JPH01223337A - Manufacture of small oxygen electrode - Google Patents

Manufacture of small oxygen electrode

Info

Publication number
JPH01223337A
JPH01223337A JP63048708A JP4870888A JPH01223337A JP H01223337 A JPH01223337 A JP H01223337A JP 63048708 A JP63048708 A JP 63048708A JP 4870888 A JP4870888 A JP 4870888A JP H01223337 A JPH01223337 A JP H01223337A
Authority
JP
Japan
Prior art keywords
holes
gel
substrate
hole
monomer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63048708A
Other languages
Japanese (ja)
Inventor
Hiroaki Suzuki
博章 鈴木
Fumio Takei
文雄 武井
Akio Sugama
明夫 菅間
Naomi Kojima
小嶋 尚美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63048708A priority Critical patent/JPH01223337A/en
Priority to EP88400742A priority patent/EP0284518B1/en
Priority to DE8888400742T priority patent/DE3875149T2/en
Priority to US07/366,365 priority patent/US4975175A/en
Publication of JPH01223337A publication Critical patent/JPH01223337A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a gel with a fine volume having a flat surface thereof free from a volume change easily, by a method wherein a monomer solution is irradiated with light through a transparent member to convert in into gel and the top surface of the holes is covered with a gas permeable film. CONSTITUTION:Holes are made on a substrate 1 by anisotropic etching to form two electrodes 3A and 3B to the surface of the substrate 1 from the bottom of the holes through an insulation film 2. Then, the substrate 1 is covered with a photoresist excluding the holes and a part intended for an electric contact and then, immersed into a photopolymerizing monomer solution tending to form a gel 6 containing an electrolytic liquid to fill the holes along with the monomer solution. With the holes covered by a transparent member, light is irradiated to convert the monomer solution into gel and the top surface of the holes is covered with a gas permeable film 14 thereby facilitating the production of a gel with a fine volume having a flat surface thereof.

Description

【発明の詳細な説明】 〔概 要〕 小型酸素電極の製法に関し、 小型で大量生産可能な酸素電極を製造するに当って、電
解液の蒸発に原因する再現性及び信頼性の低下の問題を
解消することを目的とし、異方性エツチングによって基
板上に穴をあけ、前記穴の底部から前記基板の表面に至
る2本の電極を形成し、前記基板上を前記穴の部分及び
電気的コンタクトをとる部分を除いてフォトレジストで
被覆し、前記フォトレジスト被覆基板を電解液含有ゲル
形成性光重合性モノマー溶液中に浸漬して前記穴の部分
のみに前記七ツマー溶液を満たし、それぞれの穴を透明
な部材で覆った状態で光を照射して前記モノマー溶液を
ゲル化、そして前記穴の上面をガス透過性膜で被覆する
ように、構成する。
[Detailed Description of the Invention] [Summary] Regarding the manufacturing method of a small oxygen electrode, the present invention aims to solve the problem of reduced reproducibility and reliability caused by evaporation of an electrolyte when manufacturing a small oxygen electrode that can be mass-produced. In order to solve this problem, a hole is made on the substrate by anisotropic etching, two electrodes are formed from the bottom of the hole to the surface of the substrate, and two electrodes are formed on the substrate through the hole and the electrical contact. The photoresist coated substrate is immersed in an electrolyte-containing gel-forming photopolymerizable monomer solution to fill only the holes with the seven-mer solution, and each hole is The monomer solution is irradiated with light while covered with a transparent member to gel the monomer solution, and the upper surface of the hole is covered with a gas permeable film.

(産業上の利用分野) 本発明は小型酸素電極の製法に関し、特に小型かつ低価
格で大量生産可能な酸素電極を製造する方法に関する。
(Industrial Application Field) The present invention relates to a method for manufacturing a small-sized oxygen electrode, and particularly to a method for manufacturing an oxygen electrode that is small, inexpensive, and can be mass-produced.

小型酸素電極は、いろいろな分野において、溶存酸素濃
度の測定に有利に用いることができる。
Small oxygen electrodes can be advantageously used for measuring dissolved oxygen concentrations in various fields.

例えば、水質保全の見地から水中の生化学的酸素供給量
(Biological Oxygen Demand
  略称BOD)の測定が行われているが、この溶存酸
素濃度の測定器としてこの小型酸素電極を使用すること
ができる。
For example, from the perspective of water quality conservation, the amount of biochemical oxygen supply in water (Biological Oxygen Demand)
This small oxygen electrode can be used as a measuring device for dissolved oxygen concentration (abbreviated as BOD).

また、醗酵工業において、効率よくアルコール醗酵を進
めるためには醗酵槽中の溶存酸素濃度の調整が必要であ
り、こあ測定器として本発明の小型酸素電極を使用する
ことができる。
Further, in the fermentation industry, in order to efficiently proceed with alcohol fermentation, it is necessary to adjust the dissolved oxygen concentration in the fermenter, and the small oxygen electrode of the present invention can be used as a temperature measuring device.

さらにまた、小型酸素電極は、酵素と組み合わせて酵素
電極を形成し、糖やビタミンなどの濃度測定に用いるこ
ともできる。例えば、グルコース(CJhO+z)はグ
ルコースオキシターゼ(略称G00)と云う酵素を触媒
とし、溶存酸素と反応してグルコノラクトン(C&H1
1106)に酸化するが、これにより酸素電極セルの中
に拡散してくる溶存酸素が減ることを利用し、溶存酸素
の消費量からグルコースの濃度を測定することができる
Furthermore, the small oxygen electrode can be combined with an enzyme to form an enzyme electrode, which can be used to measure the concentration of sugars, vitamins, and the like. For example, glucose (CJhO+z) reacts with dissolved oxygen using an enzyme called glucose oxidase (abbreviated as G00) as a catalyst to produce gluconolactone (C&H1).
1106), and the concentration of glucose can be measured from the amount of dissolved oxygen consumed by utilizing the fact that this reduces the amount of dissolved oxygen that diffuses into the oxygen electrode cell.

