JPH01227105A - Plastic polarizing optical fiber - Google Patents

Plastic polarizing optical fiber

Info

Publication number
JPH01227105A
JPH01227105A JP63053901A JP5390188A JPH01227105A JP H01227105 A JPH01227105 A JP H01227105A JP 63053901 A JP63053901 A JP 63053901A JP 5390188 A JP5390188 A JP 5390188A JP H01227105 A JPH01227105 A JP H01227105A
Authority
JP
Japan
Prior art keywords
optical fiber
core
polarized optical
refractive index
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63053901A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
章 田中
Takenao Takojima
武尚 蛸島
Sakanobu Takahashi
栄悦 高橋
Hisashi Sawada
寿史 澤田
Shinpei Nagatani
真平 永谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63053901A priority Critical patent/JPH01227105A/en
Publication of JPH01227105A publication Critical patent/JPH01227105A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Abstract

PURPOSE:To obtain a lightweight and inexpensive polarizing optical fiber by working a part or the entire part of a plastic optical fiber consisting of a core and clad having a circular section in such a manner that the sectional shape is flattened. CONSTITUTION:A part or the whole of the plastic optical fiber 5 consisting of the core 1 and clad 2 having the circular section is worked by using rolling rolls 6 in such a manner that the sectional area thereof is flattened to generate work strains, by which the anisotropy of the refractive index is imparted to the core. PC (polycarbonate) and a solid soln. of the PC and polyester carbonate or a solid soln. of the PC and PVDF2 essentially consisting of PMMA are used as the core material. The lightweight and inexpensive polarizing optical fiber is thereby obtd.

Description

【発明の詳細な説明】 〔概 要〕 光信号を伝搬するプラスチック光ファイバ、特に光の偏
波面を一方向に保持した状態で伝搬できる偏波光ファイ
バに関し、 軽量で且つ安価な偏波光ファイバの提供を目的とし、 断面が円型のコアとクラッドからなるプラスチック光フ
ァイバを、断面形状が偏平になるように全体著しくはそ
の一部を成形加工し、コアに屈折率の異方性を付与して
構成する。
[Detailed Description of the Invention] [Summary] To provide a lightweight and inexpensive polarized optical fiber, which relates to a plastic optical fiber that propagates optical signals, particularly a polarized optical fiber that can propagate light while maintaining the plane of polarization in one direction. With the aim of Configure.

〔産業上の利用分野〕[Industrial application field]

本発明は光信号を伝搬するプラスチック光ファイバに係
り、特に光の偏波面を一方向に保持した状態で伝搬でき
る偏波光ファイバに関する。
The present invention relates to a plastic optical fiber for propagating optical signals, and more particularly to a polarized optical fiber that can propagate light while maintaining its plane of polarization in one direction.

最近、角速度や振動等を高精度に検出するための手段と
して、光ジヤイロスコープやファイバ圧力センサ等のよ
うに、光フアイバ自体をセンサとして利用する技術が開
発されている。
BACKGROUND ART Recently, as a means for detecting angular velocity, vibration, etc. with high precision, technologies have been developed that utilize optical fibers themselves as sensors, such as optical gyroscopes and fiber pressure sensors.

伝搬する情報の低損失を要求される光通信用とは異なり
、かかる用途では光の偏波面を一方向に保持したまま伝
搬できる、偏波面保存光ファイバ(以下偏波光ファイバ
と称する)が用いられる。
Unlike optical communication applications, which require low loss of propagating information, such applications use polarization-maintaining optical fibers (hereinafter referred to as polarization optical fibers), which can propagate light while maintaining the polarization plane in one direction. .

しかし現在供給されている偏波光ファイバはガラスファ
イバで重く、偏波面の保存性を付与するため断面形状が
複雑になっており極めて高価である。そこで軽量で且つ
安価な偏波光ファイバの実現が要望されている。
However, the polarized optical fibers currently available are heavy glass fibers, have complicated cross-sectional shapes in order to preserve the plane of polarization, and are extremely expensive. Therefore, it is desired to realize a polarized optical fiber that is lightweight and inexpensive.

