JPH0298033A - Cylindrical piezoelectric actuator - Google Patents

Cylindrical piezoelectric actuator

Info

Publication number
JPH0298033A
JPH0298033A JP63249125A JP24912588A JPH0298033A JP H0298033 A JPH0298033 A JP H0298033A JP 63249125 A JP63249125 A JP 63249125A JP 24912588 A JP24912588 A JP 24912588A JP H0298033 A JPH0298033 A JP H0298033A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric actuator
tip
cylindrical piezoelectric
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63249125A
Other languages
Japanese (ja)
Inventor
Akihiko Yamano
明彦 山野
Hiroyasu Nose
博康 能瀬
Toshimitsu Kawase
俊光 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63249125A priority Critical patent/JPH0298033A/en
Publication of JPH0298033A publication Critical patent/JPH0298033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enable a high speed scanning in a slight range in the case of using a cylindrical piezoelectric actuator as a three-dimensional fine adjusting mechanism or the like by axially superposing electrodes in a multiple stage, and driving the electrodes in such a manner as not to generate an angular variation in deviation at a tip. CONSTITUTION:An angular variation at the tip of an element caused by a control voltage applied to an A electrode 1 is counterbalanced by applying a voltage of an opposite phase and the same amplitude to a B electrode 2 having an identical electrode arrangement. Thereat, a high frequency component having a relatively small amplitude is superposed on a control voltage applied to the B electrode 2 so that a high speed deviation in a slight region at the tip of the element is generated without angular variations in such a state that a rough deviation over the whole element is kept. Therefore, a cylindrical piezoelectric actuator can be used for a three-dimensional fine adjusting mechanism such as a scanning tunnel microscope, and a high speed scanning can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、一般に円筒型圧電アクチュエーターに関し、
詳しくは走査型トンネル顕微鏡及びその応用された装置
に用いる微動素子に関する。
[Detailed Description of the Invention] [Industrial Application Field J] The present invention generally relates to a cylindrical piezoelectric actuator,
More specifically, the present invention relates to a fine movement element used in a scanning tunneling microscope and devices to which it is applied.

[従来の技術] 近年、走査型トンネル顕微鏡(STM)の研究が盛んに
なり、その微動機構として円筒型の圧電アクチュエータ
ー(第2図)が一般に使用されている。
[Prior Art] In recent years, research on scanning tunneling microscopes (STM) has become active, and a cylindrical piezoelectric actuator (FIG. 2) is generally used as its fine movement mechanism.

円筒型圧電アクチュエーターの多くは材料としテチタン
酸ジにコ”/酸鉛系(PbTi0.−PbZrO,: 
PZTと略称)のセラミクスが用いられている。一般に
厚さW方向に電圧を加え、長さL方向の伸縮を利用する
。半径方向(X、Y方向)のアクチュエーターとして用
いる場合は、素子表面の電極を第3図のように分割して
配置し、それぞれ相対する電極に極性の異なる電圧を印
加し各々の電極部分の伸縮の極性(方向)の違いから素
子を円弧状に曲げて半径方向の変位を得ている。
Most cylindrical piezoelectric actuators are made of dinicotitanate/lead acid (PbTi0.-PbZrO,:
Ceramics (abbreviated as PZT) are used. Generally, a voltage is applied in the thickness W direction, and expansion and contraction in the length L direction is utilized. When used as an actuator in the radial direction (X, Y directions), the electrodes on the surface of the element are divided and arranged as shown in Figure 3, and voltages with different polarities are applied to the opposing electrodes to cause the expansion and contraction of each electrode part. Due to the difference in polarity (direction), the element is bent into an arc shape to obtain radial displacement.

[発明が解決しようとしている課題1 しかしながら、この円筒型圧電アクチュエーターをST
M等の三次元的微動機構として用いる場合には次のよう
な問題があった。
[Problem to be solved by the invention 1 However, this cylindrical piezoelectric actuator is
When used as a three-dimensional micro-motion mechanism such as M, there were the following problems.

