JPH01224099A - Anaerobic digestion method with fluidized bed - Google Patents

Anaerobic digestion method with fluidized bed

Info

Publication number
JPH01224099A
JPH01224099A JP63050385A JP5038588A JPH01224099A JP H01224099 A JPH01224099 A JP H01224099A JP 63050385 A JP63050385 A JP 63050385A JP 5038588 A JP5038588 A JP 5038588A JP H01224099 A JPH01224099 A JP H01224099A
Authority
JP
Japan
Prior art keywords
fluidized bed
sludge
carrier
slurry
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63050385A
Other languages
Japanese (ja)
Other versions
JP2729623B2 (en
Inventor
Yoshio Oshima
大嶋 吉雄
Takao Murakami
孝雄 村上
Toshio Hamaguchi
濱口 利男
Keiichiro Miyano
宮野 啓一郎
Akira Nakabayashi
昭 中林
Akihiko Tsunoda
明彦 角田
Masahiro Iizuka
飯塚 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
Tsukishima Kikai Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
Tsukishima Kikai Co Ltd
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, Tsukishima Kikai Co Ltd, Public Works Research Institute Ministry of Construction filed Critical Minister for Public Works for State of New South Wales
Priority to JP63050385A priority Critical patent/JP2729623B2/en
Publication of JPH01224099A publication Critical patent/JPH01224099A/en
Application granted granted Critical
Publication of JP2729623B2 publication Critical patent/JP2729623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To facilitate homogenization operation by converting sludge into a high concn. slurry having flowability. CONSTITUTION:Sewage or waste liquor is passed through a precipitating stage and the resulting precipitated sludge or stockbreeding waste sludge is biologically treated with an organism stuck carrier. At this time, the sludge is converted into a high concn. slurry contg. org. matter-contg. solid matter and having flowability and this slurry is digested in an anaerobic digestion tank provided with a fluidized bed using a carrier 2 having >=2.0 true specific gravity and 2.0-5.0mmphi average diameter as a fluidizing medium. Anaerobic microorganisms propagating at a low speed such as methane bacteria can be held at high concn. by the carrier 2 and the slurry can be digested in the fluidized bed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、下水汚泥、産業排水処理設備等から発生する
汚泥、鶏糞等の畜産廃棄物の有機物を含有する汚泥を流
動床により嫌気性消化する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides anaerobic digestion of sewage sludge, sludge generated from industrial wastewater treatment facilities, etc., and sludge containing organic matter from livestock waste such as chicken manure using a fluidized bed. Regarding how to.

(従来の技術〕 従来、本発明に係わる技術としでは、消化タンクに下水
汚泥等を投入して嫌気性消化方法で減容処理するものが
知られτいる。この方法は、前記消化タンクの内部にガ
ス)1拌またtよ機械攪拌の手段を備え、下水汚泥など
に特別の前処理を施すことなくそのまま投入して、前記
攪拌手段によって完全に混合させることにより、嫌気性
消化させるものである。
(Prior art) Conventionally, as a technology related to the present invention, there is a known method in which sewage sludge or the like is charged into a digestion tank and the volume is reduced by an anaerobic digestion method. It is equipped with means for stirring or mechanical stirring, and the sewage sludge, etc. is charged as is without any special pretreatment, and the mixture is thoroughly mixed by the stirring means, thereby causing anaerobic digestion. .