〔従来の技術〕[Conventional technology]

第4図は従来の偏波光ファイバを示す側断面図である。 FIG. 4 is a side sectional view showing a conventional polarized optical fiber.

偏波面を一方向に保持した状態で長距離にわたって光を
伝搬させるには、Xモードにおける伝搬定数とYモード
における伝搬定数の差を大きくする必要がある。伝搬定
数の差を大きくする手段として一般に次の方法が取り入
れられている。即ちコアの断面を楕円にして両モードの
伝搬距離に差をつける。或いは円形のコアに歪を加えて
屈折率に異方性を付与し両モードの光路長に差をつける
In order to propagate light over a long distance while keeping the plane of polarization in one direction, it is necessary to increase the difference between the propagation constant in the X mode and the propagation constant in the Y mode. The following method is generally adopted as a means to increase the difference in propagation constants. That is, the cross section of the core is made into an ellipse to differentiate the propagation distances of both modes. Alternatively, strain is applied to the circular core to impart anisotropy to the refractive index, thereby creating a difference in the optical path lengths of both modes.

第4図(a)は両モードの伝搬距離に差をつけた楕円コ
ア型偏波光ファイバで、断面が楕円型のコア1の周囲に
断面が円型のクラッド2を形成し、その外側を更に石英
等からなる外被部3で覆っている。かかる偏波光ファイ
バはコア1の楕円率を大きくとると共に、コア1とクラ
ッド2の屈折率の差を太き(とる必要がある。そこで屈
折率差を大きくするための手段として各種のドープ材が
用いられているが、ドープ材による吸収や散乱が太きく
て実用性に欠は現在はあまり使用されていない・第4図
(b)は円形のコアに歪を加えて屈折率に異方性を付与
し、両モードの光路長に差をつけた楕円クラッド型偏波
光ファイバで、断面が円型のコア1の周囲に断面が楕円
型のクラッド2を形成し・その外側を更に石英等からな
る外被部3で覆っている。プレフォームされたロッドを
高温で線引きして光ファイバを形成するが、それぞれの
材質間に熱膨張係数の違いがあり収縮量に差が生じる。
Figure 4(a) shows an elliptical core polarized optical fiber in which the propagation distances of both modes are different.A cladding 2 with a circular cross section is formed around a core 1 with an elliptical cross section, and the outer side is further It is covered with an outer covering part 3 made of quartz or the like. In such a polarized optical fiber, it is necessary to increase the ellipticity of the core 1 and to increase the difference in refractive index between the core 1 and the cladding 2.Therefore, various dopants are used as a means to increase the difference in refractive index. However, it is not used much at present because the absorption and scattering by the doping material is large and it is not practical. Figure 4 (b) shows anisotropy in the refractive index by applying strain to a circular core. This is an elliptical clad polarized optical fiber in which the optical path lengths of both modes are different.A cladding 2 with an elliptical cross section is formed around a core 1 with a circular cross section, and the outside is further made of quartz or the like. The preformed rod is drawn at high temperature to form an optical fiber, but each material has a different coefficient of thermal expansion, resulting in a difference in the amount of shrinkage.

その結果、各層は変形しようとして光フアイバ内に歪が
発生し屈折率に異方性が付与される。しかし伝送損失が
大きく長距離用光ファイバとして実用化することが難し
い。
As a result, each layer tends to deform, causing strain within the optical fiber and imparting anisotropy to the refractive index. However, the transmission loss is large, making it difficult to put it into practical use as a long-distance optical fiber.

