JPH01223719A - Film formation of polycrystalline silicon - Google Patents

Film formation of polycrystalline silicon

Info

Publication number
JPH01223719A
JPH01223719A JP4906688A JP4906688A JPH01223719A JP H01223719 A JPH01223719 A JP H01223719A JP 4906688 A JP4906688 A JP 4906688A JP 4906688 A JP4906688 A JP 4906688A JP H01223719 A JPH01223719 A JP H01223719A
Authority
JP
Japan
Prior art keywords
film
substrate
temperature
gas
onto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4906688A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakazawa
中澤 努
Fumitake Mieno
文健 三重野
Yuji Furumura
雄二 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4906688A priority Critical patent/JPH01223719A/en
Publication of JPH01223719A publication Critical patent/JPH01223719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To crystallize an amorphous silicon film and to form a polycrystalline silicon film whose surface is flattened as a mirror surface, by depositing the amorphous silicon film onto a substrate by thermally decomposing a silane gas at a specific substrate temperature or lower and annealing the whole at a fixed temperature or lower. CONSTITUTION:A normal vapor growth device is used, a substrate to be film-formed 3 is placed onto a susceptor 2 in a growth chamber 1, and heated by a heater 4. A source gas is introduced to a shower 5 from a gas introducing port 1S, and fed onto the substrate to be film-formed 3. The gas in the growth chamber 1 is exhausted from an exhaust port 1D so that the inside of the growth chamber 1 is kept at specified pressure. The temperature of the substrate is elevated to 450 deg.C or less, Si2H6 is employed as the source gas, and the pressure of Si2H6 is reduced to 0.3-30Torr, and thermally decomposed on the substrate, thus growing an a-Si film. The whole is annealed at a temperature of 600 deg.C or less in nitrogen by using a normal heating furnace. Accordingly, the mirror surface-shaped polySi film, which has approximately single orientation and the surface of which is flattened, is acquired, and the breakdown resistance of an insulating film formed onto the polySi film is increased, thus improving the reliability of the device.

Description

【発明の詳細な説明】 〔概要〕 ポリStの成膜方法に関し。[Detailed description of the invention] 〔overview〕 Regarding the method of forming a polySt film.

単一配向を持つ表面が平坦な鏡面状のポリSi膜を得、
この上に形成された絶縁膜の破壊耐性を向上し、デバイ
スの高信頗化を目的とし。
Obtaining a mirror-like poly-Si film with a flat surface with a single orientation,
The aim is to improve the breakdown resistance of the insulating film formed on top of this and make devices more reliable.

基板上に、該基板温度450℃以下でシラン系ガスの熱
分解により非晶質珪素(a−5i)膜を堆積し。
An amorphous silicon (a-5i) film is deposited on the substrate by thermal decomposition of silane gas at a substrate temperature of 450° C. or lower.

該基板を600℃以下でアニールすることにより該非晶
質珪素膜を結晶化して略単一配向の多結晶珪素膜を形成
するように構成する。
The substrate is annealed at 600° C. or lower to crystallize the amorphous silicon film to form a substantially single-oriented polycrystalline silicon film.

〔産業上の利用分野〕[Industrial application field]

本発明は多結晶珪素(ポリSi)の成膜方法に関する。 The present invention relates to a method for forming a polycrystalline silicon (poly-Si) film.

ポリSi膜は導電膜等として、半導体デバイスの形成に
多用されている。
Poly-Si films are often used as conductive films and the like in the formation of semiconductor devices.

〔従来の技術〕[Conventional technology]

ポリSi膜上に絶縁膜を形成して、これを不揮発性メモ
リや高集積度ダイナミックメモリ等半導体デバイスの眉
間絶縁層として用いる場合、従来の成膜法による場合に
生ずるポリSiの突起に起因する電界集中により9層間
絶縁層を破壊しデバイスの信顛性を低下させていた。
When an insulating film is formed on a poly-Si film and used as an insulating layer between the eyebrows of semiconductor devices such as non-volatile memories and highly integrated dynamic memories, problems may arise due to protrusions of the poly-Si that occur when using conventional film formation methods. The electric field concentration destroyed the nine interlayer insulating layers, reducing the reliability of the device.

従来の成膜方法は1例えば、ソースガスとしてモノシラ
ン(S i tl 4)を用い、これを数Torrに減
圧して620”Cの基板上で熱分解してポリSiを堆積
していた。
In the conventional film forming method, for example, monosilane (S i t l 4) was used as a source gas, the pressure was reduced to several Torr, and poly-Si was deposited by thermal decomposition on a substrate at 620''C.

