JPS63311158A - Manufacturing method of compact oxygen electrode - Google Patents

Manufacturing method of compact oxygen electrode

Info

Publication number
JPS63311158A
JPS63311158A JP62148221A JP14822187A JPS63311158A JP S63311158 A JPS63311158 A JP S63311158A JP 62148221 A JP62148221 A JP 62148221A JP 14822187 A JP14822187 A JP 14822187A JP S63311158 A JPS63311158 A JP S63311158A
Authority
JP
Japan
Prior art keywords
holes
solution
electrolyte
wafer
oxygen electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62148221A
Other languages
Japanese (ja)
Other versions
JPH0812171B2 (en
Inventor
Hiroaki Suzuki
博章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62148221A priority Critical patent/JPH0812171B2/en
Priority to EP88400742A priority patent/EP0284518B1/en
Priority to DE8888400742T priority patent/DE3875149T2/en
Publication of JPS63311158A publication Critical patent/JPS63311158A/en
Priority to US07/366,365 priority patent/US4975175A/en
Publication of JPH0812171B2 publication Critical patent/JPH0812171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hybrid Cells (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To form a porous carrier including electrolyte selectively in holes, by coating a part other than the holes with resist, and thereafter filling the holes with photopolymerization monomer including the electrolyte, and hardening the solution. CONSTITUTION:An Si wafer 10 is anisotropically etched to form holes 16. An SiO2 layer 11 and an electrode 17 are formed in each hole. Then, the entire surface other than the parts of the holes 16 is coated with negative type resist 18. Then, said wafer 10 is immersed into photopolymerization monomer (e.g., acrylamide) solution and lifted. When the wafer is lifted, said solution is made to remain only in the holes 16. The solution is repelled with the resist 18 at the other part and the solution is not attached. Then, ultraviolet rays are projected, and the solution in the holes 16 is hardened. Porous polymer 19 including electrolyte is formed. The polymer 19 can be selectively formed in the holes 16. Therefore, mass production can be carried out.

Description

【発明の詳細な説明】 〔概要〕 小形で且つ低価格な酸素電極の製造法として、異方性エ
ツチングにより作った複数の穴に電解液を含んだ光重合
性モノマ溶液を充填した後に紫外線照射を施し、電解液
を含めてゲル化させる製造方法。
[Detailed Description of the Invention] [Summary] As a method for manufacturing a small and low-cost oxygen electrode, multiple holes made by anisotropic etching are filled with a photopolymerizable monomer solution containing an electrolyte, and then UV irradiation is performed. A manufacturing method in which gelation is achieved by adding an electrolyte to the product.

〔産業上の利用分野〕[Industrial application field]

本発明は酸素電極の製造方法に係り、特に小形化と低価
格化とを実現した酸素電極の製造方法に関する。
The present invention relates to a method for manufacturing an oxygen electrode, and particularly to a method for manufacturing an oxygen electrode that achieves miniaturization and low cost.

溶存酸素濃度の測定は広い分野に亙って行われている。Measurement of dissolved oxygen concentration is performed in a wide range of fields.

例えば、水質保全の見地から水中の生化学的酸素供給量
(Biological Oxygen Demand
  略称BOD)の測定が行われているが、この溶存酸
素濃度の測定器として酸素電極が使用されている。
For example, from the perspective of water quality conservation, the amount of biochemical oxygen supply in water (Biological Oxygen Demand)
(abbreviated as BOD) is being measured, and an oxygen electrode is used as a measuring device for this dissolved oxygen concentration.

また、醗酵工業において、効率よくアルコール醗酵を進
めるためには醗酵槽中の溶存酸素濃度の調整が必要であ
り、この測定器として酸素電極が使用されている。
Furthermore, in the fermentation industry, in order to efficiently proceed with alcohol fermentation, it is necessary to adjust the dissolved oxygen concentration in the fermenter, and an oxygen electrode is used as a measuring device for this purpose.