第4図(C)は楕円クラッド型偏波光ファイバと同様に
円形のコアに歪を加え、屈折率に異方性を付与した楕円
ジャケット型偏波光ファイバで、断面が円型のコア1の
周囲に断面が円型のクラッド2を形成し、クラッド2と
外側を覆う外被部3との間に楕円ジャケット層4を設け
ている。かかる偏波光ファイバはコア1とクラッド2を
伝送損失が小さくなるように構成し、その外側に設けた
楕円ジャケット層4でコアに歪を加えて屈折率に異方性
を付与しているため、偏波面保存性能を劣化させること
なく伝送損失を低減できる。
Figure 4 (C) shows an elliptical jacket type polarized optical fiber in which the circular core is strained to give anisotropy to the refractive index, similar to the elliptical clad type polarized optical fiber. A cladding 2 having a circular cross section is formed, and an elliptical jacket layer 4 is provided between the cladding 2 and an outer covering part 3 covering the outside. In such a polarized optical fiber, the core 1 and cladding 2 are configured to reduce transmission loss, and the elliptical jacket layer 4 provided on the outside applies strain to the core to impart anisotropy to the refractive index. Transmission loss can be reduced without deteriorating polarization preservation performance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし従来の偏波光ファイバは何れもガラス系の素材で
形成されており、外被部まで含めると重量が極めて太き
(なるという問題がある。しかも偏波面の保存性を付与
するため断面形状が複雑になっており極めて高価である
However, all conventional polarized optical fibers are made of glass-based materials, and if you include the outer sheath, they are extremely heavy (which is a problem).Moreover, in order to preserve the polarization plane, the cross-sectional shape is It is complex and extremely expensive.

本発明の目的は軽量で且つ安価な偏波光ファイバを提供
することにある。
An object of the present invention is to provide a lightweight and inexpensive polarized optical fiber.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明になる偏波光ファイバを示す図である。 FIG. 1 is a diagram showing a polarized optical fiber according to the present invention.

なお全図を通し同じ対象物は同一記号で表している。The same objects are represented by the same symbols throughout the figures.

上記課題は断面が円型のコア1とクラッド2からなるプ
ラスチック光ファイバ5を、断面形状が偏平になるよう
に全体若しくはその一部を成形加工し、コア1に屈折率
の異方性を付与してなる本発明のプラスチック偏波光フ
ァイバによって達成される。
The above problem involves molding the plastic optical fiber 5, which consists of a core 1 and a cladding 2 with a circular cross section, in whole or in part so that the cross section becomes flat, and giving the core 1 anisotropy in refractive index. This is achieved by the plastic polarized optical fiber of the present invention.

〔作用〕[Effect]

第1図において断面が円型のコアとクラッドからなるプ
ラスチック光ファイバを、断面形状が偏平゛になるよう
に全体若しくはその一部を成形加工することによって、
コアに屈折率の異方性が付与され軽量で且つ安価な偏波
光ファイバを形成することができる。
In FIG. 1, a plastic optical fiber consisting of a core and cladding with a circular cross section is molded in its entirety or in part so that the cross-sectional shape is flat.
Anisotropy of refractive index is imparted to the core, making it possible to form a lightweight and inexpensive polarized optical fiber.

〔実施例〕〔Example〕

以下第1図により本発明の実施例について説明する。な
お第2図は本発明になる偏波光ファイバの特性を示す図
、第3図は本発明になる偏波光ファイバの応用例を示す
斜視図である。
An embodiment of the present invention will be described below with reference to FIG. Note that FIG. 2 is a diagram showing the characteristics of the polarized optical fiber according to the present invention, and FIG. 3 is a perspective view showing an application example of the polarized optical fiber according to the present invention.

本発明になる偏波光ファイバは第1図(alのA−A断
面図に示す如く、断面が円型のコアlとクラノド゛2か
らなるプラスチック光ファイバ5を、第1図(b)に示
す如く圧延ロール6を用いて全体若しくはその一部を、
第1図(C1のB−B断面図に示す如く断面形状が偏平
になるように成形加工し、加工歪を生じさせることによ
ってコアに屈折率の異方性を付与している。
The polarized optical fiber according to the present invention is a plastic optical fiber 5 having a circular cross section as shown in the A-A cross-sectional view of FIG. Using the rolling roll 6, the whole or a part of it is
As shown in the BB sectional view of FIG. 1 (C1), the core is molded to have a flat cross-sectional shape, and anisotropy of the refractive index is imparted to the core by creating processing strain.

