JPH01225750A - Tough and hard steel for machine structural use excellent in cold forgeability - Google Patents

Tough and hard steel for machine structural use excellent in cold forgeability

Info

Publication number
JPH01225750A
JPH01225750A JP5121788A JP5121788A JPH01225750A JP H01225750 A JPH01225750 A JP H01225750A JP 5121788 A JP5121788 A JP 5121788A JP 5121788 A JP5121788 A JP 5121788A JP H01225750 A JPH01225750 A JP H01225750A
Authority
JP
Japan
Prior art keywords
steel
deformation resistance
tough
less
machine structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5121788A
Other languages
Japanese (ja)
Inventor
Kimio Mine
峰 公雄
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5121788A priority Critical patent/JPH01225750A/en
Publication of JPH01225750A publication Critical patent/JPH01225750A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a tough and hard steel for machine structural use excellent in cold forgeability by specifying a composition consisting of C, Si, Mn, Cr, Cu, P, S, O, and Fe. CONSTITUTION:This tough and hard steel for machine structural use has a composition consisting of, by weight, >0.45-0.60% C, <0.02% Si, 0.40-0.70% Mn, 0.35-1.20% Cr, <=0.02% Cu, <=0.01% P, <=0.01% S, <=0.002% O, and the balance essentially Fe and satisfying 5.0<=(1+4.1Mn)(1+2.33Cr)<=10, and this steel is excellent in all of various cold forging characteristics, such as low deformation resistance, high hardenability, and surface oxidation resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷間鍛造性に優れた機械構造用強靭鋼に関
し、とくに自動車用等速ジヨイントアウター等の機械構
造部品に適用して好適なものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a strong steel for mechanical structures with excellent cold forging properties, and is particularly suitable for application to mechanical structural parts such as constant velocity joint outerers for automobiles. It is something.

(従来の技術) 従来、等速ジヨイントアウター等の機械部品としては、
浸炭肌焼き鋼が用いられてきたが、最近では鋼の品質を
はじめとして、冷・温鍛加工技術や高周波焼入れ技術が
向上したことに伴い、機械構造用強靭鋼が用いられるよ
うになってきた。
(Conventional technology) Conventionally, mechanical parts such as constant velocity joint outer,
Carburized case-hardened steel has been used, but recently, with improvements in steel quality, cold and hot forging processing technology, and induction hardening technology, strong steel for machine structures has come to be used. .

しかしながらかかる機械構造用強靭鋼は、主にC,St
、 MnおよびCrなとの添加で焼入れ性ひいては強度
の向上を図っているが、これらの元素の添加量が比較的
多いために、塑性加工としての冷間鍛造時における変形
抵抗が非常に高く、そのため機械の加工能力、表面潤滑
および金型寿命の点で問題が生じ易かった。すなわち変
形抵抗が大きくなると機械の能力を高める必要が生じる
だけでなく、潤滑膜の強度不足や金型の寿命低下を招い
ていたのである。
However, such strong steels for machine structures are mainly made of C, St.
, Mn and Cr are added to improve hardenability and strength, but because the amounts of these elements added are relatively large, the deformation resistance during cold forging as plastic working is extremely high. Therefore, problems tend to occur in terms of machine processing ability, surface lubrication, and mold life. In other words, when the deformation resistance increases, not only does it become necessary to increase the capacity of the machine, but it also causes insufficient strength of the lubricating film and shortens the life of the mold.

この点については従来から種々改善策が提案されている
。たとえば「塑性加工春季講演会J (1987゜5.
15〜17  P、301〜302)では、焼入れ性を
損うことな(変形抵抗を低減するものとして、Cr添加
鋼およびCr−B添加鋼が開示されている。しかしなが
ら上記の鋼はいずれも基本的にSiの添加量が0.06
%と高いため、後述するように変形抵抗が依然として高
く、加えて軟化焼鈍中に表面酸化が進行する不利もあっ
た。
Regarding this point, various improvement measures have been proposed in the past. For example, "Plastic Working Spring Lecture J (1987゜5.
15-17 P, 301-302), Cr-added steel and Cr-B-added steel are disclosed as materials that do not impair hardenability (reduce deformation resistance).However, all of the above steels are basic. The amount of Si added is 0.06
%, the deformation resistance is still high as will be described later, and there is also the disadvantage that surface oxidation progresses during softening annealing.