また、酸素電極は酵素と組み合わせiで酵素電極を形成
し、糖やビタミンなどの濃度測定が行われている。
Furthermore, the oxygen electrode is combined with an enzyme to form an enzyme electrode, and the concentration of sugars, vitamins, etc. is measured.

例えば、グルコース(CbH6012)はグルコースオ
キシターゼ(略称C0D)と云う酵素を触媒とし、溶存
酸素と反応してグルコノラクトン(C6HI006)に
酸化するが、これにより酸素電極セルの中に拡散してく
る溶存酸素が減ることを利用し、溶存酸素の消費量から
グルコースの濃度が測定されている。
For example, glucose (CbH6012) is oxidized to gluconolactone (C6HI006) by reacting with dissolved oxygen using an enzyme called glucose oxidase (abbreviated as C0D) as a catalyst. Taking advantage of the decrease in oxygen, the concentration of glucose is measured from the amount of dissolved oxygen consumed.

このように酸素電極は環境計測、醗酵工業、臨床医療な
ど各種の分野で使用されているが、特に臨床医療分野に
おいてカテーテル(Ka the ter)に装着し、
体内に挿入して使用する用途においては、小形であると
共に使い捨てを考慮して低価格であることが必要である
Oxygen electrodes are used in various fields such as environmental measurement, fermentation industry, and clinical medicine.
When used by inserting it into the body, it is necessary to be small in size and low in price considering its disposable nature.

〔従来の技術〕[Conventional technology]

従来のガラス電極は第3図に示すように、合成樹脂また
はガラスからなり、円筒状をしたセル1の中央には合成
樹脂またはガラスに埋め込まれた陰極線2が固定され、
この先端には白金(Pt)よりなるカソード3がある。
As shown in FIG. 3, the conventional glass electrode is made of synthetic resin or glass, and a cathode ray 2 embedded in the synthetic resin or glass is fixed in the center of a cylindrical cell 1.
At this tip is a cathode 3 made of platinum (Pt).

また、セル1の内壁に沿って銀(Ag)よりなるアノー
ド4が設けられており、セル1の中には通常1モルの塩
化カリ (KC/ )水溶液からなる電解液5が充填さ
れている。
Further, an anode 4 made of silver (Ag) is provided along the inner wall of the cell 1, and the cell 1 is filled with an electrolyte 5 usually made of a 1 mol potassium chloride (KC) aqueous solution. .

また、セル1の開口部には厚さが10μm程度で溶存酸
素を透過し易いフロロエチレンプロピレン(略称FEP
)などの弗素系樹脂からなる酸素透過膜6が設けられて
いて、天然ゴムあるいは合成ゴムからなるOリング7に
よってセル1に固定されている。
In addition, the opening of cell 1 is made of fluoroethylene propylene (abbreviated as FEP), which has a thickness of about 10 μm and is easily permeable to dissolved oxygen.
An oxygen permeable membrane 6 made of a fluorine-based resin such as ) is provided, and is fixed to the cell 1 with an O-ring 7 made of natural rubber or synthetic rubber.

また、セル1の端子部には陰極端子8と陽極端子9とが
設けられていてカソード3およびアノード4に回路接続
されている。
Further, a cathode terminal 8 and an anode terminal 9 are provided at the terminal portion of the cell 1 and are connected to the cathode 3 and the anode 4 in a circuit.

従来のガラス電極はこのような構成をとっているために
高価であり、また小形なものでも鉛筆大の大きさがあっ
た。
Conventional glass electrodes are expensive because of this configuration, and even small ones are about the size of a pencil.

そのため、カテーテル中に装着して人体内に挿入するこ
とは不可能であった。
Therefore, it has been impossible to insert it into a human body by attaching it to a catheter.