即ちコア材としてポリカーボネート(PC)を用い、ク
ラツド材としてポリメチルメタクリレ−1・(P M 
M A )と、ポリフッ化ビニリデン(PVDF2)と
の固溶体(重量成分比3ニア)を用い、断面が円型のコ
ア1とクラッド2からなるプラスチック光ファイバ5を
形成する。なおコア材としてPCの他にPCとポリエス
テルカーボネートとの固溶体、或いはPMMAを主成分
とするPVDF2との固溶体を用いても良く、クラツド
材としてPVDF2を単独で用いても良い。
That is, polycarbonate (PC) is used as the core material, and polymethyl methacrylate-1 (P M
A plastic optical fiber 5 consisting of a core 1 and a cladding 2 having a circular cross section is formed using a solid solution of polyvinylidene fluoride (PVDF2) and polyvinylidene fluoride (PVDF2) (weight component ratio: 3). In addition to PC, a solid solution of PC and polyester carbonate or a solid solution of PVDF2 containing PMMA as a main component may be used as the core material, and PVDF2 alone may be used as the cladding material.

高分子は無機ガラスに比べて展延性に優れているため、
ガラス転移点(100℃前後)以下の温度で容易に応力
歪を加えることができ、屈折率の異方性を最大限発現さ
せるための分子配向を行うことができる。かかる特性を
利用して80℃に加熱した圧延ロール6を用い、断面形
状が長袖と短軸の比が5:1の偏平状になるように、プ
ラスチック光ファイバ5を引き伸ばし成形加工している
Polymers have superior malleability compared to inorganic glass, so
Stress strain can be easily applied at a temperature below the glass transition point (approximately 100° C.), and molecular orientation can be performed to maximize the anisotropy of the refractive index. Taking advantage of this characteristic, the plastic optical fiber 5 is stretched and molded using a rolling roll 6 heated to 80° C. so that the cross-sectional shape has a flat shape with a long axis to short axis ratio of 5:1.

第2図(a)に示す如く本発明になる偏波光ファイバF
の片側に、偏光子Pを介して633nmの1ie−Ne
レーザLからレーザ光を入射し、偏波光ファイバFの他
端から出射される光を検光子Aを介して光デイテクタD
で測定すると、光出力は偏波光ファイバの短軸方向と検
光子Aのなす角度θにより第2図(b)の如く変化する
A polarized optical fiber F according to the present invention as shown in FIG. 2(a)
on one side of the 633 nm 1ie-Ne through the polarizer P.
Laser light is input from the laser L, and the light emitted from the other end of the polarized optical fiber F is passed through the analyzer A to the optical detector D.
When measured, the optical output changes depending on the angle θ formed between the short axis direction of the polarized optical fiber and the analyzer A, as shown in FIG. 2(b).

即ち、偏光子Pの向きを偏波光ファイバの長軸方向と一
致せしめ、偏波光ファイバの長袖方向に偏波面を有する
光を入射すると、θが90度の近傍で光出力が最大にな
りθが90度から外れると急激に低下する。一方偏光子
Pの向きを偏波光ファイバの短軸方向と一致せしめ、偏
波光ファイバの短軸方向に偏波面を有する光を入射する
と、検光子へのなす角度θが変化しても光出力の変化は
掻く僅かで、本発明になる偏波光ファイバが優れた偏波
面の保存性を具えていることが明らかである。
That is, when the direction of the polarizer P is made to match the long axis direction of the polarized optical fiber and light having a polarization plane is incident on the long sleeve direction of the polarized optical fiber, the optical output becomes maximum near θ of 90 degrees, and θ becomes When it deviates from 90 degrees, it drops rapidly. On the other hand, if the direction of the polarizer P is made to match the short axis direction of the polarized optical fiber and light having a polarization plane in the short axis direction of the polarized optical fiber is incident, the optical output will change even if the angle θ to the analyzer changes. The change is very slight, and it is clear that the polarized optical fiber of the present invention has excellent polarization plane preservation.

