICON.

また、E群の化合物は、焼成に至るまでの各工程で、加
水分解によってA、B、C,D各群の化合物が微粒子状
の水酸化物や酸化物として析出するのを抑制するもので
ある。
In addition, the compounds of Group E suppress the precipitation of compounds of Groups A, B, C, and D as fine particulate hydroxides and oxides due to hydrolysis in each step up to firing. be.

さらに、F群の化合物は溶媒として作用するものでおる
Furthermore, the compounds of Group F act as solvents.

A、B、C,Dの各群からは、1種を選択、使用する。One type is selected and used from each group A, B, C, and D.

2種以上を選択、使用することも可能ではあるが、そう
しても得られる薄膜に特性上の有意差はほとんど認めら
れず、工程の複雑化等によるコスト上昇など、不都合の
ほうがよほど大きい。
Although it is possible to select and use two or more types, there is almost no significant difference in the properties of the resulting thin film, and the disadvantages are far greater, such as increased costs due to complication of the process.

また、A、B、C,D各群からは、どの化合物を選択し
ても、1qられる薄膜に特性上の有意差はほとんど認め
られない。すなわち、アルコキシ基やアルコキシアルコ
キシ基の相異による、得られる薄膜の特性上の有意差は
ほとんど認められない。
In addition, no matter which compound is selected from each group A, B, C, and D, there is almost no significant difference in the properties of the thin film produced by 1q. That is, there is almost no significant difference in the properties of the resulting thin film due to differences in alkoxy groups or alkoxyalkoxy groups.

A、B、C,D、E、F各群の化合物の混合割合は、そ
れらの種類によって多少異なるものの、A群の化合物を
aモル、8群の化合物をbモル、0群の化合物をCモル
、D群の化合物をdモル、1群の化合物をeモル、F群
の化合物をfリットルとしたとき、式、 a:b:c:d=(1+x):2:x:3−xO≦X≦
3 0.1≦[e/(a十り+c+d)]]≦0.01≦[
(a+b十c+d ) /f ] ≦3を同時に満足す
る範囲であるのが好ましい。すなわち、 a:b:C:d=(1+X):2:X:3−X3<x の範囲では、得られるN膜のNa+イオン伝導性が低下
したり、単一相にならないことがある。また、 [e/ (a+b+c十d)] <0.1では、A、B
、C,D各群の化合物の加水分解を十分に抑制できない
ことがある。ざらに、[e/ (a十り+c十d)] 
>3 では、混合溶液の粘度が高くなりすぎて製膜できないこ
とがある。ざらにまた、 [(a+b+c+d)/f] <Q、01では、溶媒が
多すぎて実用的でない。また、[(a+b+c十d)/
f] >3 では、A、B、C,D各群の化合物が溶は残ることがあ
る。
Although the mixing ratio of the compounds of each group A, B, C, D, E, and F differs slightly depending on their type, the compound of group A is a mole, the compound of group 8 is b mole, and the compound of group 0 is C When the compound of group D is d mole, the compound of group 1 is e mole, and the compound of group F is f liter, the formula is a:b:c:d=(1+x):2:x:3-xO ≦X≦
3 0.1≦[e/(a+c+d)]≦0.01≦[
It is preferable that the range simultaneously satisfies (a+b+c+d)/f]≦3. That is, in the range of a:b:C:d=(1+X):2:X:3-X3<x, the Na+ ion conductivity of the resulting N film may decrease or it may not become a single phase. Also, if [e/ (a + b + c + d)] < 0.1, then A, B
, C, and D groups may not be sufficiently suppressed. Zarani, [e/ (a + c + d)]
>3, the viscosity of the mixed solution may become too high to form a film. Furthermore, if [(a+b+c+d)/f] <Q, 01, the amount of solvent is too large to be practical. Also, [(a+b+c0d)/
f]>3, compounds of groups A, B, C, and D may remain dissolved.

混合操作は、1群の化合物とF群の化合物との混合溶液
にA、B、C,D各群の化合物を同時に加えて混合する
ことでもよく、また、1群の化合物とF群の化合物との
混合溶液にA、B、CまたはD群の化合物を加えて混合
した溶液を別々に調製し、各溶液から所定量を採取して
混合してもよい。なお、混合操作が完了するまでは、A
、B、C,D各群の化合物を極力湿気に晒さないよにす
るのが好まく、乾燥窒素などで置換したグラブボックス
内等で行うのが好ましいが、それ以俊の操作は大気中で
行うことができる。
The mixing operation may be performed by simultaneously adding and mixing the compounds of each group A, B, C, and D to a mixed solution of the compound of group 1 and the compound of group F, or the compound of group 1 and the compound of group F. A, B, C, or D group compound may be added to a mixed solution of the compound, and a mixed solution may be prepared separately, and a predetermined amount may be taken from each solution and mixed. Note that until the mixing operation is completed,
It is preferable to avoid exposing the compounds of groups B, C, and D to moisture as much as possible, and it is preferable to carry out the operation in a glove box filled with dry nitrogen, etc. However, further operations should not be performed in the atmosphere. It can be carried out.