また特公昭61413744号公報では、St、 Mn
+ Cr量さらにはS、P、N、Oを制限することによ
って変形抵抗の低減および変形能の向上を図っている。
In addition, in Japanese Patent Publication No. 61413744, St, Mn
+ By limiting the amount of Cr as well as S, P, N, and O, the deformation resistance is reduced and the deformability is improved.

しかしながら上記の技術では、低変形抵抗は実現される
にしても、焼入れ性に劣り、また軟化焼鈍時の表面酸化
の防止も十分とはいい難かった。
However, even though the above-mentioned technique achieves low deformation resistance, the hardenability is poor and the prevention of surface oxidation during softening annealing is not sufficient.

(発明が解決しようとする課題) 上述したとおり従来は、機械構造用強靭鋼において、低
変形抵抗、高焼入れ性および耐表面酸化性などの特性全
てを満足する材料は知られてなく、その開発が望まれて
いた。
(Problems to be Solved by the Invention) As mentioned above, there has been no known material that satisfies all of the characteristics of low deformation resistance, high hardenability, and surface oxidation resistance in strong steel for machine structures, and the development of such a material is difficult. was desired.

この発明は、上記の問題を有利に解決するもので、冷間
鍛造用鋼に必要とされる特性の悉くを兼備する機械構造
用強靭鋼を提案することを目的とする。
The present invention aims to advantageously solve the above-mentioned problems, and to propose a strong steel for machine structures that has all of the properties required of a steel for cold forging.

(課題を解決するための手段) この種鋼材は、フェライト・パーライト組織では変形抵
抗が大きくしかも変形能に劣るので、炭化物を球状化し
た後に冷間鍛造に付される。またかかる冷間鍛造および
機械加工を施されたのち、高周波焼入れに供される。
(Means for Solving the Problem) This type of steel material has a ferrite-pearlite structure that has high deformation resistance and poor deformability, so it is subjected to cold forging after carbide is spheroidized. After being subjected to such cold forging and machining, it is subjected to induction hardening.

そこで発明者らは、球状化組織での変形抵抗および高周
波焼入れ性さらには表面性状について綿密な検討を行っ
た結果、次の成分系とすることによって所期した目的が
有利に達成されることを知見し、この発明を完成させる
に至ったのである。
As a result of careful study of the deformation resistance, induction hardenability, and surface properties of the spheroidized structure, the inventors found that the desired objective could be advantageously achieved by using the following component system. This knowledge led to the completion of this invention.

すなわちこの発明は、C:0.45超〜0.60wt1
(以下単に%で示す) 、Si :0.02%未満、M
n:0.40〜0.70%、Cr : 0.35〜1.
20%でかつ、MnおよびCr量が下記(1)式を満足
する範囲において含有し、さらにCu : 0.02%
以下、P : 0.01%以下、s : o、oi%以
下、O: 0.002wtX以下を含み、残部は実質的
にFeの組成になることから成る冷間鍛造性に優れた機
械構造用強靭鋼である。
That is, this invention provides C: more than 0.45 to 0.60wt1
(hereinafter simply expressed as %), Si: less than 0.02%, M
n: 0.40-0.70%, Cr: 0.35-1.
20% and contains Mn and Cr in a range that satisfies the following formula (1), further Cu: 0.02%
Below, P: 0.01% or less, s: o, oi% or less, O: 0.002wtX or less, and the remainder is essentially Fe for mechanical structures with excellent cold forgeability. It is strong steel.

記 5.0  ≦(1+4. I X Mnχ)  (1+
2.33XCrX)≦10  ・(1)(作 用) この発明において成分組成を上記の範囲に限定した理由
について説明する。
Note 5.0 ≦(1+4. I X Mnχ) (1+
2.33XCrX)≦10 (1) (Function) The reason why the component composition is limited to the above range in this invention will be explained.

C: 0.45超〜0.60% Cは部材の強度を高めるのに有用な元素であり、特に高
周波焼入れされた時の表面硬さはC量によって決まる。
C: More than 0.45 to 0.60% C is an element useful for increasing the strength of a member, and the surface hardness especially when induction hardened is determined by the C content.

