JPH01223783A - Fine movement device - Google Patents

Fine movement device

Info

Publication number
JPH01223783A
JPH01223783A JP63050131A JP5013188A JPH01223783A JP H01223783 A JPH01223783 A JP H01223783A JP 63050131 A JP63050131 A JP 63050131A JP 5013188 A JP5013188 A JP 5013188A JP H01223783 A JPH01223783 A JP H01223783A
Authority
JP
Japan
Prior art keywords
electrode
voltage
electrodes
poling
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63050131A
Other languages
Japanese (ja)
Other versions
JP2598665B2 (en
Inventor
Chikayoshi Miyata
宮田 千加良
Shigeru Wakiyama
茂 脇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP63050131A priority Critical patent/JP2598665B2/en
Publication of JPH01223783A publication Critical patent/JPH01223783A/en
Application granted granted Critical
Publication of JP2598665B2 publication Critical patent/JP2598665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce interference in a Z-axis due to in-plane driving without increasing wiring and an in-plane driving power source in a device by a method wherein the poling direction of electrodes facing each other among four or two split electrodes for in-plane scanning is reversed and push-pull operation is performed by applying the same signal. CONSTITUTION:After a cylinder is made of piezoelectric material, an electrode is attached to the outer wall and an inner electrode G is attached to the inner wall. The voltage is applied across the inner electrode G and outer electrode with the temperature of the cylinder made of a piezoelectric material raised to the Curie point, and processing (poling) for aligning the direction of piezoelectric particles is carried out. In this poling, the poling directions of facing electrodes are changed by reversing the direction for applying voltage between X and X' and between Y and Y', with respect to the four split electrodes X, Y, X' and Y'. By applying X-axis driving voltage both to X and X', and applying Y-axis driving voltage both to Y and Y', push-pull driving can be carried out on this fine movement device. In other words, when an equal voltage is applied to X and X', the X' electrode part shrinks if the X electrode part extends, so that the respective electrodes extend and shrink in a reverse direction to each other. This prevents a probe 1 from moving vertically even though in-plane driving is carried out so that interference in the direction of the Z-axis (DELTA=0) can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電素子を用いた微動素子に関し、詳しくは走
査型トンネル顕微鏡(以下STMと称する)に使用する
円筒型微動素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fine movement element using a piezoelectric element, and more particularly to a cylindrical fine movement element used in a scanning tunneling microscope (hereinafter referred to as STM).

〔発明の概要〕[Summary of the invention]

本発明は円筒型の圧電素子で、パターン部分の伸縮によ
り円弧運動を行って微動を行なう微動素子で、2個の電
極により同時に逆方向の伸縮でプシュプル駆動を行なう
微動素子に関し、画電極のポーリング方向を逆転するこ
とにより同一の駆動信号でプシュプル動作させることを
特徴とする微動素子。
The present invention is a cylindrical piezoelectric element that performs fine movement by performing circular arc motion by expanding and contracting a pattern portion.The present invention relates to a fine movement element that performs push-pull drive by simultaneously expanding and contracting in opposite directions using two electrodes. A fine movement element characterized by performing push-pull operation with the same drive signal by reversing the direction.

〔従来の技術〕[Conventional technology]

従来は、第2図(a)、第2図(blに示す円筒型圧電
素子による微動素子がSTM装宜に使用されていた。圧
電素子の円筒2の内側には一面に内側電極Gが、外側に
はパターニングされた外側電極Z。
Conventionally, a fine movement element made of a cylindrical piezoelectric element shown in FIG. 2(a) and FIG. On the outside is a patterned outer electrode Z.

X、X、Y、Yの5個の電極が構成されており、前記圧
電素子のポーリング処理の方向は外(!I!l電極から
内側電極、あるいは内側電極から外側電極の方向で作ら
れている。
It consists of five electrodes: X, There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

圧電素子においては、ポーリング方向と逆極性の電圧(
逆電圧)を印加するとポーリング方向と直角方向に電極
部分の圧電素子が伸びる。上記のような従来の微動素子
においては、例えば、前記内側室PiAGと前記外側電
極Xに逆電圧を印加すると第3図に示す如く円筒2が図
中点線で示すように円弧変位を行い、X方向にΔX、Z
方向にΔZ変位する。
In a piezoelectric element, a voltage of opposite polarity to the poling direction (
When a reverse voltage is applied, the piezoelectric element in the electrode portion expands in a direction perpendicular to the poling direction. In the conventional fine movement element as described above, for example, when a reverse voltage is applied to the inner chamber PiAG and the outer electrode X, as shown in FIG. ΔX, Z in the direction
ΔZ displacement in the direction.