一方、含有沈殿物を除去した後の、下水、排水の上澄液
中に含まれる微細な固形物、懸濁物ないし浮遊物を除去
するために、メタン菌類を高m度に保持したりアクタ−
内に当該上澄液を導入し、生物学的処理を行なって浄化
ないし清澄化を行なっている。そして、この下・排水に
対する生物学的処理の処理時間を短1?iする手段とし
て、前記リアクターを、流動床、固定床、また暢よ微生
物の自己造粒能力を利用した上向流スラッジブランケッ
ト方式の消化装置を有する技術で改良する試みがなされ
ている。しかしながら、前記した下水、排水の上澄液処
理に行なわれている流動床あるいは上面流スラッジブラ
ンケット方式などの改良技術は、汚泥処理には後述する
理由によって適用されてこなかった。
On the other hand, in order to remove fine solids, suspended solids, or suspended solids contained in the supernatant liquid of sewage and wastewater after removing the contained sediment, methane fungi are maintained at a high concentration or activated. −
The supernatant liquid is introduced into the tank and subjected to biological treatment for purification or clarification. And is the processing time of biological treatment for this sewage/wastewater reduced by 1? Attempts have been made to improve the reactor with technologies including a fluidized bed, a fixed bed, and an upflow sludge blanket type digester that utilizes the self-granulation ability of microorganisms. However, the improved techniques such as the fluidized bed or top flow sludge blanket system used in the above-mentioned supernatant liquid treatment of sewage and wastewater have not been applied to sludge treatment for the reasons described below.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、従来下水汚泥等に適用されている消化タンク
は、メタン菌と汚泥とを完全に混合させ、生物化学的反
応をほぼ終了させるまで槽内に滞留させるという完全混
合槽型であり、増殖速度の遅いメタン菌が槽外に流出さ
れない消化日数が必要であるために、通常消化日数は短
くても20日程度で運転されている。そして、20日以
下の消化日数では、有機物分解率、ガス発生率の低下を
招き、最悪の場合には、増殖速度の遅いメタン菌が消化
タンク外に流出される結果、メタン菌濃度が低下しイ4
 m酸の蓄積、pifの低下、メタン醗酵の停止を引き
起こす。
By the way, the digestion tank conventionally used for sewage sludge, etc. is a complete mixing tank type in which methane bacteria and sludge are completely mixed and retained in the tank until the biochemical reaction is almost completed. Since it is necessary to allow a number of days for digestion to prevent slow methane bacteria from flowing out of the tank, the number of days required for digestion is usually at least 20 days. If the digestion time is less than 20 days, the organic matter decomposition rate and gas generation rate will decrease, and in the worst case, methane bacteria with a slow growth rate will flow out of the digestion tank, resulting in a decrease in the concentration of methane bacteria. A4
It causes accumulation of m-acid, decrease of pif, and cessation of methane fermentation.

従って、安定した消化状態を維持するために、日本下水
道協会の下水道施設設計指針では、汚泥消化タンクの標
準消化日数を30日としている。
Therefore, in order to maintain stable digestion conditions, the Japan Sewage Works Association's sewage facility design guidelines set the standard number of days for sludge digestion tanks to be 30 days.

他方、都市下水、産業排水等で(よ増殖速度の遅いメタ
ン菌を担体に固定させ、リアクターから流出させずに、
高濃度に維持するリアクターとして、流動床、固定床、
さらに、上向流スラッジブランケット式嫌気性消化装置
が開発されている。しかしながら、これらの消化装置の
下水汚泥等への適用は報告されていない。それは、次の
理由による。
On the other hand, in urban sewage, industrial wastewater, etc. (by fixing methane bacteria, which has a slow growth rate, on a carrier and preventing it from flowing out of the reactor,
Fluidized bed, fixed bed,
Additionally, upflow sludge blanket anaerobic digesters have been developed. However, the application of these digestion devices to sewage sludge, etc. has not been reported. This is due to the following reason.

すなわち、固定床にあっては、微生物付着用担体は、多
数枚のシート状膜や多孔質ブロック等が用いられ一〇い
る。従って、担体の間隙すなわち、当該股間や、隣り合
うブロックの間隙に、汚泥内固形物が堆積し、その結果
、閉塞が生じ易い。そ(〕でこれらの不具合を除去して
、消化効果を回復させることは不可能に近い。また、面
記スラッジブランケット方式は、担体を用いず、槽内に
微生物自身の有する造粒能力によって、消化をはかる有
機質排水の処理方法である。この方法にあっては、前記
自己造粒によって出来た微生物粒子は軽く、その比重は
槽内の汚泥スラリーとほぼ等しい。従ってこの比重差が
少ないため分離かつ困難であり、槽内汚泥スラリーより
、造粒した当該微生物粒子の回収が難しい、という欠点
を有する。さらに、当該被処理汚泥が、厨芥類、脱水ケ
ーキなどの有形切片(惣菜片、顆粒片、解砕扮・片、飴
状粘稠物などないし、それらを含む団塊片ないし粒)を
含む(以下、粘稠性等を有すると称する)fl流動性物
質(以下、難流動性再記と称する)の場合には、メタン
菌の高濃度保持を可能とする担体と混合しても、槽内の
、すでに存在する汚泥の中に、新規供給汚泥は、その難
流動性のため散開しないばかりか、その汚泥自身が、容
易に分解し得ないので、混合する担体が汚泥の隅々にま
で展開して担体の付着菌を有効に活動させ得ない。特に
流動床式において高濃度保持リアクターが下水処理に用
いられている現状を詳説すれば、従来報告されている流
動床で使用されている担体は、砂、活性炭が多いが、そ
の粒径は1mφ以下で、0.5線φ前後が最も多い(文
献−1:雑誌「化学装置」VOl、28. N(13第
102頁〜第110頁2表1ないし表4.1986年3
月号、工業調査会発行)。そして、このように、担体が
細粒であると、担体間の空隙が閉塞し易く、下水汚泥の
ような高濃度スラリーを供給すると、前記担体の存在位
置でスラリー中の固形分と液分とを分離さゼる濾過現象
が生じる。
That is, in the case of a fixed bed, a large number of sheet-like membranes, porous blocks, etc. are used as carriers for attaching microorganisms. Therefore, solid matter in the sludge accumulates in the gaps between the carriers, that is, in the gaps between the legs and between adjacent blocks, and as a result, clogging is likely to occur. It is almost impossible to eliminate these defects and restore the digestive effect.In addition, the surface sludge blanket method does not use a carrier and uses the granulation ability of the microorganisms themselves in the tank. This is a method of treating organic wastewater for digestion.In this method, the microbial particles produced by self-granulation are light and their specific gravity is almost equal to that of the sludge slurry in the tank.Therefore, this difference in specific gravity is small, so separation is possible. It has the disadvantage that it is difficult to recover the granulated microbial particles from the sludge slurry in the tank.Furthermore, the sludge to be treated has the disadvantage that it is difficult to recover the granulated microbial particles from the sludge slurry in the tank. Fluid substances (hereinafter referred to as having viscosity, etc.) (hereinafter referred to as having viscosity, etc.) (hereinafter referred to as having viscosity, etc.) In this case, even if mixed with a carrier that can maintain a high concentration of methane bacteria, the newly supplied sludge will not spread into the sludge that already exists in the tank due to its difficult flowability. Otherwise, the sludge itself cannot be easily decomposed, so the carrier to be mixed cannot spread to every corner of the sludge and effectively activate the bacteria attached to the carrier.Especially in a fluidized bed type, high concentration retention reactor To explain in detail the current state of use in sewage treatment, the carriers used in conventionally reported fluidized beds are often sand and activated carbon, but their particle size is less than 1 mφ, and around 0.5 wire φ. The most common (Literature-1: Magazine "Chemical Equipment" VOl, 28. N (13 pages 102 to 110 2 Tables 1 to 4. 1986 3
Monthly issue, published by Kogyo Kenkyukai). In this way, when the carrier is fine, the voids between the carriers are likely to be clogged, and when a highly concentrated slurry such as sewage sludge is supplied, the solid content and liquid content in the slurry are mixed at the location where the carrier is present. A filtration phenomenon occurs in which the particles are separated.