得られる混合溶液は、透明か、はとんど透明な液体で、
A、B、C,D各群の化合物に含まれている不純物の種
類と聞によって、オレンジ色や黄色等を呈する。
The resulting mixed solution is a clear or almost clear liquid;
Depending on the type and amount of impurities contained in the compounds of each group A, B, C, and D, the colors appear orange or yellow.

混合溶液の薄膜形成工程: この発明においては、次に、耐熱性基体上に上記混合溶
液の薄膜を形成する。つまり、製膜する。
Step of forming a thin film of the mixed solution: In the present invention, next, a thin film of the mixed solution is formed on the heat-resistant substrate. In other words, a film is formed.

基体は、後述する焼成温度に耐えるものであればよく、
金、銀、白金などの金属や、これら金属の少なくも1種
を主成分とする合金や、炭素、アルミナ、マグネシア、
ジルコニア、チタン酸ストロンチウム、チタニア、窒化
ホウ素、窒化ケイ素、炭化ホウ素、炭化ケイ素等の無機
質材料を使用することができる。形状は、繊維状、フィ
ルム状、板状、バルク状など、いずれであってもよい。
The substrate may be of any type as long as it can withstand the firing temperature described below.
Metals such as gold, silver, platinum, alloys containing at least one of these metals as a main component, carbon, alumina, magnesia,
Inorganic materials such as zirconia, strontium titanate, titania, boron nitride, silicon nitride, boron carbide, silicon carbide, etc. can be used. The shape may be fibrous, film, plate, bulk, or the like.

これらの基体は、その表面を研磨して平滑にしたり、洗
浄して油分などによる汚れを除去したりしておくのが好
ましい。
It is preferable that the surfaces of these substrates be polished to make them smooth or washed to remove dirt caused by oil or the like.

薄膜の形成は、刷毛、ローラー等による塗イ5や、スプ
レーによる塗布や、混合溶液に基体を浸漬した後引き上
げるデイツプコーティング法等によることが出来る。な
かでも、比較的簡単で、しかも引上速度を変えることで
膜厚を変えることができるデイツプコーティング法が好
ましい。
The thin film can be formed by coating with a brush, roller, etc., by spraying, or by a dip coating method in which the substrate is immersed in a mixed solution and then pulled up. Among these, the dip coating method is preferred because it is relatively simple and allows the film thickness to be changed by changing the pulling speed.

乾燥工程: この発明においては、次に、基体上に形成した薄膜を乾
燥し、F群の化合物、つまり溶媒を蒸発させてA、B、
C,D、E各群の化合物からなるゲル化薄膜とする。こ
の工程は、常温で行ってもよく、50〜100℃程度の
恒温下で行ってもよい。
Drying step: In this invention, next, the thin film formed on the substrate is dried, and the compounds of group F, that is, the solvent, are evaporated to form A, B,
A gelled thin film consisting of compounds of groups C, D, and E is prepared. This step may be performed at room temperature or at a constant temperature of about 50 to 100°C.

焼成工程: この発明においては、次に、上記乾燥薄膜を酸化性雰囲
気中にて基体ごと焼成し、有機成分を分解して飛ばすと
ともに、A、B、C,D各群の化合物を酸化させる。す
ると、NASI CONの薄膜が得られる。この焼成は
、たとえば次のようにして行う。
Firing step: In the present invention, the dried thin film is then fired together with the substrate in an oxidizing atmosphere to decompose and evaporate the organic components and oxidize the compounds of groups A, B, C, and D. Then, a thin film of NASI CON is obtained. This firing is performed, for example, as follows.

すなわち、薄膜を基体ごと加熱炉に入れ、酸化性雰囲気
中で焼成温度まで昇温し、その温度に一定時間保持した
後、室温まで冷却する。焼成雰囲気は、空気か、1〜1
00%の濃度の酸素とする。
That is, the thin film is placed together with the substrate in a heating furnace, heated to a firing temperature in an oxidizing atmosphere, maintained at that temperature for a certain period of time, and then cooled to room temperature. The firing atmosphere is air or 1 to 1.
00% concentration of oxygen.

