JPH0122325B2 - - Google Patents

Info

Publication number
JPH0122325B2
JPH0122325B2 JP55074745A JP7474580A JPH0122325B2 JP H0122325 B2 JPH0122325 B2 JP H0122325B2 JP 55074745 A JP55074745 A JP 55074745A JP 7474580 A JP7474580 A JP 7474580A JP H0122325 B2 JPH0122325 B2 JP H0122325B2
Authority
JP
Japan
Prior art keywords
alloy
less
annealing
temperature
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074745A
Other languages
Japanese (ja)
Other versions
JPS56169722A (en
Inventor
Gakuo Sada
Masayuki Takamura
Tomoo Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP7474580A priority Critical patent/JPS56169722A/en
Publication of JPS56169722A publication Critical patent/JPS56169722A/en
Publication of JPH0122325B2 publication Critical patent/JPH0122325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高濃度のCrを含有するFe―Cr―Co
系磁石合金の製法に関し、微量のAlおよびNを
添加して冷間圧延および高温焼鈍を行うことによ
り、二次再結晶粒の磁化容易軸が圧延方向に揃つ
た集合組織を有する磁石材料を得るものである。 最近に至り、磁界中のスピノーダル分解により
磁気異方性を与えるようにした高CrのFe―Cr―
Co系磁石合金が開発されている。この磁石合金
は、Cr20〜31%、Co6〜24%、残部Feを主成分
とする組成のものであつて、高温で溶体化処理
後、恒温磁界処理や磁場中冷却などの磁界中熱処
理を加えていわゆるスピノーダル分解を行なわ
せ、これにより非磁性マトリツクス相中に強磁性
相の単磁区微粒子を形状異方性をもつて析出させ
て磁気異方性を与えることができる。そしてこの
磁石合金は、フエライト磁石等とは異なり、圧延
加工が可能であるため各種の用途に使用できるも
のとして注目されている。 しかしながら上述の磁石合金は、磁界中熱処理
によるスピノーダル分解だけでは実際にはそれほ
ど高い磁気異方性を与えることは困難であり、し
たがつてその磁気特性も実際にはある程度以上高
めることは困難であつた。 ところで、この発明に係る合金(Fe―Cr―Co
系合金)とは全く異なる成分・組成を有するケイ
素鋼板すなわちFe―Si系合金については、適当
な添加元素を加えて冷間圧延および高温焼鈍を行
うことにより、一次再結晶粒の成長を抑制して
Fe―Si系合金の磁化容易軸である〔100〕軸が圧
延方向に揃つた二次再結晶粒を生成させ、これに
よりゴス組織と称される集合組織を有する異方性
ケイ素鋼板を製造する方法が知られている。この
ようなゴス組織を有するケイ素鋼板は、前述のよ
うに磁化容易軸である〔100〕軸の圧延方向への
集積率が著しく高いため、異方性磁性材料として
高い磁気特性を示す。しかしながら上述のように
してゴス組織を得る方法は、ケイ素鋼板について
実用化されているだけであり、他の合金について
は未だ実用化されていないのが現状である。すな
わち、一般に合金材料においてはその合金の成分
元素や含量が異なればそれに伴つて各種処理時や
加工時における金属組織の挙動が全く異つてしま
うのが通常であり、したがつて前述のようなゴス
組織を得るための方法もケイ素鋼板以外にはその
まま適用することが困難であると考えられ、その
ため他の合金については試みられていないのが実
情である。 以上のような事情を背景とし、この発明の発明
者等は、Fe―Cr―Co系磁石合金についてケイ素
鋼板におけるゴス組織と同様な集合組織を得るこ
とができれば、異方性を有する高い磁気特性の磁
石材料を得ることができる筈であると考え、その
ための製法を開発するべく鋭意研究を重ねたとこ
ろ、特定の添加元素を特定量だけ加えることによ
り、ケイ素鋼板と同様に冷間圧延および高温焼鈍
によつてFe―Cr―Co系磁石合金における磁化容
易軸である〔001〕軸が圧延方向に揃つた集合組
織を得ることができることを見出し、しかもその
集合組織を有する磁石合金が実際に高い磁気特性
を示すことを見出してこの発明をなすに至つたの
である。 すなわちこの発明の製法は、Fe―Cr―Co系磁
石合金に対する添加元素としてAl(アルミニウ
ム)0.05〜2%およびN(窒素)0.003〜0.2%を加
えて冷間圧延および高温焼鈍することにより
(110)〔001〕方位の集合組織を得ることを基本的
な特徴とするものである。このようなAlおよび
Nは合金基地中にAlNとして分散されて、その
AlNが冷間圧延後の高温焼鈍時における一次再
結晶粒の成長に対するインヒビタとして作用して
一次再結晶粒の成長を阻止し、これにより圧延方
向に(110)〔001〕方位を有する二次再結晶粒を