そこで、この問題を解決するために発明者はシリコン(
St)基板を用いてセルを作る小形酸素電極を提案し出
願している。(昭和62年3月27日付は出願) 第2図は発明者が出願中の酸素電極の断面図であって、
製造方法の概略を述べると、 (100)面を基板面とするSiウェハ10を熱酸化し
て表面に二酸化硅素(5i(h)層11を形成した後、
写真蝕刻技術(フォトリソグラフィ)を用いてSiウェ
ハ10の上に複数個のセル形成位置を窓開けし、異方性
エツチングを行ってSiウェハ10を穴開けし、同図に
示すようなセル12を形成する。
Therefore, in order to solve this problem, the inventor developed silicon (
We have proposed and filed an application for a small oxygen electrode that uses a St) substrate to create a cell. (The application was filed on March 27, 1988.) Figure 2 is a cross-sectional view of the oxygen electrode that the inventor is currently applying for.
To outline the manufacturing method, a Si wafer 10 with the (100) plane as the substrate surface is thermally oxidized to form a silicon dioxide (5i(h) layer 11 on the surface, and then
Using photolithography, a plurality of cell formation positions are opened on the Si wafer 10, and anisotropic etching is performed to make holes in the Si wafer 10, resulting in cells 12 as shown in the figure. form.

次に、再び熱酸化してセル12の内部にSiO□層11
全11た後、この内面に金(Au)の蒸着膜からなる電
極13.14を設ける。
Next, thermal oxidation is performed again to form the SiO□ layer 11 inside the cell 12.
After completing the entire process, electrodes 13 and 14 made of a vapor-deposited film of gold (Au) are provided on this inner surface.

次に、アガロース(寒天)を0.1モルのMCII水溶
液に溶解してセル12に充填し、アガロースが固化した
後、この上にシリコーン樹脂またはネガ型フォトレジス
トを塗布してガス透過膜15とするものである。
Next, agarose (agar) is dissolved in a 0.1 mol MCII aqueous solution and filled into the cell 12. After the agarose is solidified, a silicone resin or a negative photoresist is applied thereon to form the gas permeable membrane 15. It is something to do.

このような構成をとる酸素電極において、両電極13.
14の間に定電圧(例えば0.5V)を印加するとカソ
ードとなる一方の電極表面において例えば次のような溶
存酸素(0□)の還元反応が起こる。
In the oxygen electrode having such a configuration, both electrodes 13.
When a constant voltage (for example, 0.5 V) is applied between 14 and 14, the following reduction reaction of dissolved oxygen (0□) occurs on the surface of one of the electrodes, which becomes the cathode.

OK   +2H20+4e−→40H−−・・(11
そして、この際にカソードから溶存酸素への電子の移行
が生じて電流が流れ、この電流値は溶存酸素濃度に比例
することから電流値を指標として定量を行うものである
OK +2H20+4e-→40H--...(11
At this time, electrons transfer from the cathode to dissolved oxygen, causing a current to flow, and since this current value is proportional to the dissolved oxygen concentration, the current value is used as an index for quantitative determination.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように発明者はStウェハに異方性エツチン
グを行って小さなセルを作り、このセルにゲル状の電解
液を充填した小形の酸素電極を提案しているが、多数の
セルの中に量産に向く方法で電解液を充填すると共に低
価格で製造できる方法を見出すことが課題である。
As mentioned above, the inventor has proposed a small oxygen electrode by performing anisotropic etching on a St wafer to create a small cell and filling this cell with a gel-like electrolyte. The challenge is to find a way to fill the electrolyte in a way that is suitable for mass production and also to manufacture it at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は写真蝕刻技術と異方性エツチング技術とを
用いて複数個の穴を形成した後に各穴に電極を形成した
シリコン基板に、この穴の部分を除いてネガ型レジスト
を被覆し、この基板を電解液を含んだ光重合性モノマ溶
液に浸漬し、それぞれの穴に溶液を満たした状態で紫外
線を照射して硬化せしめ、電解液を含んだ多孔質担体を
穴の中に形成する小形酸素電極の製造方法をとることに
より解決することができる。
The above problem can be solved by forming a plurality of holes using photo-etching technology and anisotropic etching technology, and then covering a silicon substrate with an electrode in each hole with a negative resist, except for the hole area. This substrate is immersed in a photopolymerizable monomer solution containing an electrolyte, and each hole is filled with the solution and cured by irradiation with ultraviolet rays to form a porous carrier containing the electrolyte in the hole. This problem can be solved by using a manufacturing method for small-sized oxygen electrodes.