このように断面が円型のコアとクラフトからなるプラス
チック光ファイバを、断面形状が偏平になるように全体
若しくはその一部を成形加工するごとによって、コアに
屈折率の異方性が付与され軽量で且つ安価な偏波光ファ
イバを形成することができる。
In this way, by molding the entire plastic optical fiber, which consists of a core with a circular cross section and a craft, or a part of it so that the cross section becomes flat, anisotropy in the refractive index is imparted to the core, making it lightweight. It is possible to form an inexpensive polarized optical fiber.

なお第3図に示す如く断面が円型のコアとクラッドから
なるプラスチック光ファイバ5を、圧延ロールを用いて
その一部を偏平になるように成形加工し、偏平に体成形
加工された部分を長平方向に複数(図では2個)に分割
することにより、断面が円形の方向から伝搬されてきた
光をそれぞれ複数方向に分岐せしめる光分波器として、
分割された方向からそれぞれ伝采されてきた光を合成す
る光合波器として用いることが可能である。
As shown in FIG. 3, a plastic optical fiber 5 consisting of a core and a cladding having a circular cross section is formed into a flat part using a rolling roll, and the flattened part is formed into a flat part. As an optical demultiplexer, the light propagated from a direction with a circular cross section is split into multiple directions by dividing it into multiple parts (two in the figure) in the longitudinal direction.
It can be used as an optical multiplexer that combines the lights transmitted from each of the divided directions.

C発明の効果〕 上述の如く本発明によれば軽量で且つ安価な偏波光ファ
イバを提供することができる。
C. Effects of the Invention] As described above, according to the present invention, a lightweight and inexpensive polarized optical fiber can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる偏波光ファイバを示す図、第2図
は本発明になる偏波光ファイバの特性を示す図、 第3図は本発明になる偏波光ファイバの応用例を示す斜
視図、 第4図は従来の偏波光ファイバを示す側断面図、である
。図において 1はコア、 2はクラッド、 5はプラスチック光ファイバ、 6は圧延ロール、 をそれぞれ表す。 ゛(シI (σ)(C) (b) 木金明/:&5傭波光ファイバ2示す図第 1 図 (b) 角  、衾、 θ ノ2トーづを8雄二なろaha勺〒1ファイバーす予f
生2示ず1η第2図
FIG. 1 is a diagram showing a polarized optical fiber according to the present invention, FIG. 2 is a diagram showing characteristics of the polarized optical fiber according to the present invention, and FIG. 3 is a perspective view showing an application example of the polarized optical fiber according to the present invention. , FIG. 4 is a side sectional view showing a conventional polarized optical fiber. In the figure, 1 represents a core, 2 represents a cladding, 5 represents a plastic optical fiber, and 6 represents a rolling roll.゛(shiI (σ)(C) (b) Figure 1 (b) Angle, curvature, θ ノ 2 to 8 yen 2 aha 〒 1 fiber plan f
Raw 2 Show 1 η Figure 2

Claims (1)

【特許請求の範囲】[Claims] 断面が円型のコア(1)とクラッド(2)からなるプラ
スチック光ファイバ(5)を、断面形状が偏平になるよ
うに全体若しくはその一部を成形加工し、該コア(1)
に屈折率の異方性を付与してなることを特徴とするプラ
スチック偏波光ファイバ。
A plastic optical fiber (5) consisting of a core (1) with a circular cross section and a cladding (2) is molded in whole or in part so that the cross section becomes flat, and the core (1)
A plastic polarized optical fiber characterized by being made by imparting refractive index anisotropy to the fiber.
JP63053901A 1988-03-07 1988-03-07 Plastic polarizing optical fiber Pending JPH01227105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053901A JPH01227105A (en) 1988-03-07 1988-03-07 Plastic polarizing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053901A JPH01227105A (en) 1988-03-07 1988-03-07 Plastic polarizing optical fiber