この結果、この現象と表裏しで、当該担体はブリッジ現
象を起こし、このブリッジ発生位置では、流動状態が維
持できないばかりでなく、ブリッジを起こした担体は上
昇液流に持ち上げられ、リアクター外に流出するという
問題が生じていた。
As a result, on the other side of this phenomenon, the carrier in question causes a bridging phenomenon, and at the location where this bridging occurs, not only is it impossible to maintain a fluid state, but the bridging carrier is lifted by the rising liquid flow and flows out of the reactor. A problem arose.

そこで、本発明者等は上述した課題すなわち、汚泥を流
動媒体とし、担体を流動せしめることにより、担体が槽
外へ流出することなく、流動床を形成することのできる
条件を求めるという課題を具体的に明らかにするために
、下記の調査・実験を行なった。まず、一般に、都市下
水、産業排水等における流動床においては、充填容積当
りの担体表面積を大きくする目的と、流動のためのエネ
ルギーを少なく覆る目的で、用いられている砂、活性炭
の粒径は、1sφ以下(平均0.5顛φ)であり、空塔
速度(し■)は10〜60TrL/Hrと報告されてい
る(前記文献−1)。他方、下水汚泥などの汚泥処理に
おいては、これらの担体では、粒径が小さいため、流動
床が一閉塞し、ブリッジを形成してしまう。
Therefore, the present inventors specifically solved the problem mentioned above, that is, to find conditions under which a fluidized bed could be formed without the carrier flowing out of the tank by using sludge as a fluid medium and causing the carrier to flow. In order to clarify this, we conducted the following investigation and experiment. First of all, in general, in fluidized beds for urban sewage, industrial wastewater, etc., the particle size of sand and activated carbon used is adjusted to increase the surface area of the carrier per packed volume and to reduce the energy required for fluidization. , 1 sφ or less (average 0.5 frames φ), and the superficial velocity (2) is reported to be 10 to 60 TrL/Hr (Reference 1). On the other hand, in the treatment of sludge such as sewage sludge, the particle size of these carriers is small, so the fluidized bed becomes clogged and bridges are formed.