〔作用〕[Effect]

本発明に係る小形酸素電極は半導体集積回路の形成に使
用されている写真蝕刻技術と薄膜形成技術とを用いて小
形酸素電極を量産するものであるから、穴の中への電解
液の充填法も量産に向く方法で行う必要がある。
Since the small oxygen electrode according to the present invention is mass-produced using photolithography technology and thin film formation technology that are used in the formation of semiconductor integrated circuits, the filling method of the electrolyte into the hole is difficult. It also needs to be done in a way that is suitable for mass production.

その方法として本発明は電解液を含む多孔質ポリマを穴
の中に一括して形成するもので、その方法として光重合
性の親水性モノマと電解質水溶液との混合液の中にSi
基板を浸漬して穴の中に充填させ、これに紫外線を照射
して多孔質のポリマを作るものであり、親木性モノマと
してはアクリルアミドが通している。
As a method of this invention, a porous polymer containing an electrolyte is formed in the holes all at once.
A porous polymer is created by dipping a substrate and filling the holes with ultraviolet rays, and acrylamide is used as the wood-philic monomer.

こ〜で、多孔質のポリマの穴の中には電解液が温存され
ている。
In this way, the electrolyte is preserved in the pores of the porous polymer.

このようにすれば、多数の穴に一括して電解液を充填す
ることができるが、この場合の問題は多孔質ポリマが穴
以外のSi基板面にも形成されることである。
In this way, a large number of holes can be filled with the electrolytic solution at once, but the problem in this case is that the porous polymer is also formed on the Si substrate surface other than the holes.

これを防ぐために、本発明は写真蝕刻技術に使用するレ
ジストとしてネガ型を使用するものである。
In order to prevent this, the present invention uses a negative type resist for photolithography.

すなわち、ネガ型レジストはゴム系であって疎水性をも
っており、水溶液に漬けてもレジストで被覆した部分は
水を弾いてしまうと云う性質がある。
That is, the negative resist is rubber-based and has hydrophobic properties, so that even if it is immersed in an aqueous solution, the portion covered with the resist will repel water.

これを利用し、本発明は穴以外の部分にネガ型レジスト
を被覆して浸漬処理を行うものである。
Utilizing this, the present invention covers portions other than the holes with a negative resist and performs immersion treatment.

〔実施例〕〔Example〕

第1図は本発明の実施法を示すものであって、同図(A
)に示すように穴16の中に電極17の形成の終わった
Siウェハ10に対し、スピンコーティングによって、
表裏全面に亙ってネガ型レジスト(OMR−83,東京
応化製)を被覆し、プリベーク後に露光、現像を行って
穴16の部分を除いてネガ型レジスト18で覆った。
FIG. 1 shows a method of implementing the present invention, and FIG.
), the Si wafer 10 on which the electrodes 17 have been formed in the holes 16 is coated by spin coating.
The entire front and back surfaces were coated with a negative resist (OMR-83, manufactured by Tokyo Ohka Co., Ltd.), and after prebaking, exposure and development were performed to cover the entire surface except for the holes 16 with a negative resist 18.

次に、電解液を含む多孔質ポリマ形成用として次の四液
を用意した。
Next, the following four solutions were prepared for forming a porous polymer containing an electrolytic solution.