この素子は大きい変位(〜数μm)をさせて走査する場
合大きい変位と素子の固有振動数が相反する特性を持っ
ている。  (Noboru Ichinose:Ap
plication of Electronic C
eramics for STM 工nstrumen
ts、精密工学会誌、 54/7/1988)このこと
から第4図のように駆動電圧にオフセット分を持たせそ
のうえで微小領域を走査するような使い方(STMにお
ける一般的使用法)をする場合でも素子全体の固有振動
数に制限され探針の走査速度を制限するという問題があ
った。
This element has a characteristic that when scanning is performed with a large displacement (up to several μm), the large displacement and the natural frequency of the element are contradictory. (Noboru Ichinose: Ap
plication of Electronic C
eramics for STM engineering
ts, Journal of the Japan Society of Precision Engineering, 54/7/1988) From this, even when using the drive voltage as shown in Figure 4 with an offset and then scanning a minute area (general usage in STM), There is a problem in that the scanning speed of the probe is limited by the natural frequency of the entire element.

また、素子の先端が円弧状の変位をする事から通常素子
の先端に固定されている探針と試料面のなす角度も一定
でなくなるため、STMによって得られた原子像のS/
Nが悪化するという問題があった。
Furthermore, since the tip of the element undergoes arc-shaped displacement, the angle between the probe tip, which is normally fixed at the tip of the element, and the sample surface is not constant, so the S/
There was a problem that N deteriorated.

[課題を解決するための手段及び作用〕本発明は、円筒
型圧電アクチュエーターの軸方向に電極を多段に配置し
そのうち同一の電極配置を持つ1組(2段)を逆位相の
電圧で駆動する事で半径方向の変位を得て、かつ先端部
分の変位の角度変化が生じないようにした円筒型圧電ア
クチュエーターである。以下、実施例にて本発明の各構
成部について詳細に説明する。
[Means and effects for solving the problem] The present invention arranges electrodes in multiple stages in the axial direction of a cylindrical piezoelectric actuator, and drives one set (two stages) with the same electrode arrangement with voltages of opposite phase. This is a cylindrical piezoelectric actuator that allows displacement in the radial direction and prevents angular changes in the displacement of the tip. Hereinafter, each component of the present invention will be explained in detail in Examples.

[実施例1] 第1図は本発明の特徴を最も良く表わす概略図である。[Example 1] FIG. 1 is a schematic diagram that best represents the features of the present invention.

素子の固定側3の端に近接して設けられたA電極部lに
与えた制御電圧によって生じるはずの素子先端部の角度
変化は、先端部に近接して設けられたA電極部lと同一
の電極配置を持つB電極部2に加えられた、A電極部1
に与えた制御電圧とは逆位相同振幅の制御電圧によって
生じるB電極部2の変位によって相殺される。
The angle change of the tip of the element that is supposed to be caused by the control voltage applied to the A electrode part l provided close to the end of the fixed side 3 of the element is the same as that of the A electrode part l provided close to the tip part. A electrode part 1 added to B electrode part 2 with an electrode arrangement of
The control voltage applied to is canceled out by the displacement of the B electrode section 2 caused by the control voltages having opposite phases and the same amplitude.

A電極部1とB電極部2の距離を取ることによって素子
先端軸に垂直な方向の変位が生じる。その状態でB電極
部2への制御電圧に振幅の比較的小さい高周波の成分を
重畳する事で素子全体のおお−まかな変位を保ったまま
素子先端は微小領域の高速な変位を生じる。
By increasing the distance between the A electrode section 1 and the B electrode section 2, displacement occurs in a direction perpendicular to the element tip axis. In this state, by superimposing a high frequency component with a relatively small amplitude on the control voltage applied to the B electrode section 2, the tip of the element is caused to undergo high-speed displacement in a minute area while maintaining the general displacement of the entire element.

[実施例2] 次に別の実施例を示す、第5図は本発明をSTMに応用
した場合における円筒型圧電アクチュエーターの電極配
置を表わす概略図である。
[Example 2] Next, another example will be shown. FIG. 5 is a schematic diagram showing the electrode arrangement of a cylindrical piezoelectric actuator when the present invention is applied to STM.