かかる表面硬さを満足させるには少なくとも0.45%
超が必要であるので下限は0.45%超とした。一方C
量があまりに多いと、高周波焼入れされた後の表面硬さ
が過度になるほかに、冷間鍛造時における変形抵抗が大
きくなるので、上限は0.60%とした。より好ましい
組成範囲は0.50超〜0.60%である。
At least 0.45% to satisfy such surface hardness.
Therefore, the lower limit was set to exceed 0.45%. On the other hand, C
If the amount is too large, the surface hardness after induction hardening will become excessive, and the deformation resistance during cold forging will increase, so the upper limit was set at 0.60%. A more preferable composition range is more than 0.50 to 0.60%.

Si : 0.02%未満 Stは、固溶硬化の大きな元素であって変形抵抗の増大
を招くだけではなく、熱処理工程で表面酸化を促進する
有害元素である。従ってSiの混入は極力低減すること
が望ましいが、0.02%未満で許容できる。とくに好
ましくは0.01%未満である。
Si: Less than 0.02% St is a harmful element that not only causes solid solution hardening and increases deformation resistance, but also promotes surface oxidation during the heat treatment process. Therefore, it is desirable to reduce the amount of Si mixed in as much as possible, but less than 0.02% is acceptable. Particularly preferably less than 0.01%.

Mn : 0.40〜0.70% Mnは、焼入れ性向上にとって有効な元素であり、比較
的低コストで部材の強度を出すことが可能である。しか
しながら、球状化状態でマトツクス中に固溶し、Siと
同様固溶硬化を起こす。ここに強度の確保およびSによ
る熱間脆化を防止するには少なくとも0.40%が必要
であるので、下限は0.40%とした。一方、あまりに
多量のMn添加は固溶硬化を招くので、上限は0.70
%とした。
Mn: 0.40 to 0.70% Mn is an effective element for improving hardenability, and can increase the strength of the member at relatively low cost. However, it forms a solid solution in the matrix in a spheroidized state, causing solid solution hardening like Si. Since at least 0.40% is required to ensure strength and prevent hot embrittlement due to S, the lower limit was set at 0.40%. On the other hand, adding too much Mn causes solid solution hardening, so the upper limit is 0.70.
%.

Cr : 0.35〜1.20% Crは、焼入れ性を向上させる有用な元素であり、しか
も炭化物の球状化過程で濃縮しフェライト中の固溶量が
減少するので、球状化組織での固溶硬化がSi等に比べ
て小さいという利点がある。またCrの存在は、望外変
形による炭化物の再溶解を低減し、Cによる歪時効の低
減にも有効に寄与することが見い出された。このような
効果を十分に発揮させるためには少なくとも0.35%
以上を必要とするので、下限は0.35%とした。一方
、Cr添加量を増加すると、Cの拡散速度が低下し球状
化の進行が阻害され、炭化物が微細になることによって
変形抵抗がかえって大きくなるので、上限は1.20%
とした。
Cr: 0.35-1.20% Cr is a useful element that improves hardenability, and it also concentrates during the process of spheroidizing carbides and reduces the amount of solid solution in ferrite, so it does not solidify in the spheroidized structure. It has the advantage that melt hardening is smaller than that of Si and the like. It has also been found that the presence of Cr reduces re-dissolution of carbides due to undesired deformation and also effectively contributes to reducing strain aging due to C. At least 0.35% to fully exhibit this effect.
Since the above amount is required, the lower limit was set to 0.35%. On the other hand, when the amount of Cr added is increased, the diffusion rate of C decreases and the progress of spheroidization is inhibited, and the deformation resistance increases due to finer carbides, so the upper limit is 1.20%.
And so.

ところでMn (!: Crは、共に焼入れ性を向上さ
せる元素であるが、ただ単に上記の範囲を満足させただ
けでは必ずしも十分満足のいく高周波焼入れができない
こと、が判明した。そこで安定した高周波焼入れを実現
すぺ(、MnとCrの添加量と焼入れ深さとの関係につ
いて調べた。その結果を整理して第1図に示す。
By the way, Mn (!: Cr) are both elements that improve hardenability, but it has been found that simply satisfying the above range does not necessarily result in sufficiently satisfactory induction hardening.Therefore, stable induction hardening cannot be achieved. The relationship between the amounts of Mn and Cr added and the hardening depth was investigated. The results are summarized and shown in Figure 1.