本発明者等はこの点に着目し、これらの課題を解決づる
ために粒径ならびに真比重の適度な担体を選出すること
を考え、本発明を完成するに至った。すなわち、粒径2
m+φ以上でかつ真比重2以上の担体及び比較のための
各種の担体についてそれぞれ流動状態を調査した。その
調査の一例を表1に示づ。ここで、この調査に用いた実
験槽は、第3図に示すように、流動床装置1の内部に担
体2を充填し、かつ循環ポンプ3を備えたちので、流動
床装置1の下部から供給汚泥を供給し、かつ上部から処
理汚泥を取り出ずようになっており、図において、×を
充Ia層(充填静置時の担体高さ)、<X+Y>を流動
層(Yは流動時増加した流動媒体と担体とよりなる層高
さ)とすると、所定空塔速度([■)以内において、展
開率く%)−(Y/X)X  100を求めることによ
り、流動化の効果を判断するものとした。
The present inventors paid attention to this point, and in order to solve these problems, they considered selecting a carrier having an appropriate particle size and true specific gravity, and completed the present invention. That is, particle size 2
The flow state was investigated for a carrier having m+φ or more and a true specific gravity of 2 or more and various carriers for comparison. An example of the survey is shown in Table 1. Here, as shown in Fig. 3, the experimental tank used for this investigation was equipped with a fluidized bed device 1 filled with carriers 2 and a circulation pump 3, so that the fluidized bed device 1 was supplied from the bottom. Sludge is supplied and the treated sludge is not taken out from the top. The fluidization effect can be calculated by calculating the expansion rate (%) - (Y/X)X 100 within a given superficial velocity ([■)]. I decided to judge.

表    1 この結果、真比重2以下の活性炭、スチレンは汚泥中で
ほとんど沈降せず流動床を形成できなかった。また、真
比重2以上かつ平均粒径2s++φ以下の砂、ガーネッ
ト、ゼオライトにおいては、流動床を一時的に形成して
も槽外への流出担体が多い上に偏流も多く、流動床を形
成維持することは困難であった。ざらに、真比重3.8
、平均粒径6、Omφのノルトンにおいては、担体粒子
重置が大き1ぎるため、流動させるには汚泥でも300
m/fir以上の空塔速度が必要であった。
Table 1 As a result, activated carbon and styrene with a true specific gravity of 2 or less hardly settled in the sludge and a fluidized bed could not be formed. In addition, for sand, garnet, and zeolite with a true specific gravity of 2 or more and an average particle diameter of 2s++φ or less, even if a fluidized bed is temporarily formed, a large amount of carrier flows out of the tank and there is also a lot of uneven flow, and the fluidized bed is maintained. It was difficult to do so. Rani, true specific gravity 3.8
In Norton with average particle size 6 and Omφ, the superposition of carrier particles is too large, so even sludge needs 300 mm to flow.
A superficial velocity of more than m/fir was required.

これに対して、具化ffl 2.0以上でかつ平均粒径
2.0〜5,0履φの範囲にある砂利、球形担体A。
On the other hand, gravel and spherical carriers A have an embodying ffl of 2.0 or more and an average particle diameter in the range of 2.0 to 5.0 mm.

Bは、担体の流出もなく、安定した流動床を形成維持す
ることが可能であることを発見するに至った。
B discovered that it is possible to form and maintain a stable fluidized bed without the carrier flowing out.

また、球形担体A、Bを用いた場合の、水と汚泥におけ
る空塔速度(LV)と展開率の関係を第1図と第2図に
示す。これらの図において、水では流動するためには1
60m/Hr以上の空塔速度が必要であったのに対して
、汚泥による流動の場合、水での空塔速度に比較して1
73〜1/8である20〜100m/Hrの空塔速度で
充分な展開率を示すことが判った。これは従来報告され
ておらず、本発明による新しい知見である。
Furthermore, the relationship between superficial velocity (LV) and expansion rate in water and sludge when spherical carriers A and B are used is shown in FIGS. 1 and 2. In these diagrams, water requires 1 to flow.
Whereas a superficial velocity of 60 m/Hr or more was required, in the case of sludge flow, the superficial velocity is 1
It was found that a sufficient development rate was exhibited at a superficial velocity of 20 to 100 m/Hr, which is 73 to 1/8. This has not been previously reported and is a new finding according to the present invention.

さらに、非定形の砂利と球形の担体A、Bの流動状(ぶ
を比較すると、砂利では偏流が認められ、均一流動性に
やや欠ける。この原因は、非定形担体であるために、均
一な空隙を持たず抵抗の少ない部分に汚泥が流れ易いた
めと考えられる。一方、砂利に比べて球状担体A、Bは
偏流も少なく、均一流動性に優れていることから、長期
の消化においては偏流から生じるデッドスペースの発生
も少ないことが予想され、より優れた担体である。
Furthermore, when comparing the fluidity of amorphous gravel and spherical carriers A and B, uneven flow is observed in gravel and it is somewhat lacking in uniform fluidity. This is thought to be due to the fact that sludge easily flows into areas with no voids and low resistance.On the other hand, compared to gravel, spherical carriers A and B have less uneven flow and are superior in uniform fluidity, so they are less likely to flow unevenly during long-term digestion. It is expected that there will be less dead space caused by the carrier, making it a more excellent carrier.