STMにおいては、第4図に示す如く深針1を試料3に
対して、微動素子4のX、Y電極5.7を用いて面内方
向に走査しながら、前記深針1と前記試料3間に電圧を
印加することにより流れるトンネル電流が一定になるよ
うに電極Z9を用いて前記微動素子4をZ軸方向に伸縮
させることにより、前記試料3と前記深針1間の距離を
一定に保ち、前記試料3の表面の凹凸を測定している。
In STM, as shown in FIG. 4, the deep needle 1 and the sample 3 are scanned in the in-plane direction using the X and Y electrodes 5.7 of the fine movement element 4. The distance between the sample 3 and the deep needle 1 is kept constant by expanding and contracting the fine movement element 4 in the Z-axis direction using the electrode Z9 so that the tunnel current flowing by applying a voltage between them becomes constant. The surface roughness of the sample 3 was measured.

ところが通常用いる片側電極駆動、即ち、前記深針1を
前記試料3に対して面内方向に走査させるのにX軸駆動
電極、及びY軸駆動電極各々を1コずつ使用する(例え
ばX電極5とY電極7のみ使用)面内駆動方法において
は、駆動電源がX、 Y軸用に1コずつでよい反面、第
5図に示すように圧電素子の伸縮量8の約2が前記深針
1の上下動として表われてくる。これは、平坦な試料に
対して、測定結果が傾いた像を提することになる。また
この上下動をZ軸方向の追従により吸収するため、実質
的なZ軸の測定範囲が少なくなる。これらの問題は大領
域走査を行なう場合、顕著となる。
However, in the normally used one-sided electrode drive, that is, one X-axis drive electrode and one Y-axis drive electrode are used to scan the deep needle 1 in the in-plane direction with respect to the sample 3 (for example, one X-axis drive electrode and one Y-axis drive electrode are used). In the in-plane drive method (using only the Y and Y electrodes 7), only one drive power source is required for the It appears as a vertical movement of 1. This results in the measurement result presenting a tilted image for a flat sample. Furthermore, since this vertical movement is absorbed by tracking in the Z-axis direction, the actual measurement range in the Z-axis is reduced. These problems become more noticeable when scanning a large area.

上記問題を解決するために、プシュプル駆動も考えられ
ている。この方法は、第6図に示すごとく、第4図To
)に比べ面内走査用量tAA n pを倍に増やし、X
軸走査信号A、Y軸走査信号BをX、 Y機には直接、
X、Y電極にはインバータを介してAnpに入力し、面
内走査用電極全てに信号電圧を印加する形式である。し
かし、この形式では微動素子への配線の本数が増え装置
設計において自由度が減り、更に低雑音Anpが倍に増
えるためコストアンプにつながる等の問題点がある。
In order to solve the above problem, push-pull drive has also been considered. This method is shown in Figure 4, as shown in Figure 6.
), doubling the in-plane scanning dose tAA n p compared to
Axis scanning signal A and Y-axis scanning signal B are sent directly to the X and Y machines.
The X and Y electrodes are input to the ANP via an inverter, and a signal voltage is applied to all the in-plane scanning electrodes. However, in this format, the number of wirings to the fine movement element increases, reducing the degree of freedom in device design, and furthermore, the low noise Amp doubles, leading to problems such as a cost amplifier.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来使われている円筒形PZTに対し、面内
走査用電極の対向する片方の電極のポーリング方向を反
転し、各々の電極を結線することにより、前述の問題点
を解決し、面内走査用Anpの個数を増やすことなく、
又、装置内の配線を増やすことなく、プシュプル駆動を
行なうようにした。
The present invention solves the above-mentioned problems by reversing the poling direction of one of the opposing electrodes of the in-plane scanning electrode and connecting each electrode with respect to the conventionally used cylindrical PZT. without increasing the number of Anp for in-plane scanning.
In addition, push-pull drive can be performed without increasing the number of wires within the device.