このように本発明の小型酸素電極は、環境計測、醗酵工
業、臨床医療など各種の分野で使用することができるが
、特に臨床医療分野においてカテーテルに装着し、体内
に挿入して使用する用途においては、小型であると共に
使い捨て可能で低価格であるので、非常に利用価値があ
る。
As described above, the small oxygen electrode of the present invention can be used in various fields such as environmental measurement, fermentation industry, and clinical medicine, but especially in the field of clinical medicine where it is attached to a catheter and inserted into the body. is small, disposable, and inexpensive, making it very useful.

〔従来の技術〕[Conventional technology]

本発明者らは、従来のガラス製の酸素電極では、小型化
ができず大量生産も不可能であるので、リソグラフィ技
術及び異方性エツチング技術を利用した新しいタイプの
小型酸素電極を開発し、特許出願した(特願昭62−7
1739号)。この酵素電極は、シリコン基板上に異方
性エツチングにより作成した溝の上に、絶縁層を介して
2本の電極を形成し、さらにこの溝の内部に電解液含有
体を収容し、そして最後に溝の上面をガス透過性膜で覆
った構造を有する酸素電極である。この酸素電極は、小
型で、特性のばらつきが少なく、高精度であり、また、
低コストでもって大量生産が可能である。
Since conventional glass oxygen electrodes cannot be miniaturized or mass produced, the inventors developed a new type of small oxygen electrode using lithography technology and anisotropic etching technology. Patent application filed (Japanese Patent Application 1986-7)
No. 1739). In this enzyme electrode, two electrodes are formed on a groove created by anisotropic etching on a silicon substrate with an insulating layer interposed therebetween, and an electrolyte-containing body is housed inside the groove, and finally, This is an oxygen electrode with a structure in which the upper surface of the groove is covered with a gas permeable membrane. This oxygen electrode is small, has little variation in characteristics, and is highly accurate.
Mass production is possible at low cost.

上記したタイプの酸素電極において、電解液含有体は、
通常、電解液を浸み込ませたゲル、例えばアガロースゲ
ルであった。し“パし、この電解液含有体では、当初の
手法によれば、アガロースゲルをシリコン基板上の微小
な溝の中にマイクロピペットで1回ずつ繰り返し注入し
なければならなかった。
In the above-mentioned type of oxygen electrode, the electrolyte-containing body is
Usually it was a gel impregnated with an electrolyte, such as an agarose gel. However, with this electrolyte-containing body, according to the original method, it was necessary to repeatedly inject the agarose gel into minute grooves on the silicon substrate once with a micropipette.

本発明者らは、この点をさらに改良してより大量生産向
きなものとなすべく研究の結果、ポリアクリルアミドゲ
ルを用い、シリコン基板上にあけられた多くの微小な穴
の中に、−括してゲルを注入可能な方法を見い出した(
特願昭61−148221号参照)、この小型酸素電極
の製造方法は、写真蝕刻技術と異方性エツチング技術と
を用いて複数個の穴を形成した後に各式に電極を形成し
たシリコン基板に、抜穴の部分を除いてネガ型レジスト
を被覆し、該基板を電解液を含んだ光重合性モノマー、
好ましくはアクリルアミドの溶液に浸漬し、それぞれの
穴に該溶液を満たした状態で紫外線を照射して硬化せし
め、電解液を含んだ多孔質担体を穴の中に形成すること
を特徴とする。この製造方法によれば、小型酸素電極を
形成する微少な穴の中にのみ選択的に電解液を保持する
多孔質の担体を形成することができるので、より大量生
産が可能となる。
The present inventors conducted research to further improve this point and make it more suitable for mass production. Using polyacrylamide gel, the present inventors used polyacrylamide gel to create a structure in which holes were placed in many microscopic holes drilled on a silicon substrate. found a way to inject the gel (
(Refer to Japanese Patent Application No. 61-148221), this method of manufacturing a small oxygen electrode involves forming a plurality of holes using photolithography and anisotropic etching, and then forming electrodes on a silicon substrate in various ways. , the substrate is coated with a negative resist except for the holes, and the substrate is coated with a photopolymerizable monomer containing an electrolyte;
Preferably, the carrier is immersed in an acrylamide solution, and each hole is filled with the solution and cured by irradiation with ultraviolet rays to form a porous carrier containing the electrolyte in the hole. According to this manufacturing method, it is possible to form a porous carrier that selectively retains the electrolyte only in the minute holes that form the small oxygen electrode, thereby making mass production possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した特願昭62−148221号明細書に記載され
る方法は、非常に小型の酸素電極を大量に生産できると
いう点で画期的な製造方法である。しかし、この方法を
詳細に検討してみると、実用化に至るために解決しなけ
ればならない問題があることがわかった。すなわち、電
解液を蓄える穴の寸法が微小化すると、表面積/体積比
が非常に大きくなり、電解液が蒸発しやすくなるばかり
でなく、アクリルアミドのゲル化の際の発熱が加わると
、−層蒸発が加速されることである。また、蒸発を防ぐ
ために飽和水蒸気中で反応を進行させると、ゲル化にと
もなってこの水溶液自体が水分を吸収し、ポリアクリル
アミドゲルの体積が2倍以上にも膨張することがあるこ
とがわかった。このような体積変化は、再現性・信頼性
の点でたいへん不便である。
The method described in Japanese Patent Application No. 62-148221 mentioned above is an epoch-making manufacturing method in that very small oxygen electrodes can be produced in large quantities. However, a detailed study of this method revealed that there are problems that must be resolved before it can be put into practical use. In other words, as the dimensions of the holes that store the electrolyte become smaller, the surface area/volume ratio becomes extremely large, which not only makes it easier for the electrolyte to evaporate, but also causes the layer to evaporate when the heat generated during gelation of acrylamide is added. is accelerated. Additionally, when the reaction was allowed to proceed in saturated steam to prevent evaporation, the aqueous solution itself absorbed water as it gelled, and it was found that the volume of the polyacrylamide gel could expand to more than double. . Such volume changes are very inconvenient in terms of reproducibility and reliability.