本発明は、被処理汚泥と、該汚泥を流動媒体として生物
学的担体を流動せしめるための流動化条件を求めて、従
来、適用し難かった汚泥と担体とからなる流動床を形成
し−(、法汚泥と該担体に付着させた微生物との好反応
を実現させるもので、その目的とするところは、閉塞、
担体の槽外流出等の問題を引き起こすことがなく、担体
に流動性を与え、担体にメタン菌等を固定し、かつこの
メタン菌等との接触効率の向上を図ると共に、汚泥消化
の反応を高めることができ、極めて短時間にかつ経済的
に大量の汚泥処理を行なうことができる嫌気性流動床消
化方法を提供することにある。
The present invention seeks fluidization conditions for fluidizing sludge and biological carriers using the sludge as a fluidizing medium, and forms a fluidized bed consisting of sludge and carriers, which has been difficult to apply in the past. , which realizes a favorable reaction between the legal sludge and the microorganisms attached to the carrier, and its purpose is to eliminate occlusion,
It does not cause problems such as the carrier flowing out of the tank, gives fluidity to the carrier, fixes methane bacteria, etc. on the carrier, improves the contact efficiency with the methane bacteria, and improves the reaction of sludge digestion. The object of the present invention is to provide an anaerobic fluidized bed digestion method that can process a large amount of sludge in an extremely short time and economically.

(課題を解決するための手段〕 上記目的を達成づるために、本発明の第1のものは、汚
泥を有機物含有固形物を含む少なくとも流動性のある高
濃度スラリーに3質して流動床を有する姥気性消化槽で
消化するものである。
(Means for Solving the Problems) In order to achieve the above object, the first aspect of the present invention is to prepare a fluidized bed by converting sludge into a highly concentrated slurry that is at least fluid and containing organic matter-containing solids. It is digested in an aerobic digestion tank.

また、上記高濃度スラリーは上記流動床に供給する前に
10%以下のスラリー濃度としておく。
Further, the high concentration slurry is made to have a slurry concentration of 10% or less before being supplied to the fluidized bed.

さらに、流動媒体として処理汚泥自身を用い、生物付着
担体とで流動床を形成すると共に、この担体がほぼ球形
であり、真比重2.0以上でかつ平均粒径2.0〜5.
0欄φであることを特徴としている。
Furthermore, the treated sludge itself is used as the fluid medium to form a fluidized bed with the bioadhesive carrier, and the carrier is approximately spherical, has a true specific gravity of 2.0 or more, and has an average particle size of 2.0 to 5.
It is characterized in that the 0 column is φ.

さらにまた、上記流動床の空塔速度は20〜1007+
1 / It rの範囲内に維持することを特徴として
いる。
Furthermore, the superficial velocity of the fluidized bed is 20 to 1007+
It is characterized by maintaining it within the range of 1/It r.

ここで、空塔速度が20m/Hrより小さい場合には、
担体が流シ」しないため、汚泥スラリーが均一分散せず
、この結果、リアクター内に有効に動かないデッドスペ
ースを作る。また、空塔速度が100m/Hr@越える
と、循環のためのエネルギーが大ぎくなるど共に、リア
クターから担体が流出する恐れが出−Cくる。
Here, if the superficial velocity is less than 20 m/Hr,
Since the carrier does not flow, the sludge slurry is not uniformly dispersed, and as a result, a dead space is created in the reactor where it cannot move effectively. Moreover, if the superficial velocity exceeds 100 m/Hr@, the energy for circulation becomes large and there is a risk that the carrier will flow out from the reactor.

〔作 用〕[For production]

本発明の嫌気性流動床消化方法にあっては、濃度10%
以上の難流動性汚泥を、少なくとも流動性を有する、有
機物含有固形物を含む高濃度スラリーに¥A質し、均質
化操作を行ない易くすると共に、メタン菌等の増殖速度
が遅い嫌気性微生物を固定し、高濃度に保持−(゛きて
かつ槽外に流出されることを防止できる担体を流動床の
被流動体として採用して、該担体の展開を良好に行4【
つて、処理汚泥の嫌気性消化効率を高める。
In the anaerobic fluidized bed digestion method of the present invention, the concentration is 10%.
The above-mentioned difficult-to-flow sludge is transformed into a high-concentration slurry that has at least fluidity and contains organic matter-containing solids to facilitate homogenization and eliminate anaerobic microorganisms with slow growth rates such as methane bacteria. A carrier that can be fixed and maintained at a high concentration is used as the fluidized body of the fluidized bed, and the carrier can be spread well.
This increases the efficiency of anaerobic digestion of treated sludge.