この場合、成膜されたポリSi膜の結晶粒は多配向性を
持つため、膜の表面が鏡面のように平坦にならないで1
表面に無秩序にサブマイクロン以下の間隔で一様に分布
した凹凸を生ずる。
In this case, since the crystal grains of the poly-Si film formed have multi-orientation, the surface of the film does not become flat like a mirror surface.
This produces irregularities on the surface that are uniformly distributed at submicron intervals.

そのために、このようなポリSi膜上に形成した絶縁膜
は上記のように破壊しやすいという欠点を持つ。
Therefore, the insulating film formed on such a poly-Si film has the drawback of being easily destroyed as described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、ポリSi膜の表面が鏡面のように平坦化され
た成膜方法を得ることを目的とする。
An object of the present invention is to obtain a film forming method in which the surface of a poly-Si film is flattened like a mirror surface.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、基板上に、該基板温度450℃以下
でシラン系ガスの熱分解により非晶質珪素(a−5i)
膜を堆積し、該基板を600℃以下でアニールすること
により該非晶質珪素膜を結晶化して。
To solve the above problem, amorphous silicon (a-5i) is formed on the substrate by thermal decomposition of silane gas at a substrate temperature of 450°C or less.
The amorphous silicon film is crystallized by depositing a film and annealing the substrate at a temperature below 600°C.

各結晶粒の結晶軸が略単一配向を持つ多結晶珪素膜を形
成することを特徴とする成膜方法により達成される。
This is achieved by a film forming method characterized by forming a polycrystalline silicon film in which the crystal axes of each crystal grain have approximately a single orientation.

〔作用〕[Effect]

本発明は、ポリSi膜の各結晶粒の結晶軸をi−配向さ
せることにより、膜の表面を平坦化するようにしたもの
である。
In the present invention, the surface of the poly-Si film is flattened by i-orienting the crystal axes of each crystal grain of the poly-Si film.

そのために1本発明者等の実験結果によると。According to the experimental results of the present inventors, etc.

基板上にまずa−Si膜を450℃以下の低温で成長し
First, an a-Si film is grown on a substrate at a low temperature of 450°C or less.

その後600℃以下で低温アニールして結晶化すること
により略単一配向のポリSi膜が得られることが分かっ
た。
It was found that a substantially single-oriented poly-Si film can be obtained by subsequent low-temperature annealing at 600° C. or lower for crystallization.

結晶粒の配向性による表面の凹凸は、ノマルスキ微分干
渉顕微鏡で5μm/cmに拡大して観測した。
Surface irregularities due to crystal grain orientation were observed using a Nomarski differential interference microscope at a magnification of 5 μm/cm.

第2図(11〜(4)は600℃窒素(N2)中アニー
ル後のSiO□層上に堆積したポリSi膜の表面を堆積
温度(基板温度)をパラメータにして観測した実験結果
を示す写真の模写図である。
Figure 2 (11 to (4)) are photographs showing the experimental results of observing the surface of the poly-Si film deposited on the SiO□ layer after annealing in nitrogen (N2) at 600°C using the deposition temperature (substrate temperature) as a parameter. This is a copy of the figure.

図より、第2図(1)の堆積温度が450℃の場合は。From the figure, when the deposition temperature in FIG. 2 (1) is 450°C.

ポリSi膜の表面はこの倍率では認められない程平坦で
あるが、堆積温度が高くなるに従って表面の凹凸は大き
くなることが分かる。
Although the surface of the poly-Si film is so flat that it cannot be seen at this magnification, it can be seen that as the deposition temperature increases, the surface irregularities become larger.

この結果1本発明の成膜方法によると表面の凹凸は殆ど
認められず、掻めて平坦な鏡面が得られていることが分
かった。
As a result, it was found that according to the film forming method of the present invention, almost no surface irregularities were observed, and a flat mirror surface was obtained.

又、単一配向性を持つことは、X線回折によりポリSi
膜表面は(111)面に配向していることが分かった。
In addition, the fact that polySi has a single orientation can be confirmed by X-ray diffraction.
It was found that the film surface was oriented in the (111) plane.

第3図は第2図(1)の試料に対する。ポリSi膜のロ
ッキングカーブ(rocking curve)を示す
図である。
FIG. 3 is for the sample in FIG. 2 (1). FIG. 3 is a diagram showing a rocking curve of a poly-Si film.

縦軸は回折の比強度を示し、横軸のθ°はX′fIfA
の入射角である。
The vertical axis shows the specific intensity of diffraction, and the horizontal axis θ° is X'fIfA
is the angle of incidence of

図の実線はSiのロッキングカーブで9回折強度が(1
11)にシャープなピークを持つことを示している。
The solid line in the figure is the rocking curve of Si, and the 9 diffraction intensity is (1
11) has a sharp peak.