本発明の目的は、したがって、小型で大量生産可能な酸
素電極を製造するに当って、電解液の蒸発に原因する再
現性及び信鯨性の低下の問題を解消することにある。
Therefore, an object of the present invention is to solve the problem of deterioration in reproducibility and reliability caused by evaporation of the electrolyte when manufacturing an oxygen electrode that is small and can be mass-produced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、ポリアクリルアミドゲル作製時の体積変
化の最大の原因は水分の変化であるという認識の下で研
究を進めた結果、水の蒸発(乾燥空気中)あるいは吸収
(飽和水蒸気中)が最小限に抑えられれば、ゲルの厚み
の変化を最小限に抑え、また、露出した表面を平坦に保
つことができるということを見い出した。このような水
分の変化を抑えるため、本発明者らは、小型酸素電極本
体の穴の中にアクリルアミド水溶液(増悪剤、重合促進
剤、電解質を含む)を入れた後に、直ちにこの水溶液の
上部に透明で薄い部材、例えば板(例えばカバーガラス
)または膜を置いて水分の流入、流出を防ぎ、この状態
でこの水溶液に水銀灯あるいは蛍光灯の光を照射してゲ
ルを固める方法を開発した。この本発明の方法によれば
、反応の前後で体積変化のほとんどない表面の平坦なゲ
ルを容易に得ることができる。
The present inventors conducted research with the understanding that the biggest cause of volume change during the production of polyacrylamide gel is the change in water content. It has been found that if this is minimized, changes in gel thickness can be minimized and the exposed surface can be kept flat. In order to suppress such changes in water content, the present inventors poured an acrylamide aqueous solution (containing an exacerbant, a polymerization accelerator, and an electrolyte) into the hole of the small oxygen electrode body, and then immediately poured the acrylamide solution into the upper part of the aqueous solution. We developed a method in which a transparent, thin material such as a plate (for example, a cover glass) or a membrane is placed to prevent moisture from flowing in or out, and the aqueous solution in this state is irradiated with light from a mercury lamp or fluorescent lamp to solidify the gel. According to the method of the present invention, it is possible to easily obtain a gel with a flat surface and almost no change in volume before and after the reaction.

本発明は、すなわち之異方性エツチングによって基板上
に穴をあけ、前記穴の底部から前記基板の表面に至る2
本の電極を絶縁膜を介して形成し、前記基板上を前記穴
の部分及び電気的コンタクトをとる部分を除いてフォト
レジストで被覆し、前記フォトレジスト被覆基板を電解
液含有ゲル形成性光重合性モノマー溶液中に浸漬して前
記穴の部分のみに前記モノマー溶液を満たし、それぞれ
の穴を透明な部材で覆った状態で光を照射して前記モノ
マー溶液をゲル化、そして前記穴の上面をガス透過性膜
で被覆することを特徴とする、小型酸素電極の製法にあ
る。
The present invention is characterized in that a hole is formed on a substrate by anisotropic etching, and two holes are formed from the bottom of the hole to the surface of the substrate.
A main electrode is formed through an insulating film, the substrate is coated with a photoresist except for the hole portion and the portion for making electrical contact, and the photoresist-coated substrate is coated with an electrolyte-containing gel-forming photopolymerizer. The monomer solution is immersed in a transparent monomer solution to fill only the holes, and each hole is covered with a transparent member, and the monomer solution is gelled by irradiation with light. A method for manufacturing a small oxygen electrode characterized by being coated with a gas permeable membrane.

この本発明の方法を実施するに当って、電極本体の基材
としては、半導体基板、特にシリコン基板を有利に使用
することができる。
In carrying out the method of the present invention, a semiconductor substrate, particularly a silicon substrate, can be advantageously used as the base material of the electrode body.

絶縁膜は、シリコン酸化膜、その他から形成することが
できる。シリコン酸化膜は、例えば基板がシリコン基板
である場合に、その基板を熱酸化することによって有利
に形成することができる。
The insulating film can be formed from a silicon oxide film or other materials. For example, when the substrate is a silicon substrate, the silicon oxide film can be advantageously formed by thermally oxidizing the substrate.