大ストローク駆動用電極6と角度補正用電極8に互いに
逆位相の電圧を印加すると探針4は試料5との角度を保
ったまま変位する。またそのときには探針が軸方向へも
変位する。そしてその量は第5図の長さLを大きく取る
にしたがって増大するため試料−探針間の距離変化が無
視できなくなる。(XまたはY方向の変位は大きく取れ
る)そこで、2軸駆動用電極7に電圧を印加する事によ
って補正する。結果として、探針4の試料5との距離及
び試料5とのなす角度を保持したままXまたはY方向に
変位させることができる。その状態で高速走査用電極9
に交流電圧を印加すれば交流的に動作する部分は素子の
高速走査用電極9以降の先端側(探針側)であるため実
効的な共振周波数は素子全体の共振周波数よりも高い6
以上。
When voltages with opposite phases are applied to the large stroke drive electrode 6 and the angle correction electrode 8, the probe 4 is displaced while maintaining its angle with the sample 5. At that time, the probe is also displaced in the axial direction. Since the amount increases as the length L in FIG. 5 increases, the change in the distance between the sample and the probe cannot be ignored. (A large displacement in the X or Y direction can be obtained.) Therefore, correction is made by applying a voltage to the biaxial drive electrode 7. As a result, the probe 4 can be displaced in the X or Y direction while maintaining the distance to the sample 5 and the angle it forms with the sample 5. In that state, the high-speed scanning electrode 9
If an AC voltage is applied to the element, the part that operates in an AC manner is the tip side (probe side) after the high-speed scanning electrode 9 of the element, so the effective resonance frequency is higher than the resonance frequency of the entire element6.
that's all.

Z軸駆動用の電極を設けたことによって、探針と試料と
のなす角度を一定にするだけでな(その両者の距離をも
一定に保持することができる。高速走査用の信号を角度
補正部に重畳せずに高速走査用電極を別個に設ける事で
高速走査時の素子の変位の精度を向上させることができ
た。尚、各電極の殿中での配置(X、Y方向への素子の
変位を生じさせるための配置)は本実施例の電極配置に
何ら限定するものではなく犬の尾型(G、B1nn1g
 andD、P、E、Sm1th:Scanning 
Tunneling Mycroscopy。
By providing a Z-axis driving electrode, not only can the angle between the probe and the sample be kept constant (the distance between the two can also be kept constant), but the angle of the high-speed scanning signal can be corrected. By separately providing high-speed scanning electrodes without overlapping the electrodes, we were able to improve the accuracy of element displacement during high-speed scanning.In addition, the arrangement of each electrode in the buttocks (element in the X and Y directions) (arrangement for causing displacement) is not limited to the electrode arrangement of this example;
andD, P, E, Sm1th: Scanning
Tunneling Microscopy.

Rev、Sci 、 Instrum、 、 57. 
(1986)168B)等種々のものが使える。
Rev, Sci, Instrum, 57.
(1986) 168B) can be used.

また、本発明における円筒型圧電アクチュエーターを、
STMを応用した記録再生装置(特開昭63−1615
52号公報、開開63−161553号公報)にも使用
することができるのは明らかである。
Further, the cylindrical piezoelectric actuator in the present invention is
Recording and reproducing device applying STM (Japanese Patent Application Laid-Open No. 63-1615
It is clear that the invention can also be used in Japanese Patent No. 52 and Japanese Patent Application Laid-open No. 63-161553.

[発明の効果] 以上説明したように、本発明の補正電極を用いる事によ
って、X、Y方向のストロークを大きく取るために素子
全体を大きくして該素子全体の共振周波数が低下したと
しても、微小範囲の高速走査が可能になる。
[Effects of the Invention] As explained above, by using the correction electrode of the present invention, even if the entire element is enlarged to take a large stroke in the X and Y directions and the resonant frequency of the entire element is reduced, High-speed scanning of minute areas becomes possible.

また、素子先端部に取り付けた探針と試料のなす角度及
び距離が保持されるため検知するトンネル電流の安定性
が増す、すなわち、STM等の測定においては、その精
度を向上させることができる。
Furthermore, since the angle and distance between the probe attached to the tip of the element and the sample are maintained, the stability of the detected tunnel current increases, that is, the accuracy can be improved in measurements such as STM.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明(実施例1)の特徴を表わす概略図、第
2図は一般の円筒型圧電アクチュエーターの形体を示す
概略図、第3図は従来の電極配置を持つ円筒型圧電アク
チュエーターの概略図、第4図は走査型トンネル顕微鏡
において行われている円筒型圧電アクチュエーターの使
用法の例を示す概略図、第5図は本発明(実施例2)を
実施した捜査型トンネル顕微鏡のアクチュエーター、試
料間の様子を示す概略図である。 1−A電極部   2−B電極部 3−固定側    4−探針 5−試料 6−大ストローク駆動用電極 7−Z軸駆動用電極 8−角度補正用電極 9−高速走査用電極
Fig. 1 is a schematic diagram showing the features of the present invention (Embodiment 1), Fig. 2 is a schematic diagram showing the shape of a general cylindrical piezoelectric actuator, and Fig. 3 is a schematic diagram showing the shape of a general cylindrical piezoelectric actuator. A schematic diagram, FIG. 4 is a schematic diagram showing an example of how a cylindrical piezoelectric actuator is used in a scanning tunneling microscope, and FIG. 5 is an actuator of an investigative tunneling microscope in which the present invention (Example 2) is implemented. , is a schematic diagram showing the state between samples. 1-A electrode part 2-B electrode part 3-fixed side 4-probe 5-sample 6-large stroke drive electrode 7-Z-axis drive electrode 8-angle correction electrode 9-high-speed scanning electrode