〔実施例−1〕 球形担体Aとして小野H1セメント株式会社製セメント
ボール(真比重2.54 、平均粒径3.05 mrs
φ)を用い、水と消化汚泥(固形物濃度: 17,73
0R9/J、動粘度:  115C,P )による流動
化テストを第3図に示すような流動床装置で行なった。
[Example-1] Cement balls manufactured by Ono H1 Cement Co., Ltd. (true specific gravity 2.54, average particle diameter 3.05 mrs) were used as the spherical carrier A.
φ), water and digested sludge (solids concentration: 17,73
A fluidization test using 0R9/J, kinematic viscosity: 115C, P) was carried out in a fluidized bed apparatus as shown in FIG.

その結果を第1図に示す。The results are shown in FIG.

〔実施例−2〕 球形担体Bとして日鉄鉱業株式会社製球形クリストバラ
イト(真比重2.261.平均粒径4.Omφ)を用い
、水と消化汚泥(固形物濃度: 21.600ag/j
、動粘度:  1135C,P )による流動化テスト
を実施例−1と同様に行なった。その結果を第2図に示
づ。
[Example-2] Spherical cristobalite manufactured by Nittetsu Mining Co., Ltd. (true specific gravity: 2.261. Average particle diameter: 4.0 mφ) was used as the spherical carrier B, and water and digested sludge (solids concentration: 21.600 ag/j) were used.
, kinematic viscosity: 1135C, P) was conducted in the same manner as in Example-1. The results are shown in Figure 2.

第1図と第2図に示すように、球形担体A、Bを用いる
と、いずれし水の場合に比較して、消化汚泥においては
、同じ展開率を得るための空塔速度(LV)は約15%
で済み、実用使用範囲であることが判った。
As shown in Figures 1 and 2, when using spherical carriers A and B, the superficial velocity (LV) to obtain the same expansion rate in digested sludge is lower than in the case of water. Approximately 15%
It was found that this was within the range of practical use.

(実施例−3〕 次に、実際の不水処理場の余剰活性汚泥(TS :1.
2〜1,8%、VTS:68〜72%)について、従来
法(完全混合槽)と本発明の流動床消化リアクターによ
る消化実験を行なって比較した結果の一例を表2に示す
。なお、消化温度は35〜38°C1空塔速度(LV)
は40〜80m/11rであった。ここで、TSは総ス
ラッジの割合を示し、また、VTSは蒸発残留物を強熱
したときに揮散する物質、主に有機物質の割合を示し本
発明では有礪物質の量の示標として用いている。
(Example-3) Next, surplus activated sludge (TS: 1.
Table 2 shows an example of the results of a comparison between a conventional method (complete mixing tank) and a fluidized bed digestion reactor of the present invention. The digestion temperature is 35-38°C1 superficial velocity (LV)
was 40-80m/11r. Here, TS indicates the proportion of total sludge, and VTS indicates the proportion of substances, mainly organic substances, that volatilize when the evaporation residue is ignited, and is used in the present invention as an indicator of the amount of sludge. ing.

表    2 この表2からも明らかなように、本発明の流動床消化方
法にあっては、消化日数8日でも、処理汚泥のv −r
 sが54〜62%と、従来法による消化1]数30日
の場合と同程度の処理を示しており、流動床消化方法を
適用づることによって大幅な消化日数の短縮化を図るこ
とができた。また、本発明による方法によれば、消化日
数を16日に延長ずれば、処理汚泥のVTSは45〜5
2%とさらに低減でき、食好な処理を行なうことが可能
となった。
Table 2 As is clear from Table 2, in the fluidized bed digestion method of the present invention, even after 8 days of digestion, the v-r of treated sludge
s is 54 to 62%, which is equivalent to the conventional digestion method (1), which takes several 30 days, and by applying the fluidized bed digestion method, it is possible to significantly shorten the digestion time. Ta. Furthermore, according to the method of the present invention, if the digestion period is extended to 16 days, the VTS of treated sludge will be 45 to 5.
It was possible to further reduce the amount to 2%, making it possible to perform a process that is palatable.