昇温速度は、1〜b 10’C/分である。1°C/分未満では、昇温に時間
がかかりすぎて実用的でない。500℃/分を越えると
、薄膜に亀裂等ができることがある。焼成温度は、35
0〜900℃、好ましくは600〜800℃でおる。3
50℃未満では、薄膜内の有機成分が残ることがあり、
900 ’Cを越えると、薄膜が一部蒸発したり、薄膜
と基体とが反応することがおる。焼成時間は、数十分か
ら数時間程度でよい。冷却速度もまた、昇温の場合と同
様の理由で1〜b (実 施 例) 実施例1 乾燥窒素を流しているグラブボックス内で、Naの工1
ヘキシドを0.015モル、Zrのメトキシドを0.0
1モル、Siのエト4−シトを09()11ル、1″の
fl・1シ1;り(1,(0)!i Tル乙し)取り、
これにモノエタノールアミンを0.04モルになるよう
に添加し、ざらにエタノールを200m1加え、スター
クを用いて30分撹拌し、透明な混合溶液を得た。
The heating rate is 1 to b 10'C/min. If it is less than 1°C/min, it takes too long to raise the temperature and is not practical. If the temperature exceeds 500° C./min, cracks may occur in the thin film. The firing temperature is 35
The temperature is 0 to 900°C, preferably 600 to 800°C. 3
At temperatures below 50°C, organic components within the thin film may remain.
If the temperature exceeds 900'C, part of the thin film may evaporate or the thin film may react with the substrate. The firing time may range from several tens of minutes to several hours. The cooling rate was also changed from 1 to 1b (Example) for the same reason as in the case of temperature increase.
0.015 mol of hexide, 0.0 mol of Zr methoxide
Take 09()11l, 1″ of eth4-cyto of 1 mol of Si (1,(0)!i Tle),
Monoethanolamine was added thereto to give a concentration of 0.04 mol, 200 ml of ethanol was added to the colander, and the mixture was stirred for 30 minutes using a Stark shaker to obtain a transparent mixed solution.

一方、厚みがQ、5mmの白金板を、トリクロルエチレ
ン、アセトン、エタノール、純水を順次用いてそれぞれ
3分づつ超音波洗浄した後、高l1ili度乾燥窒素を
吹き付けて乾燥した。
On the other hand, a platinum plate having a thickness of Q and 5 mm was ultrasonically cleaned using trichloroethylene, acetone, ethanol, and pure water for 3 minutes each, and then dried by blowing dry nitrogen at a high temperature.

次に、上記混合溶液に上記白金板を浸漬し、1分後、垂
直に10cm/分の速度で引き上げ、白金板上に混合溶
液の薄膜を形成した。
Next, the platinum plate was immersed in the mixed solution, and after 1 minute, was pulled up vertically at a speed of 10 cm/min to form a thin film of the mixed solution on the platinum plate.

次に、上記薄膜を50’Cの恒温槽中で30分乾燥した
Next, the thin film was dried in a constant temperature bath at 50'C for 30 minutes.

次に、上記乾燥薄膜を、白金板ごと電気炉に入れ、6℃
/分の速度で700’Cまで昇温し、その温度に1時間
保持した後、6°C/分の速度で室温まで冷却した。
Next, the dried thin film was placed in an electric furnace together with the platinum plate at 6°C.
The temperature was raised to 700'C at a rate of 6°C/min, held at that temperature for 1 hour, and then cooled to room temperature at a rate of 6°C/min.

かくして得られた薄膜は、膜厚が2Qnmであつた。ま
た、X線回折法を用いて分析したところ、甲↑゛1晶σ
)回11il−ノアか認めらFl /;−、、ン;I−
)17、?l? :#;X線法で分析したところ、組成
はNa5Zr2S I 2 P 1012であった。ざ
らにまた、600倍の顕微鏡で観察したところ、微粒子
の析出や亀裂等は認められず、極めて均質であった。ま
た、薄膜の300℃におけるNa  イオン伝導度は、
2゜0X10”Ω−1,Cm−1であった。
The thin film thus obtained had a film thickness of 2Q nm. In addition, when analyzed using X-ray diffraction method, A↑゛1 crystal σ
) times 11il-Noah recognized Fl /;-,,n;I-
)17,? l? :#; Analysis by X-ray method revealed that the composition was Na5Zr2S I 2 P 1012. Further, when it was roughly observed under a microscope with a magnification of 600 times, no precipitation of fine particles or cracks were observed, and it was found to be extremely homogeneous. In addition, the Na ion conductivity of the thin film at 300°C is
It was 2°0×10”Ω−1, Cm−1.