Claims (2)

【特許請求の範囲】[Claims] (1)軸方向に電極が多段に配置されそのうち同一の電
極配置を持つ少なくとも1組(2段)の電極が、逆位相
の電圧で駆動しえる事を特徴とする円筒型圧電アクチュ
エーター。
(1) A cylindrical piezoelectric actuator characterized in that electrodes are arranged in multiple stages in the axial direction, and at least one set (two stages) of electrodes having the same electrode arrangement can be driven with voltages of opposite phase.
(2)前記1組の電極間に軸方向の補正を行う軸駆動用
電極を有する請求項1記載の円筒型圧電アクチュエータ
ー。
(2) The cylindrical piezoelectric actuator according to claim 1, further comprising an axial drive electrode for performing axial correction between the pair of electrodes.
JP63249125A 1988-10-04 1988-10-04 Cylindrical piezoelectric actuator Pending JPH0298033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249125A JPH0298033A (en) 1988-10-04 1988-10-04 Cylindrical piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249125A JPH0298033A (en) 1988-10-04 1988-10-04 Cylindrical piezoelectric actuator

Publications (1)

Publication Number Publication Date
JPH0298033A true JPH0298033A (en) 1990-04-10

Family

ID=17188306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249125A Pending JPH0298033A (en) 1988-10-04 1988-10-04 Cylindrical piezoelectric actuator

Country Status (1)

Country Link
JP (1) JPH0298033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683145A (en) * 2012-05-18 2012-09-19 中国科学院物理研究所 Y-axis tilting device of specimen microscope stage for piezoelectric ceramics driven transmission electron microscope
WO2014005949A1 (en) * 2012-07-05 2014-01-09 Noliac A/S A wobble motor with a solid state actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683145A (en) * 2012-05-18 2012-09-19 中国科学院物理研究所 Y-axis tilting device of specimen microscope stage for piezoelectric ceramics driven transmission electron microscope
WO2014005949A1 (en) * 2012-07-05 2014-01-09 Noliac A/S A wobble motor with a solid state actuator
US9876444B2 (en) 2012-07-05 2018-01-23 Noliac A/S Wobble motor with a solid state actuator

Similar Documents

Publication Publication Date Title
US6359370B1 (en) Piezoelectric multiple degree of freedom actuator
JPH0989910A (en) Probe scanning mechanism for scanning type probe microscope
JPH0298033A (en) Cylindrical piezoelectric actuator
JPS61219549A (en) Fine adjustment
US4859896A (en) Piezoelectric precision positioning device
JP2012073235A (en) Tandem piezoelectric actuator and single drive circuit for atomic force microscopy
JP2001305036A (en) Micro-area scanning device and scanning probe microscope
JPH01187402A (en) Scan tunnel microscope
JPH01223783A (en) Fine movement device
JPH01231667A (en) Piezoelectric actuator
JPH06112547A (en) Flexural displacement actuator
JPH0727559A (en) Cantilever with thin film type displacement sensor
JPH1010140A (en) Scanning probe microscope
JP3167495B2 (en) Scanner system and scanning probe microscope equipped with the same
JPH09119938A (en) Scanning probe microscope
JPS63153405A (en) Scanning type tunnel microscope
JPH067042B2 (en) Piezoelectric element fine movement mechanism
JP3825591B2 (en) Micro area scanning device
JP2631297B2 (en) Piezo actuator
JPH088405Y2 (en) Piezoelectric element micro positioning mechanism
RU2080631C1 (en) Positioner
JPS62203573A (en) Piezoelectric actuator
JPH01214279A (en) Piezoelectric actuator
JP2001108595A (en) Microregion scanning apparatus
JPH03215703A (en) Atomic probe microscope