〔作用〕[Effect]

本発明によれば、ポーリング方向の逆転した対向する電
極に同一信号を印加することにより、両電掻が逆位相で
伸縮するため、プシュプル動作を行なうことができる。
According to the present invention, by applying the same signal to opposing electrodes whose poling directions are reversed, both electrodes expand and contract in opposite phases, so that a push-pull operation can be performed.

〔実施例〕〔Example〕

第1図(a)、第1図+b+に本発明による第1の実施
例を示す。この微動素子は、圧電材料で円筒を作成した
後、外側に第1図(b)に示す形状の電極、内側に第1
図(alに示す内側電極Gを付け、次に、圧電材料の円
筒温度をキューリー点まで上げた状態で内側tiGと外
側の各電極間に電圧を印加し、圧電粒子の向きを整える
処理(ポーリング処理)を行った。ただし、該ポーリン
グ処理では印加する電圧方向を4分割電極X、Y、X、
Yに関して、XとX、YとY間で、逆にすることで、対
向する各電極のポーリング方向を変えである。この微動
素子にX軸駆動電圧をX、X共通に、また、Y軸駆動電
圧をY、Y共通に印加することで、プッシュプル駆動を
行うことができる。即ち、同し電圧がX、Xに印加され
ると、X電極部分が伸びればX電極部分が縮み、各々伸
縮方向を逆の動きにすることができる。このため、第7
図に示す如く面内駆動を行っても、探針lの上下動はな
く、(Δ2=0> 2軸方向への干渉を押さえることが
できる。
A first embodiment according to the present invention is shown in FIG. 1(a) and FIG. 1+b+. This fine movement element is made by creating a cylinder using a piezoelectric material, and then having an electrode in the shape shown in Figure 1(b) on the outside and a first electrode on the inside.
The inner electrode G shown in Figure (al) is attached, and then, with the temperature of the cylinder of piezoelectric material raised to the Curie point, a voltage is applied between the inner tiG and each outer electrode to adjust the orientation of the piezoelectric particles (poling). However, in the poling process, the voltage direction to be applied was divided into four electrodes X, Y,
Regarding Y, by reversing X and X and Y and Y, the poling direction of each opposing electrode is changed. Push-pull driving can be performed by applying an X-axis drive voltage to the fine movement element in common to X and X, and a Y-axis drive voltage to common to Y and Y. That is, when the same voltage is applied to X and X, when the X electrode portion expands, the X electrode portion contracts, and the respective expansion and contraction directions can be made to move in opposite directions. For this reason, the seventh
As shown in the figure, even if in-plane driving is performed, there is no vertical movement of the probe l, and interference in the two-axis directions can be suppressed (Δ2=0>).

なお、この場合、従来の駆動例を示す第5図と比べ、両
側電極駆動となるので、同じ電圧値を印加してもX (
Y)方向の移動量ΔXは倍の2ΔXとなる。
In this case, compared to FIG. 5 which shows a conventional drive example, both electrodes are driven, so even if the same voltage value is applied,
The amount of movement ΔX in the Y) direction is doubled to 2ΔX.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によると、面内走査用4分割
電極、あるいは2分割電極の対向する電極のポーリング
方向を逆にし同一信号を印加しプシュプル動作を行うこ
とにより、装置内の配線や、面内駆動用電源を増やすこ
となく、面内駆動によるZ軸への干渉を低減することが
でき、又走査領域も増やせるため産業上非常に有用であ
る。
As described above, according to the present invention, by reversing the polling direction of the opposing electrodes of the 4-part electrode for in-plane scanning or the 2-part electrode and applying the same signal to perform the push-pull operation, the wiring inside the device can be adjusted. , it is possible to reduce interference with the Z-axis due to in-plane driving without increasing the power supply for in-plane driving, and the scanning area can also be increased, which is very useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta+は本発明を示す円筒形PZTの断面図第1
図(blは本発明の外側電極展開・結線図、第2図fa
lは従来の円筒PZTの断面図、第2図tblは外側電
極展開・結線図、第3図は従来の円筒PZTの動作を説
明する動作図、第4図はSTMを説明するa念図、第5
図は従来の問題点を示す説明図、第6図は従来のPZT
のプシュプル駆動方法を示す説明図、第7図は本発明の
動作を示す説明図である。  l・・・深針 2・・・円筒PZT X、  Y、  Z・・電掻の走査方向を示す記号■、
○・・・・ポーリング方向を示す記号以上 出願人 セイコー電子工業株式会社
Figure 1 ta+ is a cross-sectional view of cylindrical PZT showing the present invention.
Figures (bl is the outer electrode development/connection diagram of the present invention, Figure 2 fa
1 is a cross-sectional view of a conventional cylindrical PZT, FIG. 2 tbl is an outer electrode development/connection diagram, FIG. 3 is an operation diagram explaining the operation of the conventional cylindrical PZT, and FIG. 4 is a conceptual diagram explaining STM. Fifth
The figure is an explanatory diagram showing the problems of the conventional method, and Figure 6 is the conventional PZT.
FIG. 7 is an explanatory diagram showing the push-pull driving method of the present invention. l...Deep needle 2...Cylindrical PZT X, Y, Z...Symbol indicating the scanning direction of electric scratching■,
○・・・A symbol indicating the polling direction or more Applicant: Seiko Electronics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  円筒型圧電素子から成る微動素子において、ポーリン
グ方向を部分的に逆転させたことによりプシュプル駆動
を行なうことを特徴とする微動素子。
A fine movement element made of a cylindrical piezoelectric element, characterized in that it performs push-pull drive by partially reversing the poling direction.
JP63050131A 1988-03-03 1988-03-03 Fine movement element Expired - Lifetime JP2598665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050131A JP2598665B2 (en) 1988-03-03 1988-03-03 Fine movement element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050131A JP2598665B2 (en) 1988-03-03 1988-03-03 Fine movement element