実施例2 乾燥窒素を流しているグラブボックス内で、Naのプロ
ポキシドを0.015モル、Zrのブトキシドを0.0
1モル、Slのメトキシエトキシドを0.01モル、P
のエトキシエトキシドを0.005モル計り取り、これ
にジエノールアミンを0.04モルになるように添加し
、さらにメタノールを200m1加え、スタークを用い
て30分攪拌し、透明な混合溶液を)qだ。以下、実施
例1と同様にして、白金板上に薄膜を得た。
Example 2 In a glove box flowing with dry nitrogen, 0.015 mol of Na propoxide and 0.0 mol of Zr butoxide were added.
1 mole, 0.01 mole of methoxyethoxide, P
Measure out 0.005 mol of ethoxyethoxide, add dienolamine to it to make it 0.04 mol, add 200 ml of methanol, stir for 30 minutes using a Stark shaker, and make a clear mixed solution). It's q. Thereafter, in the same manner as in Example 1, a thin film was obtained on a platinum plate.

得られた薄膜は、膜厚が20nmであった。また、X線
回折による回折ピークは、単斜晶を示すものであった。
The obtained thin film had a thickness of 20 nm. Moreover, the diffraction peak obtained by X-ray diffraction was indicative of monoclinic crystal.

組成はN a3 Z I” 2 S ! 2 Pl 0
12テあった。さらに、実施例1で得られたものと同様
、微粒子の析出や亀裂等は認められず、極めて均質でめ
った。また、薄膜の300°Cにお[プるNa+イオン
伝導度は、2.0X10−1Ω−’ −cm−’rアっ
た。
The composition is N a3 Z I” 2 S! 2 Pl 0
There were 12 te. Furthermore, similar to that obtained in Example 1, no precipitation of fine particles or cracks was observed, and the product was extremely homogeneous and solid. Further, the Na + ion conductivity of the thin film at 300°C was 2.0×10 −1 Ω−’ −cm−’r.

実施例3 乾燥窒素を流しているグラブボックス内で、Naのエト
キシエトキシドを0.0125モル、7−rのエトキシ
ドを0.01モル、3iのメトキシエトキシドを0.0
75モル、Pのプロポキシドを0.0075モル計り取
り、これにトリエノールアミンを0.0375モルにな
るように添加し、さらにメタノールを200m1加え、
スタークを用いて30分攪拌し、透明な混合溶液を)q
た。
Example 3 In a glove box flowing with dry nitrogen, 0.0125 mol of Na ethoxyethoxide, 0.01 mol of 7-r ethoxide, and 0.0 mol of 3i methoxyethoxide
Weigh out 0.0075 mol of P propoxide, add trienolamine to 0.0375 mol, and further add 200 ml of methanol.
Stir for 30 minutes using a Stark shaker to make a clear mixed solution)
Ta.

以下、実施例1と同様にして、白金板上に薄膜を得た。Thereafter, in the same manner as in Example 1, a thin film was obtained on a platinum plate.

1qられた薄膜は、膜厚が20nmであった。また、X
線回折による回折ピークは、菱面体晶を示すものであっ
た。組成はN a2.5 Z r 2 S I tsP
l、5012であった。さらに、実施例1で得られたも
のと同様、微粒子の析出や亀裂等は認められず、極めて
均質であった。また、薄膜の300℃におけるNa+イ
オン伝導度は、3.8X10−20−1・cm’であっ
た。
The 1q thin film had a film thickness of 20 nm. Also, X
The diffraction peak obtained by line diffraction was indicative of rhombohedral crystals. The composition is Na2.5 Z r 2 S I tsP
It was 1,5012. Furthermore, like the one obtained in Example 1, no precipitation of fine particles or cracks was observed, and the material was extremely homogeneous. Further, the Na + ion conductivity of the thin film at 300° C. was 3.8×10 −20 −1 cm′.