すなわち満足いく焼入れ性を得るためには、(1+4.
 I X Mn″t) (1+2.33×Cr%)で示
されるパラメータで5以上とする必要があることが判明
したのでる。とはいえ上記のパラメータが10を超える
と、焼入れ性は問題ないものの、変形抵抗の増大を招く
ので、10以下とする必要がある。
That is, in order to obtain satisfactory hardenability, (1+4.
It was found that the parameter shown by I x Mn″t) (1+2.33×Cr%) needs to be 5 or more. However, if the above parameter exceeds 10, there is no problem with hardenability. However, since this causes an increase in deformation resistance, it is necessary to set it to 10 or less.

その他の成分については次のとおりである。Other ingredients are as follows.

Cu : 0.02%以下 Cuは、熱間加工性や製品の品質を劣化させるだけでな
く、冷間鍛造時における変形抵抗の増大を招く有害元素
であるが、0.02%以下の範囲で許容できる。
Cu: 0.02% or less Cu is a harmful element that not only deteriorates hot workability and product quality but also increases deformation resistance during cold forging, but within a range of 0.02% or less acceptable.

P:0.01%以下 Pは、通常不純物として0.015%程度以上含有され
るけれども、極力低減することによって、変形抵抗が低
下し、冷間鍛造時における割れが防止されると共に、高
周波焼入れ部の靭性が向上するので、0.01%以下に
制限することとした。
P: 0.01% or less P is normally contained as an impurity at about 0.015% or more, but by reducing it as much as possible, deformation resistance is lowered, cracking during cold forging is prevented, and it is also possible to prevent induction hardening. Since it improves the toughness of the parts, it was decided to limit it to 0.01% or less.

S:0.01%以下 Sは、硫化物として圧延方向に伸びた介在物となり、冷
間鍛造時における割れの発生起点となるだけでなく、割
れの伝播も助長し、さらには高周波焼入れ部の靭性を劣
化させるので、極力低減することが望ましく、それ故許
容上限を0.01%に定めた。
S: 0.01% or less S forms inclusions that extend in the rolling direction as sulfides, which not only serve as starting points for cracks during cold forging, but also promote the propagation of cracks, and even cause damage to induction hardened parts. Since it deteriorates toughness, it is desirable to reduce it as much as possible, and therefore the allowable upper limit was set at 0.01%.

0: 0.002%以下 Oは、MnやAI、さらには微量含有されるSiと化合
して酸化物を形成し、冷間鍛造時に延性劣化を招くだけ
でなく、機械部品の耐疲労性を劣化させるので、容許上
限を0.002%に定めた。
0: 0.002% or less O combines with Mn, AI, and even trace amounts of Si to form oxides, which not only causes deterioration of ductility during cold forging, but also deteriorates the fatigue resistance of mechanical parts. Since it causes deterioration, the upper limit of tolerance is set at 0.002%.

その他、AIは溶製段階で脱酸剤として混入する程度の
量は含有しても差し支えないが、多量に含有されると地
底発生の他、固溶硬化を招き冷間鍛造時における変形抵
抗を増大させるので、できるだけ少ないことが望ましい
。さらにNやV、Mo。
In addition, AI can be contained in an amount that is used as a deoxidizing agent during the forging process, but if it is contained in a large amount, it will not only form underground, but also cause solid solution hardening and reduce deformation resistance during cold forging. It is desirable to minimize the amount as much as possible. Furthermore, N, V, Mo.

Niなどの混入も極力低減することが望ましい。It is also desirable to reduce the inclusion of Ni and the like as much as possible.

次にこの発明鋼の一般的な製造法について述べる。Next, a general manufacturing method for this invention steel will be described.

転炉または電気炉で溶製し、炉外精錬で脱酸および成分
の微調整を行なった後、連続鋳造あるいは造塊する。つ
いで鋼片に圧延した後、主に棒鋼あるいは線材に圧延し
て製品とする。なお、電気炉においてはスクラップから
のSi+ S+ Cu、 NitMo、V、 As、 
Sn等の不純物の混入のおそれが大きく、スクラップの
R選を必要とするので、転炉での溶製が有利である。
It is melted in a converter or electric furnace, deoxidized and fine-tuned by out-of-furnace refining, and then continuously cast or ingot-formed. After that, it is rolled into a steel billet and then rolled into a product, mainly into a steel bar or wire rod. In addition, in the electric furnace, Si+S+Cu, NitMo, V, As,
Since there is a large risk of contamination with impurities such as Sn, and R selection of the scrap is required, melting in a converter is advantageous.