2本の電極は、製作される電極がポーラ口型であるかガ
ルバニ型であるかに応じているいろに変更することがで
きる。例えば、ポーラ口型の酸素電極を製造する場合に
は、画電極とも金電極あるいは白金電極から構成し、測
定時に両電極間に電圧を印加する。なお、ポーラ口型に
する場合には、下地となるシリコン酸化膜を侵しにくい
例えば0.1M塩化カリウム水溶液等の中性水溶液を用
いるのが好ましい。また、アノード側電極として鉛、銀
、銀/塩化銀等の金や白金に較べて化学反応をおこしや
すい金属の電極を用い、カソード側電極として金、白金
等の電極を用い、そして電解液として例えば1M水酸化
カリウム水溶液等のアルカリ性水溶液を用いれば、ガル
バニ型酸素電極を製゛造することができる。このような
電極の形成は、例えば蒸着、スパッタリング等の成膜法
によって有利に行うことができる。
The two electrodes can be varied depending on whether the electrodes being made are polar or galvanic. For example, when manufacturing a polar-mouth type oxygen electrode, both the picture electrode and the electrode are made of gold or platinum, and a voltage is applied between the two electrodes during measurement. In the case of a polar mouth type, it is preferable to use a neutral aqueous solution, such as a 0.1 M potassium chloride aqueous solution, which does not easily attack the underlying silicon oxide film. In addition, as the anode side electrode, a metal electrode such as lead, silver, silver/silver chloride, etc., which is more likely to cause a chemical reaction than gold or platinum, is used, and as the cathode side electrode, a metal electrode such as gold or platinum is used, and as the electrolyte. For example, by using an alkaline aqueous solution such as a 1M potassium hydroxide aqueous solution, a galvanic type oxygen electrode can be manufactured. Formation of such an electrode can be advantageously performed by a film forming method such as vapor deposition or sputtering.

電橋形成後の基板上に、穴の部分及び電気的コンタクト
部分を除いて塗布するフォトレジストは、好ましくはネ
ガ型フォトレジスト、例えば東京応化製のOMR−83
である。このタイプのフォトレジストは、穴の部分のみ
に電解液含有ゲル形成性モノマー溶液を満たすに際して
、そのような溶液をはじく性質をもっているので有用で
ある。
The photoresist coated on the substrate after the electric bridge is formed, except for the hole portions and the electrical contact portions, is preferably a negative type photoresist, such as OMR-83 manufactured by Tokyo Ohka Co., Ltd.
It is. This type of photoresist is useful when only the holes are filled with an electrolyte-containing gel-forming monomer solution because it has the property of repelling such a solution.

電解液含有ゲルの形成は、そのようなゲルを形成する性
質をもった光重合性モノマー溶液中に基板を浸漬し、そ
のような溶液を穴に満たした状態で基板をゆっくり引き
上げ、穴の上部を透明な部材、例えば板又は膜で覆った
状態で例えば紫外線のような光を照射してモノマーを重
合させてゲル化することによって有利に実施することが
できる。
To form an electrolyte-containing gel, a substrate is immersed in a photopolymerizable monomer solution that has the property of forming such a gel, and with the solution filled in the hole, the substrate is slowly pulled up and the upper part of the hole is removed. This can be advantageously carried out by covering the monomer with a transparent member such as a plate or film and irradiating it with light such as ultraviolet rays to polymerize the monomer and turn it into a gel.

適当な光重合性モノマーとして、アクリルアミドなどを
あげることができる。
Suitable photopolymerizable monomers include acrylamide and the like.

多孔性担体により保持されるべき電解液として、いろい
ろなものを用いることができる。−例として、硫酸ナト
リウム(NazSOn) 、塩化カリウム(KCl)な
どをあげることができる。
Various electrolytes can be used as the electrolyte to be retained by the porous carrier. - Examples include sodium sulfate (NazSOn), potassium chloride (KCl), etc.

ガス透過性膜は、疎水性で水溶液が通過しないことはも
ちろんであるが、初めは液体状でデイツプコーティング
あるいはスピンコーティングが可能であり、電極材料、
シリコン基板、そして絶縁膜としてのシリコン酸化膜(
S10□)との密着力が良好で電解液が外部に漏出しな
いことも必須の要件である。適当なガス透過性膜材料と
しては、フォトレジスト、好ましくはネガ型フォトレジ
ストなどをあげることができる。テフロン(商品名)膜
は、酸素透過性であるといえども密着力をもたないので
、使用を避けなければならない。
Gas-permeable membranes are hydrophobic and do not allow aqueous solutions to pass through them, but they are initially liquid and can be dip-coated or spin-coated.
Silicon substrate and silicon oxide film as an insulating film (
It is also an essential requirement that the adhesion with S10□) is good and that the electrolyte does not leak to the outside. Suitable gas permeable membrane materials include photoresists, preferably negative photoresists. Although Teflon (trade name) membrane is permeable to oxygen, it does not have adhesive strength and should be avoided.

〔作 用〕[For production]

本発明に係る小型酸素電極は、半導体集積回路の形成に
使用されている写真蝕刻技術と薄膜形成技術とを用いて
小型酸素電極を量産するものであるから、穴の中への電
解液の充填法も量産に向く方法で行う必要がある。
The small oxygen electrode according to the present invention mass-produces the small oxygen electrode using photolithography technology and thin film formation technology that are used in the formation of semiconductor integrated circuits. The process also needs to be done in a way that is suitable for mass production.