実施例4 乾燥窒素を流しているグラブボックス内で、Naのプロ
ポキシドを0.0175モル、Zrのブトキシドを0.
01モル、3iのメトキシエトキシドを0.0125モ
ル、Pのエトキシドを0゜0025モル計り取り、これ
にモノ2−プロパノールアミンを0.0425モルにな
るように添加し、さらにブタノールを200m1加え、
スタークを用いて30分攪拌し、透明な混合溶液を)テ
た。
Example 4 In a glove box flowing with dry nitrogen, 0.0175 mol of Na propoxide and 0.0 mol of Zr butoxide were added.
Weigh out 0.0125 mole of methoxy ethoxide of 01 mole, 0.0125 mole of 3i ethoxide, and 0.0025 mole of ethoxide of P, add mono-2-propanolamine to this so that it becomes 0.0425 mole, and further add 200 ml of butanol.
Stir for 30 minutes using a Stark shaker to obtain a clear mixed solution.

以下、実施例1と同様にして、白金板上に薄膜を得た。Thereafter, in the same manner as in Example 1, a thin film was obtained on a platinum plate.

得られた薄膜は、膜厚が2Qnmであった。また、X線
回折による回折ピークは、菱面体晶を示すものであった
。組成はN a3.52 ’2 S ’ 2.5P0.
5012であった。さらに、実施例1で得られたものと
同様、微粒子の析出や亀裂等は認められず、極めて均質
であった。また、薄膜の300 ’CにおけるNa  
イオン伝導度は、5.5X10−20−1・cm’であ
った。
The obtained thin film had a film thickness of 2Q nm. Moreover, the diffraction peak obtained by X-ray diffraction was indicative of rhombohedral crystals. The composition is Na3.52'2S'2.5P0.
It was 5012. Furthermore, like the one obtained in Example 1, no precipitation of fine particles or cracks was observed, and the material was extremely homogeneous. In addition, the Na
The ionic conductivity was 5.5×10 −20 −1 cm′.

(発明の効果) この発明の方法は、E群の化合物によってA、B、C,
D各群の化合物の加水分解を抑制しつつ混合溶液から一
気に耐熱性基体上に薄膜を形成し、乾燥し、酸化性雰囲
気中で焼成するので、実施例にも示したように、簡単な
操作で、均質性に優れた、NASICON、すなわち、
一般式Na1+XZ r2 P3−x S i x01
2 (0≦X≦3)で表わされる3次元Na  イオン
伝導性固体電解質の薄膜を容易に得ることができるよう
になる。
(Effects of the Invention) The method of the present invention provides A, B, C,
D A thin film is formed on the heat-resistant substrate from the mixed solution all at once while suppressing the hydrolysis of each group of compounds, dried, and fired in an oxidizing atmosphere.As shown in the examples, the operation is simple. And, NASICON with excellent homogeneity, that is,
General formula Na1+XZ r2 P3-x Si x01
2 (0≦X≦3), it becomes possible to easily obtain a thin film of a three-dimensional Na 2 ion conductive solid electrolyte.

Claims (1)

【特許請求の範囲】 (イ) 下記A群、B群、C群、D群、E群およびF群
の化合物を含む混合溶液を調製する工程と、A群:Na
の、メトキシド、エトキシド、プロポキシド、ブトキシ
ド、メトキシエトキ シドまたはエトキシエトキシド B群:Zrの、メトキシド、エトキシド、プロポキシド
、ブトキシド、メトキシエトキ シドまたはエトキシエトキシド C群:Pの、メトキシド、エトキシド、プロポキシド、
ブトキシド、メトキシエトキシ ドまたはエトキシエトキシド D群:Siの、メトキシド、エトキシド、プロポキシド
、ブトキシド、メトキシエトキ シドまたはエトキシエトキシド E群:モノエタノールアミン、ジエタノールアミン、ト
リエタノールアミン、モノ2− プロパノールアミン、ジ2−プロパノー ルアミン、アセチルアセトン、エチレン グリコール、ジエチレングリコール、プ ロピレングリコール、ジプロピレングリ コール F群:メタノール、エタノール、プロパノール、ブタノ
ール、メトキシエタノール、エト キシエタノール (ロ) 耐熱性基体上に上記混合溶液の薄膜を形成する
工程と、 (ハ) 上記薄膜を乾燥する工程と、 (ニ) 上記乾燥薄膜を酸化性雰囲気中で焼成する工程
と、 を含むことを特徴とする、Na^+イオン伝導性固体電
解質薄膜の形成方法。
[Scope of Claims] (a) A step of preparing a mixed solution containing the following compounds of group A, group B, group C, group D, group E, and group F, and group A: Na
Methoxide, ethoxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide Group B: Zr methoxide, ethoxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide Group C: P methoxide, ethoxide, propoxide,
Butoxide, methoxyethoxide or ethoxyethoxide Group D: Si, methoxide, ethoxide, propoxide, butoxide, methoxyethoxide or ethoxyethoxide Group E: Monoethanolamine, diethanolamine, triethanolamine, mono-2-propanolamine, Di2-propanolamine, acetylacetone, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol Group F: methanol, ethanol, propanol, butanol, methoxyethanol, ethoxyethanol (b) Form a thin film of the above mixed solution on a heat-resistant substrate (c) drying the thin film; and (d) firing the dried thin film in an oxidizing atmosphere. Formation method.
JP63167109A 1988-07-05 1988-07-05 Formation of thin film of na+ ion conductive solid electrolyte Pending JPH0218803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63167109A JPH0218803A (en) 1988-07-05 1988-07-05 Formation of thin film of na+ ion conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63167109A JPH0218803A (en) 1988-07-05 1988-07-05 Formation of thin film of na+ ion conductive solid electrolyte