なお、本実施例は、専ら嫌気性消化汚泥処理について説
明してきたが、本発明の方法は、それ自体としCは粘稠
性等を有して、既存槽内汚泥等と混じり合い難い供給汚
泥を一度流動性物質に前処理した後、例えば嫌気性処理
ないし均質化操作を行なって、改質ないし反応を終了さ
せ、その模目的の形ないし状態に戻したり、難操作性状
を易操作化する処理操作一般に応用可能である。
Although this embodiment has exclusively explained anaerobic digested sludge treatment, the method of the present invention is applicable to the supplied sludge, which has a viscosity etc. and is difficult to mix with existing tank sludge. Once pretreated to a fluid substance, for example, anaerobic treatment or homogenization is performed to complete the modification or reaction, return to the desired shape or state, or make difficult-to-operate properties easier to manipulate. It is applicable to general processing operations.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、汚泥を少なくとも流動
性を有する、有機物含有固形物を含む高濃度スラリーに
調質し、均質化操作を行ない易くづると共に、流動床の
流動媒体として、メタン菌等の増殖速度が遅い嫌気性微
生物を高濃度に保持しかつ槽外に流出されることがない
担体を採用り゛ることにより、従来不可能とされていた
下水汚泥等の有機物含有高濃度固形物スラリーに対して
も、担体を用いた流動床消化方法が適用可能になった。
As explained above, the present invention refines sludge into a highly concentrated slurry containing organic matter-containing solids that has at least fluidity to facilitate homogenization, and also uses methane bacteria as a fluidized medium in a fluidized bed. By using a carrier that retains anaerobic microorganisms with a slow growth rate at a high concentration and does not flow out of the tank, we can produce high-concentration solids containing organic matter such as sewage sludge, which was previously considered impossible. Fluidized bed digestion methods using carriers can now be applied to slurries as well.

この結果、we媒体を第3の流動物質−ガスないし水等
−を用いることなく、流動床を形成できると共に、増殖
速度の理いメタン菌等を槽外に流出させることなく消化
槽内に高濃度に維持できることによって、消化日数を大
幅に短縮することが可能となった。即ち、従来の完全混
合槽による消化日数20〜30日を8〜12日に短縮で
きた。従って、消化槽4潰を従来の173〜1/4にで
き、設備費、用地費等を安価にすることが可能になった
As a result, it is possible to form a fluidized bed using the WE medium without using a third fluid substance (gas, water, etc.), and due to the growth rate, the methane bacteria can be kept at a high level in the digester without flowing out of the tank. By being able to maintain the same concentration, it has become possible to significantly shorten the number of days required for digestion. That is, the number of days required for digestion in a conventional complete mixing tank was reduced from 20 to 30 days to 8 to 12 days. Therefore, the number of four digesters can be reduced to 173 to 1/4 of the conventional size, and equipment costs, land costs, etc. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は球形担体Aを用いて、水と消化汚泥による流動
化テストを行なった一例を示す特性図、第2図は球形担
体Bを用いて、水と消化汚泥による流動化テストを行な
った一例を示す特性図、第3図は本発明の方法を実施す
るための装置の一例を示す概略説明図である。 1・・・・・・流動床装置、 2・・・・・・担体、 3・・・・・・循環ポンプ、 X・・・・・・充填層(充填静置時の担体高さ)、Y・
・・・・・流動時増加した流動媒体と担体とよりなる層
高さ、 LV・・・・・・空塔速度。
Figure 1 is a characteristic diagram showing an example of a fluidization test using water and digested sludge using spherical carrier A, and Figure 2 is a characteristic diagram showing an example of a fluidization test using water and digested sludge using spherical carrier B. A characteristic diagram showing an example, and FIG. 3 is a schematic explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. 1...Fluidized bed device, 2...Carrier, 3...Circulation pump, X...Filled bed (carrier height when filled and left still), Y・
...Height of the bed made up of the fluidizing medium and carrier increased during fluidization, LV...Superficial velocity.

Claims (6)

【特許請求の範囲】[Claims] (1)下水ないし廃液を沈殿操作して得る沈殿汚泥、な
いし畜産廃棄物汚泥を生物付着担体を用いて生物学的処
理する嫌気性流動床消化方法において、前記汚泥を有機
物含有固形物を含む少なくとも流動性のある高濃度スラ
リーに調質して流動床を有する嫌気性消化槽で消化する
ことを特徴とする嫌気性流動床消化方法。
(1) In an anaerobic fluidized bed digestion method for biologically treating precipitated sludge or livestock waste sludge obtained by sedimentation of sewage or waste liquid using a biofouling carrier, the sludge is treated with organic matter-containing solids. An anaerobic fluidized bed digestion method characterized in that the slurry is tempered to a fluid, highly concentrated slurry and digested in an anaerobic digestion tank having a fluidized bed.
(2)高濃度スラリーが調質前に10%以下のスラリー
濃度であることを特徴とする特許請求の範囲第1項記載
の嫌気性流動床消化方法。
(2) The anaerobic fluidized bed digestion method according to claim 1, wherein the high concentration slurry has a slurry concentration of 10% or less before refining.
(3)流動床を、汚泥を流動媒体とし、担体を流動せし
めることにより形成することを特徴とする特許請求の範
囲第1項または第2項記載の嫌気性流動床消化方法。
(3) The anaerobic fluidized bed digestion method according to claim 1 or 2, characterized in that the fluidized bed is formed by using sludge as a fluidized medium and fluidizing a carrier.
(4)担体がほぼ球形であることを特徴とする特許請求
の範囲第3項記載の嫌気性流動床消化方法。
(4) The anaerobic fluidized bed digestion method according to claim 3, wherein the carrier is approximately spherical.
(5)担体が真比重2.0以上でかつ平均粒径2.0〜
5.0mmφであることを特徴とする特許請求の範囲第
3項または第4項記載の嫌気性流動床消化方法。
(5) The carrier has a true specific gravity of 2.0 or more and an average particle size of 2.0 or more
The anaerobic fluidized bed digestion method according to claim 3 or 4, characterized in that the diameter is 5.0 mmφ.
(6)流動床の空塔速度が20〜100m/Hrである
ことを特徴とする特許請求の範囲第1項、第2項、第3
項、第4項または第5項記載の嫌気性流動床消化方法。
(6) Claims 1, 2, and 3, characterized in that the superficial velocity of the fluidized bed is 20 to 100 m/Hr.
The anaerobic fluidized bed digestion method according to item 4 or 5.
JP63050385A 1988-03-03 1988-03-03 Anaerobic fluidized bed digestion method Expired - Lifetime JP2729623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050385A JP2729623B2 (en) 1988-03-03 1988-03-03 Anaerobic fluidized bed digestion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050385A JP2729623B2 (en) 1988-03-03 1988-03-03 Anaerobic fluidized bed digestion method