その方法として本発明は、電解液を含む多孔質ポリマー
を穴の中に一括して形成するもので、詳しくは光重合性
の親木性モノマ7と電解質水溶液との混合液の中にシリ
コン基板を浸漬して穴の中に充填させ、これに紫外線等
の光を透明部材を介して照射して多孔質のポリマーを作
るものであり、親木性モノマーとしてはアクリルアミド
が適している。こ\で、多孔質のポリマーの穴の中には
電解液が温存されている。
As a method for this purpose, the present invention forms a porous polymer containing an electrolyte in the holes all at once. Specifically, the silicon substrate is placed in a mixed solution of a photopolymerizable wood-loving monomer 7 and an electrolyte aqueous solution. A porous polymer is created by dipping the polymer into holes and irradiating it with light such as ultraviolet rays through a transparent member, and acrylamide is suitable as the wood-philic monomer. Here, the electrolyte is preserved in the pores of the porous polymer.

上記のようにすれば、多数の穴に一括して電解液を充填
することができるが、この場合の問題は多孔質ポリマー
が穴以外のシリコン基板面にも形成されることである。
With the above method, a large number of holes can be filled with the electrolytic solution at once, but the problem in this case is that the porous polymer is also formed on the silicon substrate surface other than the holes.

これを防ぐために、本発明では、写真蝕刻技術に使用す
るレジストとして櫟水性のフォトレジスト、好ましくは
ネガ型フォトレジストを使用する。すなわち、ネガ型フ
ォトレジストはゴム系であって疎水性をもっており、水
溶液に漬けてもレジストで被覆した部分は水をはしい、
てしまうと云う性質がある。これを利用し、本発明は穴
以外の部分にネガ型レジストを被覆して浸漬処理を行う
ものである。
In order to prevent this, in the present invention, a water-based photoresist, preferably a negative type photoresist, is used as the resist used in the photolithography technique. In other words, negative photoresist is rubber-based and has hydrophobic properties, so even if it is immersed in an aqueous solution, the area covered with the resist will repel water.
There is a tendency to become Utilizing this, the present invention covers portions other than the holes with a negative resist and performs immersion treatment.

また、本発明では透明部材を介して光照射を行う。穴の
中の光重合性モノマー溶液がこの透明部材で被覆されて
いるので、水分の流入や流出、電解液の蒸発などを抑制
することができ、反応の前後で体積変化のほとんどない
表面の平坦なゲルを容易に得ることができる。
Further, in the present invention, light irradiation is performed through a transparent member. Since the photopolymerizable monomer solution inside the hole is covered with this transparent material, it is possible to suppress the inflow and outflow of water and the evaporation of the electrolyte, and the surface is flat with almost no change in volume before and after the reaction. gel can be easily obtained.

〔実施例〕〔Example〕

次いで、本発明による小型酸素電極の製法の好ましい一
例を添付の図面を参照しながら説明する。
Next, a preferred example of a method for manufacturing a small oxygen electrode according to the present invention will be described with reference to the accompanying drawings.

第1図は、本発明による小型酸素電極の好ましい一例を
示した斜視図である0図示の酸素電極は、直方体の形状
を有していて、感応部がガス透過性膜14で覆われると
ともに、付属のデバイスに接続するため、電極3A及び
3Bの一部分が露出している。電極3A及び3Bは、本
例の場合、ボーラロ型とするために画電極とも金電極で
構成した。
FIG. 1 is a perspective view showing a preferred example of a small-sized oxygen electrode according to the present invention. The oxygen electrode shown in FIG. Portions of electrodes 3A and 3B are exposed for connection to an attached device. In this example, the electrodes 3A and 3B were made of gold electrodes as well as the picture electrodes in order to have a Bolaro type.

第1図の小型酸素電極の構造は、そのn−n線にそった
断面図である第2図からより詳しく理解できるであろう
、シリコン基板1は、異方性エツチングにより形成され
た穴を有するとともに、その全面にシリコン酸化膜(S
in、膜)2が絶縁膜として被着せしめられている。シ
リコン基板lの穴には、2本の金電極3A及び3Bが対
をなして被着せしめられている。金電極3A及び3Bは
、第1図で示したように、それぞれの一部分が溝の外側
にまで延在している。また、シリコン基板lの穴には電
解液含有ゲル6が満たされている。さらに、穴の上部に
は、基板lの上部の全面(第1図の露出部を除く)を覆
う形で、ガス透過性膜14が被覆されている。
The structure of the small oxygen electrode shown in FIG. 1 can be understood in more detail from FIG. 2, which is a cross-sectional view taken along line nn. The silicon substrate 1 has holes formed by anisotropic etching. It also has a silicon oxide film (S) on its entire surface.
In, film) 2 is deposited as an insulating film. Two gold electrodes 3A and 3B are deposited in pairs in the holes of the silicon substrate l. As shown in FIG. 1, a portion of each of the gold electrodes 3A and 3B extends to the outside of the groove. Further, the holes in the silicon substrate 1 are filled with an electrolyte-containing gel 6. Further, the upper part of the hole is covered with a gas permeable film 14 so as to cover the entire upper part of the substrate l (excluding the exposed part in FIG. 1).

第1図及び第2図に示した小型酸素電極は、例えば、第
3図に順を追って示す製造プロセスで有利に製造するこ
とができる。なお、第3図(A)に示す電極形成後の本
体は、次のような工程を経て製造することができる。な
お、以下の説明では、理解を容易ならしめるため、1枚
のウェハ(シリコン基板)に1個だけ酸素電極を形成す
る場合について記載するけれども、実際には多数個の小
型酸素電極が同時に形成されるということを理解された
い。
The miniature oxygen electrodes shown in FIGS. 1 and 2 can be advantageously manufactured, for example, by the manufacturing process shown in sequence in FIG. Note that the main body after forming the electrodes shown in FIG. 3(A) can be manufactured through the following steps. In the following explanation, in order to make it easier to understand, we will describe the case where only one oxygen electrode is formed on one wafer (silicon substrate), but in reality, many small oxygen electrodes are formed at the same time. I would like you to understand that

1、 ウェハ洗浄 厚さ350−の(100)面2インチシリコンウェハを
用意し、これを過酸化水素とアンモニアの混合水溶液及
び濃硝酸で洗浄した。
1. Wafer Cleaning A 2-inch (100) silicon wafer with a thickness of 350 mm was prepared and cleaned with a mixed aqueous solution of hydrogen peroxide and ammonia and concentrated nitric acid.