(実施例) 実施例I C: 0.51〜0.55%、St : 0.01%未
満、Mn:0.45〜0.50%、Cr : 0.35
〜0.42%を含有する他、P、S、Cuおよび0を第
1表に示す種々の範囲で含有する鋼材に球状化処理を行
ない、冷間鍛造性に及ぼす上掲各元素の影響について調
査した。
(Example) Example I C: 0.51-0.55%, St: less than 0.01%, Mn: 0.45-0.50%, Cr: 0.35
In addition to ~0.42%, steel materials containing P, S, Cu, and 0 in various ranges shown in Table 1 were subjected to spheroidization treatment, and the effects of each of the above elements on cold forgeability were investigated. investigated.

冷間鍛造性は、圧縮試験用の試験片を機械加工し、押圧
試験により50%の試験片に割れが発生する圧縮率を限
界圧縮率、とじて、この限界圧縮率の大小で評価した。
Cold forgeability was evaluated by machining test specimens for compression tests, determining the compression ratio at which cracks occur in 50% of the test specimens as the critical compression ratio, and determining the magnitude of this critical compression ratio.

調査結果を第1表に併記する。The survey results are also listed in Table 1.

試験速度: 40cps 同表より明らかなように、この発明の成分組成を満足す
る場合のみ、高い限界圧縮率が得られている。
Test speed: 40 cps As is clear from the same table, a high critical compressibility was obtained only when the component composition of the present invention was satisfied.

実施例2 第2表に示す種々の組成になる鋼材に、球状化処理を施
したのち、次の試験に供じた。
Example 2 Steel materials having various compositions shown in Table 2 were subjected to spheroidization treatment and then subjected to the following test.

(])表面の内部酸化など清浄性について調査した。(]) We investigated cleanliness such as internal oxidation of the surface.

(2)圧縮試験用の試験片を機械加工し、押圧試験によ
り変形抵抗を測定した。
(2) A test piece for a compression test was machined, and the deformation resistance was measured by a pressure test.

(3)30 mmφの試験片に機械加工後、15Hzで
高周波焼入れし、その後200°C140m1nの焼戻
しを行なったのち、表面からの硬さ分布を測定し、硬さ
がHv :500となる位置の表面からの距離を有効焼
入れ深さとして、高周波焼入れ性を評価した。
(3) After machining a 30 mmφ test piece, it was induction hardened at 15 Hz, then tempered at 200°C for 140 m1n, and the hardness distribution from the surface was measured. The induction hardenability was evaluated using the distance from the surface as the effective hardening depth.

各調査結果を第2表に併記する。The results of each survey are also listed in Table 2.

同表より明らかなように、表面清浄性は、この発明の成
分組成とくにSi : 0.01%未満とすることによ
って、内部酸化が発生せず、きれいな表面状況を呈して
いた。
As is clear from the same table, the surface cleanliness was such that internal oxidation did not occur due to the component composition of the present invention, particularly Si: less than 0.01%, and a clean surface condition was exhibited.

次に、変形抵抗Rmは、圧縮試験により得られる荷重P
(kgf)から次式により算出した。
Next, the deformation resistance Rm is the load P obtained by the compression test.
(kgf) using the following formula.

Ho:  変形前の試料の高さ do:  変形前の試料の直径 H: 変形後の試料の高さ この発明の適正範囲を満足するものはいずれも、変形抵
抗は低い。なお適正範囲外のものの中にも変形抵抗が低
いものがあるが、後述する高周波焼入性に劣る。
Ho: Height of the sample before deformation do: Diameter of the sample before deformation H: Height of the sample after deformation All specimens that satisfy the appropriate range of this invention have low deformation resistance. Note that some of the materials outside the appropriate range have low deformation resistance, but are inferior in induction hardenability, which will be described later.

次に高周波焼入れ性については、この出願の成分範囲内
の成分系では3.9 m以上の焼入れ深さを示した。こ
れに対し適正範囲外でも良好な焼入れ性を示すものが存
在したが、これらはいずれも変形抵抗が高い材料である
Next, regarding induction hardenability, the composition within the composition range of this application showed a hardening depth of 3.9 m or more. On the other hand, there are materials that exhibit good hardenability even outside the appropriate range, but these are all materials with high deformation resistance.