Publications (1)

Publication Number Publication Date
JPH01227105A true JPH01227105A (en) 1989-09-11

Family

ID=12955622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053901A Pending JPH01227105A (en) 1988-03-07 1988-03-07 Plastic polarizing optical fiber

Country Status (1)

Country Link
JP (1) JPH01227105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023317A1 (en) * 1993-03-31 1994-10-13 W.L. Gore & Associates, Inc. Asymmetrical polarization-maintaining optical waveguide and process for manufacture thereof
WO2009147945A1 (en) * 2008-06-02 2009-12-10 セイコーインスツル株式会社 Information recording/reproducing device
CN109633812A (en) * 2019-01-17 2019-04-16 武汉芯微感科技有限公司 A kind of panda type polymer polarization maintaining optical fibre and its application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023317A1 (en) * 1993-03-31 1994-10-13 W.L. Gore & Associates, Inc. Asymmetrical polarization-maintaining optical waveguide and process for manufacture thereof
WO2009147945A1 (en) * 2008-06-02 2009-12-10 セイコーインスツル株式会社 Information recording/reproducing device
JP2010015664A (en) * 2008-06-02 2010-01-21 Seiko Instruments Inc Information recording/reproducing device
US8537646B2 (en) 2008-06-02 2013-09-17 Seiko Instruments Inc. Thermally-assisted magnetic recording head having photoelectric wiring lines integrally formed on waveguide
CN109633812A (en) * 2019-01-17 2019-04-16 武汉芯微感科技有限公司 A kind of panda type polymer polarization maintaining optical fibre and its application

Similar Documents

Publication Publication Date Title
US4801185A (en) Directional coupler
US7046887B2 (en) Polarization preserving optical fiber and absolute single polarization optical fiber
CA2020531A1 (en) Single-mode, single-polarization optical fiber
JPH01237507A (en) Absolute single polarizing optical fiber
JPS6258481B2 (en)
US6580860B1 (en) Method for making shaped highly birefringent optical fibers
NO842176L (en) OPTICAL BOARD MANAGER OF THE SINGLE MODE TYPE WITH POLARIZATION MAINTENANCE
CN107843953B (en) High-birefringence large-nonlinearity photonic crystal fiber
KR100786617B1 (en) Method of manufacturing polarization-maintaining optical fiber coupler
JP2001056416A (en) Polarized wave maintaining optical fiber and polarized wave maintaining optical fiber part
CN108152881B (en) Chalcogenide high-birefringence photonic crystal fiber in waveband range of 2-5 microns
NO862318L (en) FORMULA DOUBLE FIBER AND MANUFACTURING METHOD.
JPH01227105A (en) Plastic polarizing optical fiber
JPS60154215A (en) Fiber type directional coupler
JPH0685005B2 (en) Constant polarization fiber and manufacturing method thereof
JPS6053285B2 (en) Constant polarization optical fiber
CN102645708A (en) Optical waveguide resonant cavity with high polarization extinction ratio based on inclined waveguide grating structure
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
CN104678487A (en) Gas-clad polarization-maintaining optical fiber
CN220039508U (en) Double-parameter optical fiber sensor based on multimode and conical fluorine-doped lead sulfide optical fiber cascade connection
JP2001051150A (en) Manufacture of polarization retaining optical fiber coupler
JPS6285205A (en) Constant polarization optical fiber
JPS59139005A (en) Fiber for maintaining linearly polarized light
CN211602925U (en) Terahertz microstructure double-core optical fiber ultra-sensitive microfluidic sensor
JP2635720B2 (en) Optical fiber coupler