2、  Sin、膜の形成 シリコンウェハをウェット熱酸化し、その全面に膜厚0
.8−のSin、膜を形成させた。
2. Formation of a Sin film A silicon wafer is wet thermally oxidized to form a film with a thickness of 0 on the entire surface.
.. 8-Sin film was formed.

3、 エツチング用パターンの形成 ネガ型フォトレジスト(東京応化型OMR−83、粘度
60cp)を使用して、ウェハ上にエツチング用レジス
トパターンを形成した。
3. Formation of etching pattern An etching resist pattern was formed on the wafer using a negative photoresist (Tokyo Ohka OMR-83, viscosity 60 cp).

4、 レジスト塗布 ウェハの裏面にも上記工程で使用したものと同じフォト
レジストを塗布し、130℃で30分間にわたってベー
タした。
4. The same photoresist used in the above step was also applied to the back side of the resist-coated wafer and beta-treated at 130°C for 30 minutes.

5、  Si0g膜のエツチング 50%0%フッ素fi:50%フン化アンモニウム=に
6水溶液にウェハを浸漬し、フォトレジストが被覆され
てない露出部分の5in2膜をエツチングにより除去し
た。引き続いて硫酸/過酸化水素(2:1)溶液により
レジストを除去した。
5. Etching of Si0g film The wafer was immersed in an aqueous solution of 50% 0% fluorine fi: 50% ammonium fluoride, and the exposed portion of the 5in2 film not covered with photoresist was removed by etching. Subsequently, the resist was removed using a sulfuric acid/hydrogen peroxide (2:1) solution.

(i、Siの異方性エツチング 80℃の35%水酸化カリウム水溶液中にてシリコンの
異方性エツチングを行った。エツチング深さ300I!
m、エツチング完了後、ウェハを蒸留水で洗浄した。
(i, Anisotropic etching of Si Anisotropic etching of silicon was performed in a 35% potassium hydroxide aqueous solution at 80°C.Etching depth 300I!
m. After etching was completed, the wafer was washed with distilled water.

この異方性エツチングの完了後、エツチング時に利用し
たSi0g膜を除去した。この除去作業は、前記行程5
.におけると同様にフッ化水素酸/フッ化アンモニウム
混合溶液を用いて行った。
After completing this anisotropic etching, the SiOg film used during etching was removed. This removal work is carried out in step 5 above.
.. This was carried out using a mixed solution of hydrofluoric acid/ammonium fluoride in the same manner as in .

?、  SiO□膜の形成 シリコンウェハの異方性エツチング部分に5ift膜を
生長させるため、ウェハをウェット熱酸化した。膜厚8
000人の5iot膜が形成された。
? , Formation of SiO□ film In order to grow a 5ift film on the anisotropically etched portion of the silicon wafer, the wafer was subjected to wet thermal oxidation. Film thickness 8
000 5iot membranes were formed.

8、電極形成用レジストパターンの形成ネガ型フォトレ
ジスト(東京応化型OMR−83)を使用して、ウェハ
の5iOz膜上に電極形成用レジストパターンを形成し
た。
8. Formation of resist pattern for electrode formation A resist pattern for electrode formation was formed on the 5iOz film of the wafer using a negative photoresist (Tokyo Ohka OMR-83).

9、電極の形成 先に形成したレジストパターンをマスクとして、金を膜
厚2500人で蒸着して金電極3A及び3Bを形成した
。なお、この金の蒸着に先がけて、金電極の被着を改良
するため、クロムを膜厚300人で蒸着した。断面を第
3図(A)に示す。
9. Gold electrodes 3A and 3B were formed by vapor depositing gold to a thickness of 2,500 yen using the resist pattern formed on the electrode formation site as a mask. In addition, prior to this gold vapor deposition, chromium was vapor deposited to a thickness of 300 mm in order to improve the adhesion of the gold electrode. A cross section is shown in FIG. 3(A).

電極の形成後、不要となったレジストを硫酸により除去
した後、異方性エツチングにより電極本体に形成された
穴(第3図(A)の5)に電解液含有ゲルを充填し、ガ
ス透過性膜を被覆した。これらの工程を第3図を参照し
ながら説明する。
After forming the electrode, remove unnecessary resist with sulfuric acid, fill the hole (5 in Figure 3 (A)) formed in the electrode body by anisotropic etching with electrolyte-containing gel, and allow gas permeation. coated with a sexual membrane. These steps will be explained with reference to FIG.

10、レジスト塗布(第3図(B)) 本体表面で、穴5と、電気的コンタクトをとるパッド部
分以外のところをネガ型フォトレジスト(東京応化型O
MR−83、粘度60cp) 4で被覆した。
10. Applying resist (Figure 3 (B)) Apply negative photoresist (Tokyo Oka type O
MR-83, viscosity 60 cp) 4.

これは、ウェハの表裏全面にわたって、フォトレジスト
を被覆し、プリベータ後に露光及び現像を行うことによ
って実施した。
This was carried out by coating the entire front and back surfaces of the wafer with photoresist, and performing exposure and development after pre-beta.