Publications (1)

Publication Number Publication Date
JPH0218803A true JPH0218803A (en) 1990-01-23

Family

ID=15843599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63167109A Pending JPH0218803A (en) 1988-07-05 1988-07-05 Formation of thin film of na+ ion conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0218803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130844A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Whole solid-type electric double layer condenser
JP2015065022A (en) * 2013-09-25 2015-04-09 株式会社村田製作所 Solid electrolytic material, and all-solid battery
WO2015087734A1 (en) * 2013-12-09 2015-06-18 日本電気硝子株式会社 Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130844A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Whole solid-type electric double layer condenser
JP2015065022A (en) * 2013-09-25 2015-04-09 株式会社村田製作所 Solid electrolytic material, and all-solid battery
WO2015087734A1 (en) * 2013-12-09 2015-06-18 日本電気硝子株式会社 Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery
US10020508B2 (en) 2013-12-09 2018-07-10 Nippon Electric Glass Co., Ltd. Composite material as electrode for sodium ion batteries, production method therefor, and all-solid-state sodium battery

Similar Documents

Publication Publication Date Title
Fu Fast Li+ Ion Conduction in Li2O‐Al2O3‐TiO2‐SiO2‐P2O2 Glass‐Ceramics
MacChesney et al. The System La2O3—TiO5; Phase Equilibria and Electrical Properties
EP2181971B1 (en) Glass and glass-ceramics
EP0292967A2 (en) Method of forming superconductive thin films and solutions for forming the same
Eysel et al. Pb5 (Ge, Si) 3O11 Ferroelectrics
Xie et al. A novel lead‐free bismuth magnesium titanate thin films for energy storage applications
Miyauchi et al. New amorphous thin films of lithium ion conductive solid electrolyte
HIRASHIMA et al. Electrical Conductivity of TiO2‐V2O5‐P205 Glasses
Yang et al. Growth, microstructure, energy–storage and dielectric performances of chemical–solution NBT–based thin films: Effect of sodium nonstoichimometry
Kurchania et al. Synthesis of (Pb, La)(Zr, Ti) O3 films using a diol based sol–gel route
JPH0218803A (en) Formation of thin film of na+ ion conductive solid electrolyte
Voronkova et al. Fluorite‐like LixLn5–xMo3O16. 5–1.5 xFx (Ln= La, Pr, Nd) compounds isostructural with Nd5Mo3O16
GB2403214A (en) Molybdenum-doped aluminium garnets and methods of synthesis
Arakawa et al. Synthesis of lanthanum lithium tantalate powders and thin films by the sol–gel method
Pang et al. Hydrothermal synthesis, characterization, and ionic conductivity of vanadium-stabilized Bi17V3O33 with fluorite-related superlattice structure
Talebi et al. Suspension characteristics and electrophoretic deposition of p-Type Bi2Te3 films for thermoelectric applications
JPH01260870A (en) Formation of thin film of modified lead zirconate titanate
Sugai et al. Single crystal growth and some properties of Cd2Ti2O5F2 and CdTiO3
JPH01298017A (en) Formation of thin beta-alumina film
JPH01286922A (en) Method for forming barium titanate thin film
JP2560349B2 (en) Method for forming zirconia thin film
Tummala Low-temperature and low-expansion glass-crystal composites by the formation of Perovskite lead titanate
Terabe et al. Characterization of sodium β-alumina prepared by sol-gel method
Perthuis et al. Li+ eucryptite superionic conductors thick films
Subasri Low temperature synthesis of sodium aluminosilicate glass-NaAlSi3O8