Publications (2)

Publication Number Publication Date
JPH01223783A true JPH01223783A (en) 1989-09-06
JP2598665B2 JP2598665B2 (en) 1997-04-09

Family

ID=12850584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050131A Expired - Lifetime JP2598665B2 (en) 1988-03-03 1988-03-03 Fine movement element

Country Status (1)

Country Link
JP (1) JP2598665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405733A (en) * 2018-12-14 2019-03-01 中核新科(天津) 精密机械制造有限公司 Quick high accuracy plane parallelism measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546108B2 (en) * 2004-02-13 2010-09-15 エスアイアイ・ナノテクノロジー株式会社 Fine movement mechanism for scanning probe microscope and scanning probe microscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264543A (en) * 1986-03-27 1987-11-17 フォルシュングスツエントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Mover for fine motion of object

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264543A (en) * 1986-03-27 1987-11-17 フォルシュングスツエントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Mover for fine motion of object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405733A (en) * 2018-12-14 2019-03-01 中核新科(天津) 精密机械制造有限公司 Quick high accuracy plane parallelism measurement device
CN109405733B (en) * 2018-12-14 2024-04-09 中核新科(天津)精密机械制造有限公司 Quick high-precision plane parallelism measuring device

Also Published As

Publication number Publication date
JP2598665B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US5089740A (en) Displacement generating apparatus
US6359370B1 (en) Piezoelectric multiple degree of freedom actuator
JP2006503529A (en) High resolution piezoelectric motor
EP0160707B1 (en) Piezoelectric stepping rotator
JPH05219764A (en) Rotary or linear motor, in which armature is driven by ultrasonic vibration
JPH04235302A (en) Micromotion mechanism of probe of tunnel microscope
JPH01223783A (en) Fine movement device
Bacher et al. Flexures for high precision robotics
JP5179918B2 (en) Ultrasonic motor device
JPH01187402A (en) Scan tunnel microscope
JPH0298033A (en) Cylindrical piezoelectric actuator
JPS63153405A (en) Scanning type tunnel microscope
JPH0755444Y2 (en) Piezoelectric element micro positioning mechanism
JPH067042B2 (en) Piezoelectric element fine movement mechanism
WO1991002382A1 (en) Fine movement device
JP2948644B2 (en) Fine movement mechanism
JPH0739178A (en) Ultrasonic actuator
JPH0244787A (en) Mechanism for aligning minute position of piezoelectric element
JPH0666509A (en) Measuring apparatus for shape
JP3825591B2 (en) Micro area scanning device
JPH0625642B2 (en) Scanning tunnel microscope device
JP2565392B2 (en) Measuring method of scanning tunneling microscope
JPH0324405A (en) Apparatus for moving scanning tunneling microscope
JPH08211074A (en) Probe microscope
JPH0150194B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12