(発明の効果) かくしてこの発明によれば、変形抵抗が小さく、かつ高
周波焼入れ性に優れ、しかも球状化焼鈍等の熱処理工程
で表面の内部酸化が起こらない鋼材を容易に得ることが
でき、工業的に安定した高品質の機械部品製造に寄与す
るところ大である。
(Effects of the Invention) Thus, according to the present invention, it is possible to easily obtain a steel material that has low deformation resistance, excellent induction hardenability, and does not undergo internal oxidation on the surface during heat treatment processes such as spheroidizing annealing, and is suitable for industrial use. This greatly contributes to the production of consistently high-quality mechanical parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、MnおよびCrが焼入れ性に及ぼす影響を示
したグラフである。
FIG. 1 is a graph showing the influence of Mn and Cr on hardenability.

Claims (1)

【特許請求の範囲】 1、C:0.45超〜0.60wt%、 Si:0.02wt%未満、 Mn:0.40〜0.70wt%、 Cr:0.35〜1.20wt% でかつ、MnおよびCr量が下記(1)式を満足する範
囲において含有し、さらに Cu:0.02wt%以下、 P:0.01wt%以下、 S:0.01wt%以下、 O:0.002wt%以下 を含み、残部は実質的にFeの組成になることを特徴と
する冷間鍛造性に優れた機械構造用強靭鋼。 記 5.0≦(1+4.1×Mn%)(1+2.33×Cr
%)≦10・・・(1)
[Claims] 1. C: more than 0.45 to 0.60 wt%, Si: less than 0.02 wt%, Mn: 0.40 to 0.70 wt%, Cr: 0.35 to 1.20 wt%. And, the amount of Mn and Cr is contained in a range that satisfies the following formula (1), furthermore, Cu: 0.02wt% or less, P: 0.01wt% or less, S: 0.01wt% or less, O: 0.002wt % or less, and the balance is substantially Fe, and has excellent cold forgeability. 5.0≦(1+4.1×Mn%)(1+2.33×Cr
%)≦10...(1)
JP5121788A 1988-03-04 1988-03-04 Tough and hard steel for machine structural use excellent in cold forgeability Pending JPH01225750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5121788A JPH01225750A (en) 1988-03-04 1988-03-04 Tough and hard steel for machine structural use excellent in cold forgeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5121788A JPH01225750A (en) 1988-03-04 1988-03-04 Tough and hard steel for machine structural use excellent in cold forgeability

Publications (1)

Publication Number Publication Date
JPH01225750A true JPH01225750A (en) 1989-09-08

Family

ID=12880753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5121788A Pending JPH01225750A (en) 1988-03-04 1988-03-04 Tough and hard steel for machine structural use excellent in cold forgeability

Country Status (1)

Country Link
JP (1) JPH01225750A (en)

Similar Documents

Publication Publication Date Title
EP0665068B1 (en) Wear- and seizure-resistant roll for hot rolling
JP3556968B2 (en) High carbon high life bearing steel
EP0742288B1 (en) Long-lived induction-hardened bearing steel
JP5503195B2 (en) Steel for machine structure suitable for friction welding, manufacturing method thereof, friction welding component
EP1352980A1 (en) High silicon stainless
JP3238031B2 (en) Long life carburized bearing steel
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP3255296B2 (en) High-strength steel for spring and method of manufacturing the same
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP2834654B2 (en) High toughness hot work tool steel
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JP3268210B2 (en) High-speed cast iron with graphite
JPH1161351A (en) High hardness martensite-based stainless steel superior in workability and corrosion resistance
JPH0555585B2 (en)
KR960006328B1 (en) Cold rolling tool steel
JP3255612B2 (en) Method of manufacturing super-cuttable steel rod and wire and super-cuttable steel rod and wire thereby
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP3883788B2 (en) Cold tool steel for molds with excellent toughness and wear resistance
JP3442706B2 (en) Free-cutting steel
JPH01225750A (en) Tough and hard steel for machine structural use excellent in cold forgeability
JP2001152279A (en) Free cutting steel
JP2989766B2 (en) Case hardened steel with excellent fatigue properties and machinability
JP2733989B2 (en) Free cutting steel with excellent hot ductility
JP3620935B2 (en) Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties
JPH0734190A (en) Steel for machine structure excellent in machinability and cold forgeability