11、電解液含有光重合性モノマー溶液の充填及び露光
(第3図(C)) 電解液含有ゲルの形成用として、次のような4種類の溶
液を調製した: A液ニアクリルアミド)(主剤)30g及びN。
11. Filling and exposure of electrolyte-containing photopolymerizable monomer solution (Figure 3 (C)) For forming electrolyte-containing gel, the following four types of solutions were prepared: Liquid A Niacrylamide) (Main agent) ) 30g and N.

N′−メチレンビスアクリルアミド (架橋剤)0.8gを0. I M NazSOa水溶
液に溶解したもの。
0.8g of N'-methylenebisacrylamide (crosslinking agent) I M Dissolved in NazSOa aqueous solution.

B液:リボフラビン(ビタミンBz、硬化促進剤)4■
を0. I M NatSO4水溶液に溶解したもの。
B liquid: Riboflavin (vitamin Bz, curing accelerator) 4■
0. IM Dissolved in NatSO4 aqueous solution.

C液:N、N、N’ 、N’−テトラメチルエチレンジ
アミン(重合開始剤)0.23gヲ0、1 ?I Na
tSOn水溶液に溶解したもの。
Solution C: 0.23g of N,N,N',N'-tetramethylethylenediamine (polymerization initiator) 0.1? I Na
Dissolved in tSOn aqueous solution.

D液: O,l M Na冨SOi水溶液。Solution D: O, lM Na-rich SOi aqueous solution.

これらの溶液をAfi:B液:C液:D液=4:1:1
:1の量比で混合して電解液含有ゲル形成性上ツマー溶
液を得た。このモノマー溶液7に第3図(B)のウェハ
を浸漬してゆっくりひきあげたところ、フォトレジスト
114は疎水性であるので、先のモノマー溶液7はレジ
スト膜からはじかれて穴5内にのみ残った。次いで、ウ
ェハ表面に厚さ0.1鶴の透明カバーガラス8をかぶせ
、これに水銀灯(図示せず)からの光を10分間にわた
って照射した。七ツマ−の重合が進行した。
These solutions were Afi: B solution: C solution: D solution = 4:1:1
:1 to obtain an electrolyte-containing gel-forming upper solution. When the wafer shown in FIG. 3(B) was immersed in this monomer solution 7 and slowly pulled up, since the photoresist 114 is hydrophobic, the monomer solution 7 was repelled from the resist film and remained only in the holes 5. Ta. Next, a transparent cover glass 8 having a thickness of 0.1 mm was placed over the wafer surface, and the glass was irradiated with light from a mercury lamp (not shown) for 10 minutes. Polymerization of the seven polymers proceeded.

12.ゲル化の完了(第3図(D)) 重合が完了して電解液含をゲル6が形成されたのを確認
してから、カバーガラスを取り除いた。
12. Completion of gelation (FIG. 3(D)) After confirming that polymerization was completed and gel 6 containing electrolyte was formed, the cover glass was removed.

13、ガス透過性膜の被覆(第3図(E))電解液含有
ゲル6上にそのゲルを覆うようにしてガス透過性膜14
を被覆した。本例では、ガス透過性膜として、工程lO
ニレジスト塗布で用いたものと同じネガ型フォトレジス
トを使用した。
13. Covering the gas-permeable membrane (Fig. 3 (E)) The gas-permeable membrane 14 is coated on the electrolyte-containing gel 6 so as to cover the gel.
coated. In this example, as a gas permeable membrane, the process lO
The same negative photoresist used in the Niresist application was used.