図の点線はドープした砒素(As)を示す。The dotted line in the figure indicates doped arsenic (As).

a−Si膜の成長温度が450℃より高いと、アニール
後に多配向した多結晶膜として結晶化する。
If the growth temperature of the a-Si film is higher than 450° C., it will crystallize as a multi-oriented polycrystalline film after annealing.

a−Si膜の低温成長には、ソースガスとして従来例の
5it14より、ジシラン(Sizlls)を用いると
有利である。又は、さらに高次のシランを用いても可能
である。
For low-temperature growth of an a-Si film, it is more advantageous to use disilane (Sizlls) as a source gas than the conventional 5it14. Alternatively, it is also possible to use a higher order silane.

また、結晶化アニールが600℃を越えると、他の結晶
軸を持つ核の発生が起きて、単一配向にはならない。
Furthermore, if the crystallization annealing exceeds 600° C., nuclei having other crystal axes are generated and a single orientation is not achieved.

〔実施例〕〔Example〕

第1図は本発明の一実施例を説明する成膜に使用した装
置の断面図である。
FIG. 1 is a sectional view of an apparatus used for film formation to explain an embodiment of the present invention.

装置は通常の減圧気相成長(LP−CVD)装置で、成
長室1内のサセプタ2上に被成長基板3を載せ。
The apparatus is a normal low pressure chemical vapor deposition (LP-CVD) apparatus, and a substrate 3 to be grown is placed on a susceptor 2 in a growth chamber 1.

被成長基板3をサセプタ2内に設けられたヒータ4によ
り加熱する。
The growth substrate 3 is heated by a heater 4 provided within the susceptor 2 .

ソースガスは、ガス導入口ISよりジャワ5に導かれ、
被成長基板3上に供給される。
The source gas is led to Java 5 from the gas inlet IS,
It is supplied onto the growth substrate 3.

成長室1内は所定の圧力に保たれるように、排気口ID
より排気される。
The exhaust port ID is installed so that the inside of the growth chamber 1 is maintained at a predetermined pressure.
More exhaust.

(11a −S i膜の成長 上記の装置を用いて、基板温度450℃にし、ソ−スガ
スとして5iJbを用い、これを0.3〜30Torr
に減圧し、基板上で熱分解してa−Si膜を成長する。
(11a - Growth of Si film Using the above-mentioned apparatus, the substrate temperature was set to 450°C, 5 iJb was used as the source gas, and this was heated at 0.3 to 30 Torr.
The a-Si film is grown by thermal decomposition on the substrate.

通常のLP−CVD a−Si膜は、 Signを用い
、560〜580℃ で成長している。
Conventional LP-CVD a-Si films are grown at 560-580°C using Sign.

(2)結晶化アニール 通常の加熱炉を用いて、窒素中で600℃でアニールす
る。
(2) Crystallization Annealing Annealing is performed at 600° C. in nitrogen using a normal heating furnace.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、略単一配向を持つ
表面が平坦な鏡面状のポリSi膜が得られ。
As explained above, according to the present invention, a mirror-like poly-Si film having a substantially single orientation and a flat surface can be obtained.

この上に形成された絶縁膜の絶縁破壊耐性を向上し、デ
バイスの高信頼化ができる。
The dielectric breakdown resistance of the insulating film formed thereon can be improved, and the reliability of the device can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する成膜に使用した装
置の断面図。 第2図(1)〜(4)は600℃窒素中アニール後のS
iO□層上に堆積したポリSi膜の表面を堆積温度をパ
ラメータにして観測した実験結果を示す模写図。 第3図はロッキングカーブを示す図である。 図において。 1は成長室。 isはガス導入口。 ■Dは排気口。 2はサセプタ。 3は被成長基板。 4はヒータ。 5はシャワ 6000C 堆剰+v:450’C 000C 火R銘粟: N2  7二−ルイ& e; S;、/5i02550
℃ 紀説尻弓−する 才斐司こム日 第 Z 口 手続補正書坊式) 1.′4件の表示 昭和63年 特許願 第049066号2、発明の名称 多結晶珪素の成膜方法 3、補正をする者 事件との関係  特許出願人 住所 神奈川県用崎市中原区上小田中1015番地(5
22)鱒富士通株式会社 5、補正命令の日付 昭和63年 5月31日 (発送日) 6、補正の刻象 図面 b’J’、j ”y 電電x!:450’ C 000C 欠裁5話敷プ N2 −ア二−ルノ交こワ:巳°/S、0゜550℃ 5月m 6500Cヨ 己説、明ブろ4笑キ2 君 Z 日
FIG. 1 is a sectional view of an apparatus used for film formation to explain one embodiment of the present invention. Figure 2 (1) to (4) show S after annealing in nitrogen at 600°C.
FIG. 3 is a schematic diagram showing the results of an experiment in which the surface of a poly-Si film deposited on an iO□ layer was observed using the deposition temperature as a parameter. FIG. 3 is a diagram showing a rocking curve. In fig. 1 is the growth room. is is the gas inlet. ■D is the exhaust port. 2 is the susceptor. 3 is a growth substrate. 4 is a heater. 5 is a shower 6000C.
℃ Kisetsu Shiriyumi - Saitoji Komu Day Z Oral Procedures Correction Book Ceremony) 1. ' Showing 4 items 1986 Patent Application No. 049066 2 Name of the invention Method for forming a film of polycrystalline silicon 3 Relationship with the person making the amendment Patent applicant address 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture (5
22) Masu Fujitsu Co., Ltd. 5. Date of amendment order: May 31, 1986 (shipment date) 6. Amended engraving drawing b'J', j ”y Denden x!: 450' C 000C Missing episode 5 Shikipu N2 -Annie-Luno exchange: Sn°/S, 0°550℃ May m 6500C Yo own theory, Akeburo 4 Shoki 2 Kimi Z Day