A液:N、N、N  ’、N′−テトラメチルエチレン
ジアミン(重合開始剤) 0.46 mj2に0.1モ
ルのKCf水溶液を加えてLoom ji!とじたもの
Solution A: N,N,N',N'-tetramethylethylenediamine (polymerization initiator) Add 0.1 mol of KCf aqueous solution to 0.46 mj2 and Loom ji! Something that is bound.

B液ニアクリルアミド(主剤)10gにN、N  ’−
メチレンビスアクリルアミド(架橋剤)2.5gを加え
、これに0.1モルのKC1水溶液を加えて100m1
としたもの。
N, N'- to 10g of B liquid niacrylamide (base ingredient)
Add 2.5 g of methylene bisacrylamide (crosslinking agent), add 0.1 mol of KC1 aqueous solution to this, and make 100ml.
What was said.

C液:リポフラミン(ビタミンBZI硬化促進剤)4m
gに0.1モルのKCI!水溶液を加えて100m p
としたもの。
Liquid C: Lipofuramine (vitamin BZI curing accelerator) 4m
0.1 mole of KCI in g! Add aqueous solution to 100 m p
What was said.

D液:0.1モルのKCA水溶液。Solution D: 0.1 mol KCA aqueous solution.

こえをA液:B液:C液:D液=11:1:4の量比に
混合した。
The mixture was mixed at a ratio of A solution: B solution: C solution: D solution = 11:1:4.

こ\で、当初より混ぜて置かない理由は使用前の保存中
に硬化を生じ易く、保存安定性が良くないからである。
The reason why it is not mixed from the beginning is that it tends to harden during storage before use, and storage stability is poor.

次に混合液に同図(A)に示すSiウェハ10を浸漬し
引き上げると混合液は穴16の中にのみ残っており、そ
れ以外の位置には存在しない。
Next, when the Si wafer 10 shown in FIG. 5A is immersed in the mixed liquid and pulled up, the mixed liquid remains only in the holes 16 and does not exist in other positions.

この穴16がある側のウェハ10の全面に紫外線を照射
してすると、同図(B)に示すように混合液は硬化し、
0.1モルのKC/水溶液電解液を孔の中にもつ多孔質
ポリマ19となる。
When the entire surface of the wafer 10 on the side where the hole 16 is located is irradiated with ultraviolet rays, the mixed liquid is hardened as shown in FIG.
A porous polymer 19 having 0.1 mol of KC/aqueous electrolyte in its pores is obtained.

なお、Siウェハ10の表面に形成しであるネガ型レジ
スト18はそのま\残しておいても差支えない。
Note that the negative resist 18 formed on the surface of the Si wafer 10 may be left as is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば酸素電極を形成する微少な穴の中にのみ
選択的に電解液を保持する多孔質の担体を形成すること
ができるので、大量生産が可能となる。
According to the present invention, it is possible to form a porous carrier that selectively retains the electrolyte only in the minute holes that form the oxygen electrode, thereby making mass production possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施法を示す断面図、第2図は発明者
が出願中の酸素電極の断面図、第3図は従来の酸素電極
の断面図、 である。 図において、 5は電解液、      10はSiウェハ、13、1
7は電極、     16は穴、18はネガ型レジスト
、  19は多孔質ポリマ、である。
FIG. 1 is a sectional view showing a method of carrying out the present invention, FIG. 2 is a sectional view of an oxygen electrode currently being applied for by the inventor, and FIG. 3 is a sectional view of a conventional oxygen electrode. In the figure, 5 is an electrolytic solution, 10 is a Si wafer, 13, 1
7 is an electrode, 16 is a hole, 18 is a negative resist, and 19 is a porous polymer.