Publications (2)

Publication Number Publication Date
JPH01224099A true JPH01224099A (en) 1989-09-07
JP2729623B2 JP2729623B2 (en) 1998-03-18

Family

ID=12857401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050385A Expired - Lifetime JP2729623B2 (en) 1988-03-03 1988-03-03 Anaerobic fluidized bed digestion method

Country Status (1)

Country Link
JP (1) JP2729623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602230A4 (en) * 2010-08-06 2015-09-09 Tsukishima Kikai Co Anaerobic digestion method
JPWO2014156216A1 (en) * 2013-03-27 2017-02-16 栗田工業株式会社 Anaerobic treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031899A (en) * 1983-08-03 1985-02-18 Kurita Water Ind Ltd Anaerobic treatment apparatus of organic waste material
JPS61171600A (en) * 1985-01-25 1986-08-02 Kurita Water Ind Ltd Treatment of high concentration organic waste liquid such as sludge
JPS61242696A (en) * 1985-04-19 1986-10-28 Kubota Ltd Method for fermenting methane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031899A (en) * 1983-08-03 1985-02-18 Kurita Water Ind Ltd Anaerobic treatment apparatus of organic waste material
JPS61171600A (en) * 1985-01-25 1986-08-02 Kurita Water Ind Ltd Treatment of high concentration organic waste liquid such as sludge
JPS61242696A (en) * 1985-04-19 1986-10-28 Kubota Ltd Method for fermenting methane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602230A4 (en) * 2010-08-06 2015-09-09 Tsukishima Kikai Co Anaerobic digestion method
JPWO2014156216A1 (en) * 2013-03-27 2017-02-16 栗田工業株式会社 Anaerobic treatment method

Also Published As

Publication number Publication date
JP2729623B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
CN106673373A (en) Sustainable and efficient sewage treatment system
Gardner et al. Role of GAC activity and particle size during the fluidized-bed anaerobic treatment of refinery sour water stripper bottoms
CA2204422A1 (en) Method of treating the liquid fraction of pig manure by an aerobic biofilter and sequestration of the solid fraction by zeolite
JPS644835B2 (en)
JPH01224099A (en) Anaerobic digestion method with fluidized bed
DE19623592C1 (en) Process and reactor for the continuous microbiological treatment of highly contaminated wastewater using a floatable carrier material
JP2001137889A (en) Method and device for anaerobic treatment
CN114873720A (en) Method for improving denitrification performance of sulfur autotrophic denitrification filter
JP3449862B2 (en) Advanced purification method for organic wastewater
KR20010029182A (en) Sewage and wastewater treatment system using the porous soil media
JPH04326995A (en) Anaerobic water treatment apparatus
JPS61209090A (en) Treatment of waste water
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
JPH02203993A (en) Anaerobic waste water treating method
JPH0611440B2 (en) Sewage treatment method
JPH0223237B2 (en)
JP2590474B2 (en) Wastewater treatment method
JPS62168592A (en) Waste water treatment unit
JP2520798B2 (en) Method and apparatus for biological dephosphorization of organic wastewater
JPS61271089A (en) Filter for waste water using immobilized microorganism
JPS62250994A (en) Treatment of sewage
JP3919455B2 (en) Advanced denitrification method for waste water
JP3039538U (en) Wastewater treatment equipment
JPH0228393B2 (en) KENKISEIBISEIBUTSUNORYOHOHO
Dalmacija et al. Nitrates removal from surface river water by means of a biosorption system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11