Claims (1)

【特許請求の範囲】[Claims]  基板上に、該基板温度450℃以下でシラン系ガスの
熱分解により非晶質珪素(a−Si)膜を堆積し、該基
板を600℃以下でアニールすることにより該非晶質珪
素膜を結晶化して略単一配向の多結晶珪素膜を形成する
ことを特徴とする多結晶珪素の成膜方法。
An amorphous silicon (a-Si) film is deposited on the substrate by thermal decomposition of silane gas at a substrate temperature of 450°C or lower, and the amorphous silicon film is crystallized by annealing the substrate at 600°C or lower. 1. A method for forming a polycrystalline silicon film, the method comprising: forming a polycrystalline silicon film having a substantially single orientation.
JP4906688A 1988-03-02 1988-03-02 Film formation of polycrystalline silicon Pending JPH01223719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4906688A JPH01223719A (en) 1988-03-02 1988-03-02 Film formation of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4906688A JPH01223719A (en) 1988-03-02 1988-03-02 Film formation of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPH01223719A true JPH01223719A (en) 1989-09-06

Family

ID=12820706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4906688A Pending JPH01223719A (en) 1988-03-02 1988-03-02 Film formation of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPH01223719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242855A (en) * 1991-09-30 1993-09-07 Nec Corporation Method of fabricating a polycrystalline silicon film having a reduced resistivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242855A (en) * 1991-09-30 1993-09-07 Nec Corporation Method of fabricating a polycrystalline silicon film having a reduced resistivity

Similar Documents

Publication Publication Date Title
TW399227B (en) Method of manufacturing a crystalline semiconductor
JPS58130517A (en) Manufacture of single crystal thin film
US6019839A (en) Method and apparatus for forming an epitaxial titanium silicide film by low pressure chemical vapor deposition
JP2689935B2 (en) Semiconductor thin film forming method
US20060292301A1 (en) Method of depositing germanium films
JP2828152B2 (en) Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
JP2000223419A (en) Method of forming single crystal silicon layer, and semiconductor device and manufacture thereof
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
JP3313840B2 (en) Method for manufacturing semiconductor device
US5783257A (en) Method for forming doped polysilicon films
JPH01223719A (en) Film formation of polycrystalline silicon
US5238879A (en) Method for the production of polycrystalline layers having granular crystalline structure for thin-film semiconductor components such as solar cells
JP3013418B2 (en) Dielectric thin film, thin film device, and method for producing them
JP2861343B2 (en) Semiconductor device and manufacturing method thereof
JPH0411722A (en) Forming method of semiconductor crystallized film
JP2666572B2 (en) Method for forming polycrystalline silicon film
KR20180087595A (en) Method for forming polycrystalline silicon films
JPH09249972A (en) Forming method of thin film, semiconductor device and its production
JP2592984B2 (en) Manufacturing method of silicon thin film
JPH01313974A (en) Method of manufacturing polycrystalline silicon semiconductor resistance layer on silicon substrate and silicon pressure sensor manufactured by the method
JPH03126220A (en) Semiconductor element
JPS62124736A (en) Silicon thin-film and manufacture thereof
KR100341059B1 (en) A Method for Forming Poly-Crystalline Silicon Thin Film
JP3105310B2 (en) Polycrystalline semiconductor film and thin film transistor manufacturing method
JP2532252B2 (en) Method for manufacturing SOI substrate