Claims (2)

【特許請求の範囲】[Claims] (1)写真蝕刻技術と異方性エッチング技術とを用いて
複数個の穴を形成した後に各穴に電極を形成したシリコ
ン基板に、該穴の部分を除いてネガ型レジストを被覆し
、該基板を電解液を含んだ光重合性モノマ溶液に浸漬し
、それぞれの穴に該溶液を満たした状態で紫外線を照射
して硬化せしめ、電解液を含んだ多孔質担体を穴の中に
形成することを特徴とする小形酸素電極の製造方法。
(1) After forming a plurality of holes using photolithography and anisotropic etching, a silicon substrate with electrodes formed in each hole is coated with a negative resist except for the holes. The substrate is immersed in a photopolymerizable monomer solution containing an electrolyte, and each hole is filled with the solution and cured by irradiation with ultraviolet rays to form a porous carrier containing the electrolyte in the hole. A method for manufacturing a small oxygen electrode, characterized by:
(2)前記光重合性モノマとしてアクリルアミドを用い
ることを特徴とする特許請求の範囲第1項記載の小形酸
素電極の製造方法。
(2) The method for manufacturing a small oxygen electrode according to claim 1, characterized in that acrylamide is used as the photopolymerizable monomer.
JP62148221A 1987-03-27 1987-06-15 Manufacturing method of small oxygen electrode Expired - Lifetime JPH0812171B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62148221A JPH0812171B2 (en) 1987-06-15 1987-06-15 Manufacturing method of small oxygen electrode
EP88400742A EP0284518B1 (en) 1987-03-27 1988-03-25 Miniaturized oxygen electrode and miniaturized biosensor and production process thereof
DE8888400742T DE3875149T2 (en) 1987-03-27 1988-03-25 MINIATURIZED BIO-SENSOR WITH MINIATURIZED OXYGEN ELECTRODE AND ITS PRODUCTION PROCESS.
US07/366,365 US4975175A (en) 1987-03-27 1989-06-15 Miniaturized oxygen electrode and miniaturized biosensor and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62148221A JPH0812171B2 (en) 1987-06-15 1987-06-15 Manufacturing method of small oxygen electrode

Publications (2)

Publication Number Publication Date
JPS63311158A true JPS63311158A (en) 1988-12-19
JPH0812171B2 JPH0812171B2 (en) 1996-02-07

Family

ID=15447985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62148221A Expired - Lifetime JPH0812171B2 (en) 1987-03-27 1987-06-15 Manufacturing method of small oxygen electrode

Country Status (1)

Country Link
JP (1) JPH0812171B2 (en)

Also Published As

Publication number Publication date
JPH0812171B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US4975175A (en) Miniaturized oxygen electrode and miniaturized biosensor and production process thereof
US5747669A (en) Oxygen electrode and its manufacture
KR960013687B1 (en) Miniaurized oxygen electrode and production process
JPS63311158A (en) Manufacturing method of compact oxygen electrode
JP3698312B2 (en) Biosensor and biosensor manufacturing method
JP2650552B2 (en) Electrolytic composition for screen printing, small-sized oxygen electrode using the same, and method for producing the same
JP2767868B2 (en) Small oxygen electrode
JP2530690B2 (en) Small oxygen electrode
JPH01223337A (en) Manufacture of small oxygen electrode
JPS63238548A (en) Oxygen electrode and its preparation
JP2844381B2 (en) Oxygen electrode and method for producing the same
JPH02236154A (en) Preparation of small-sized oxygen electrode
JP2838901B2 (en) Small oxygen electrode and method for manufacturing the same
JPS6375552A (en) Simple enzyme electrode
US5573649A (en) Miniaturized oxygen electrode and process of producing same
JP2530689B2 (en) Small oxygen electrode
JPS63238549A (en) Microbiosensor
US5326450A (en) Miniaturized oxygen electrode
JPH09182738A (en) Oxygen electrode and manufacture thereof
JPH0843345A (en) Small-sized oxygen electrode
JP2767614B2 (en) Manufacturing method of small oxygen electrode
JP2943281B2 (en) Small oxygen electrode and its manufacturing method
JPH0259655A (en) Small-sized microorganism electrode and production thereof
KR0124412B1 (en) Electrolyte composition for screen printing
JPH07140107A (en) Small oxygen electrode