すなわち、ネガ型フォトレジストOMR−83(商品名
)をスピンコーティングにより2−程度の厚さに塗布し
た。このレジストはベーキングを施さずに直ちに露光し
、その後小型酸素電極を純水中または飽和水蒸気中に一
昼夜放置してレジスト中のシンナーを抜き、ガス透過性
膜を完成させた。
That is, a negative photoresist OMR-83 (trade name) was applied by spin coating to a thickness of about 2 mm. This resist was immediately exposed to light without baking, and then a small oxygen electrode was left in pure water or saturated steam overnight to draw out the thinner in the resist, completing a gas-permeable film.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、体積変化のない表面の平坦な微小
な体積のゲルを容易に得ることができるので、その表面
にガス透過性膜を形成しゃすくなる。また、小型酸素電
極の特性を左右する、ガス透過性膜とカソード間の距離
を制御しやすくなるため、−枚のウェハー上に多数の小
型酸素電極を一括して作製する場合には、その特性上の
ばらつきを小さくできる。
According to the method of the present invention, it is possible to easily obtain a gel with a small volume and a flat surface with no change in volume, making it easier to form a gas permeable membrane on the surface. In addition, since it becomes easier to control the distance between the gas permeable membrane and the cathode, which affects the characteristics of small oxygen electrodes, when manufacturing many small oxygen electrodes on one wafer at the same time, the characteristics The above variation can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による小型酸素電極の好ましい一例を
示した斜視図、 第2図は、第1図の電極の線分■−■にそった断面図、
そして 第3図(A)〜(E)は、第1図及び第2図に示した小
型酸素電極の製造プロセスの後半を順を追って示した断
面図である。 図中、1は基板、2は絶縁膜、3A及び3Bは電極、4
はフォトレジスト膜、5は穴、6は電解液含有ゲル、そ
して14はガス透過性膜である。 小型酸素電極の斜視図 第1図 電極感応部の断面図 第2図 14・・・ガス透過性膜 小型酸素電極の製造プロセス 第3図
FIG. 1 is a perspective view showing a preferred example of a small-sized oxygen electrode according to the present invention, FIG. 2 is a cross-sectional view along the line segment ■-■ of the electrode in FIG. 1,
FIGS. 3A to 3E are cross-sectional views sequentially showing the latter half of the manufacturing process of the small oxygen electrode shown in FIGS. 1 and 2. In the figure, 1 is a substrate, 2 is an insulating film, 3A and 3B are electrodes, 4
5 is a photoresist film, 5 is a hole, 6 is an electrolyte-containing gel, and 14 is a gas permeable film. Perspective view of small oxygen electrode Fig. 1 Cross-sectional view of electrode sensitive part Fig. 2 14... Manufacturing process of gas permeable membrane small oxygen electrode Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1、異方性エッチングによって基板上に穴をあけ、前記
穴の底部から前記基板の表面に至る2本の電極を絶縁膜
を介して形成し、前記基板上を前記穴の部分及び電気的
コンタクトをとる部分を除いてフォトレジストで被覆し
、前記フォトレジスト被覆基板を電解液含有ゲル形成性
光重合性モノマー溶液中に浸漬して前記穴の部分のみに
前記モノマー溶液を満たし、それぞれの穴を透明な部材
で覆った状態で光を照射して前記モノマー溶液をゲル化
、そして前記穴の上面をガス透過性膜で被覆することを
特徴とする、小型酸素電極の製法。
1. Drill a hole on the substrate by anisotropic etching, form two electrodes from the bottom of the hole to the surface of the substrate via an insulating film, and connect the hole and electrical contacts on the substrate. The photoresist-coated substrate is immersed in a gel-forming photopolymerizable monomer solution containing an electrolytic solution to fill only the hole portions with the monomer solution, and each hole is A method for manufacturing a small oxygen electrode, comprising: gelling the monomer solution by irradiating it with light while covered with a transparent member; and covering the upper surface of the hole with a gas-permeable film.
JP63048708A 1987-03-27 1988-03-03 Manufacture of small oxygen electrode Pending JPH01223337A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63048708A JPH01223337A (en) 1988-03-03 1988-03-03 Manufacture of small oxygen electrode
EP88400742A EP0284518B1 (en) 1987-03-27 1988-03-25 Miniaturized oxygen electrode and miniaturized biosensor and production process thereof
DE8888400742T DE3875149T2 (en) 1987-03-27 1988-03-25 MINIATURIZED BIO-SENSOR WITH MINIATURIZED OXYGEN ELECTRODE AND ITS PRODUCTION PROCESS.
US07/366,365 US4975175A (en) 1987-03-27 1989-06-15 Miniaturized oxygen electrode and miniaturized biosensor and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048708A JPH01223337A (en) 1988-03-03 1988-03-03 Manufacture of small oxygen electrode

Publications (1)

Publication Number Publication Date
JPH01223337A true JPH01223337A (en) 1989-09-06

Family

ID=12810818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048708A Pending JPH01223337A (en) 1987-03-27 1988-03-03 Manufacture of small oxygen electrode

Country Status (1)

Country Link
JP (1) JPH01223337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170336A3 (en) * 2022-10-06 2023-06-14 Mettler-Toledo GmbH Sensor and device for a sensor comprising gel electrolyte
EP4350338A1 (en) * 2022-10-06 2024-04-10 Mettler-Toledo GmbH Sensor and device for a sensor comprising gel electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170336A3 (en) * 2022-10-06 2023-06-14 Mettler-Toledo GmbH Sensor and device for a sensor comprising gel electrolyte
EP4350338A1 (en) * 2022-10-06 2024-04-10 Mettler-Toledo GmbH Sensor and device for a sensor comprising gel electrolyte

Similar Documents

Publication Publication Date Title
EP0284518B1 (en) Miniaturized oxygen electrode and miniaturized biosensor and production process thereof
US6083367A (en) Oxygen electrode and its manufacture
KR960013687B1 (en) Miniaurized oxygen electrode and production process
JPH01223337A (en) Manufacture of small oxygen electrode
JP2530690B2 (en) Small oxygen electrode
JPS63238548A (en) Oxygen electrode and its preparation
JP3698312B2 (en) Biosensor and biosensor manufacturing method
JP2767868B2 (en) Small oxygen electrode
JPH02268265A (en) Electrode cell having minute hole for electrochemical measurement and manufacture thereof
JP2530689B2 (en) Small oxygen electrode
JP2838901B2 (en) Small oxygen electrode and method for manufacturing the same
JPH02240556A (en) Oxygen electrode
JP2650552B2 (en) Electrolytic composition for screen printing, small-sized oxygen electrode using the same, and method for producing the same
JP2844381B2 (en) Oxygen electrode and method for producing the same
JP2767614B2 (en) Manufacturing method of small oxygen electrode
KR100439645B1 (en) Process for producing standard electrode coated with silver/silver chloride thin layer using a porous
JPS63311158A (en) Manufacturing method of compact oxygen electrode
JP2743535B2 (en) Integrated sensor and manufacturing method thereof
JPH02228549A (en) Small oxygen electrode and its making method
JPH0259655A (en) Small-sized microorganism electrode and production thereof
JP2943281B2 (en) Small oxygen electrode and its manufacturing method
JPH01223336A (en) Small oxygen electrode and manufacture thereof
US5326450A (en) Miniaturized oxygen electrode
JPH04125462A (en) Oxygen electrode
JP2661240B2 (en) Small L-lysine sensor and method of manufacturing the same