生成させて前述のような集合組織が得られるので
ある。 具体的には、本願の第1発明の製法は、Al0.05
〜2%(重量%、以下同じ)を含有するFe―Cr
―Co系合金溶湯を鋳造後、冷間圧延して1000℃
以上の温度において焼鈍し、かつ少なくとも前記
焼鈍以前の段階においてN0.003〜0.2%を含有さ
せておき、これにより最終的にCr20〜31%、Co6
〜24%、Al0.05〜2%、N0.003〜0.2%を含有し、
残部がFeおよび不可避的不純物よりなる成分組
成の合金を得ることを特徴とするものである。 また第2発明の製法は、第1発明で規定してい
る前記各成分元素のほか、さらにMo28%以下を
含有する成分組成の磁石合金を得るものである。 さらに第3発明の製法は、第1発明で規定して
いる各成分元素のほか、さらに選択成分として、
Nb2%以下、V4%以下、Ti3%以下、Zr2%以下、
W4%以下のうちの1種または2種以上を含有す
る成分組成の磁石合金を得るものである。 そしてまた第4発明の製法は、第1発明で規定
している各成分元素のほか、さらにMo28%以下
と、選択成分としてのNb2%以下、V4%以下、
Ti3%以下、Zr2%以下、W4%以下のうちの1種
または2種以上を含有する成分組成の磁石合金を
得るものである。 以下この発明の製法につきより詳細に説明す
る。 この発明で対象とするFe―Cr―Co合金は、 Cr 20〜31% Co 6〜24% Fe 残部 を基本成分とするものであるが、必要に応じて
Feの一部を28%以下のMoで置換しても良く、さ
らには必要に応じて下記の元素の内から選択され
た1種または2種以上を含有しても良い。 Nb2%以下、V4%以下、Ti3%以下、 Zr2%以下、W4%以下。 この発明においては、上述のような成分に対
し、さらにAl0.05〜2%、N0.003〜0.2%を添加
する。これらのAl、Nは後の高温焼鈍時におけ
る一次再結晶粒の成長を抑制するインヒビタとし
て作用するAlNを生成するためのものであるが、
Al0.05%未満、N0.003%未満では充分な量の
AlNを生成させることができず、したがつて高
温焼鈍時における一次再結晶粒の成長を抑制する
効果が得られないため(110)〔001〕方位の集合
組織が得られなくなる。またAlが2%を越えれ
ば、最終的に得られる磁石合金の残留磁束密度が
低下し、Nが0.2%を越えれば冷間圧延が困難と
なる。 上述のAlおよびNは、冷間圧延後の高温焼鈍
時に一次再結晶粒の成長に対するインヒビタ
(AlN)として作用して二次再結晶を促進するも
のであるから、基本的には高温焼鈍時以前に添加
されてAlNとして分散されていれば良いが、Al
は鋳造後に充分な量を拡散添加させることは困難
であるから、Fe―Cr―Co合金溶湯を溶製する際
に所定量を単独または母合金として添加しておけ
ば良い。一方Nは合金溶湯を溶製する際に大気中
で溶解してAlと結合させることにより添加して
も良く、あるいは溶解時にN2を吹込んだり、さ
らには窒素化合物を合金溶湯に添加しても良い
が、Nは固相合金に対してもある程度拡散可能で
あるから、冷間圧延後にN2雰囲気中で焼鈍した
り、二次再結晶のための高温焼鈍において昇温時
までN2雰囲気を用いて昇温完了後にH2雰囲気に
切換えたりすることによつて、冷間圧延後に外部
から拡散させてAlNを生成させても良い。もち
ろん溶湯中にNを添加しておく方法と冷間圧延後
にNを拡散させる方法とを併用しても良い。 このような窒素添加手段の具体的な例として
は、次の(イ)〜(ホ)に示すような方法がある。 (イ) 合金溶製にあたつて窒化クロムをFe、Cr、
Coおよびその他の添加物が溶け落ちた後に添
加する。この場合、窒化クロム添加後に窒化ク
ロムが分解する際に、窒化クロム中の窒素の一
部は失われてしまうことが多いから、予めその
失われる量を予測して添加することが必要であ
る。またこの添加歩留りを向上させるために、
溶解炉内の圧力を不活性ガス(通常はヘリウム
もしくはアルゴン)によつて高めておくことも
有効である。 (ロ) 合金溶製にあたつて、溶解炉内に窒素ガスを
導入し、窒素を溶湯中に溶解させる。また窒素
の溶湯中への溶解を進行させるために、ランス
を用いて窒素ガスを吹込むことも有効である。 (ハ) 合金凝固後に高温に加熱した状態で窒素雰囲
気あるいはアンモニア等の含窒素雰囲気に曝露
することによつて、表面から窒素を固溶させ
る。但しこの場合は窒化層が表面のみに偏るこ
とを防ぐため、窒化処理工程後に均質化のため
の焼鈍を行なうことが望ましい。 (ニ) 合金凝固後に窒素を添加する方法として、一
般の鋼材の窒化処理方法として用いられている
方法、すなわち含窒素化合物であるNaCN、
KCN、NaCNO等を溶融させておき、その中
に浸漬させて表面に窒化層を生成させる方法も
用いることができる。この場合も前記(ハ)の場合
と同様に、均質化のための焼鈍を行なうことが
望ましい。またこの場合、窒化を促進するため
に塩化物等を添加することも有効である。 (ホ) 鋼材、特に完成もしくは半完成の金型に対し
て適用されているイオン窒化法を用いることも
有効である。 前述のような必要成分が添加溶製された合金溶
は適宜の鋳造法により鋳造して鋳塊とし、その後
冷間圧延して高温焼鈍熱処理を施す。もちろん冷
間圧延前には鋳塊に対し熱間圧延や熱間鍛造を行
つて予め所定の厚みの板状材とすることが多い
が、これらの工程についてはここでは詳述しな
い。前記冷間圧延は、圧延率(加工率)が40%以
上となるまで行うことが望ましい。40%未満では
圧延後の焼鈍により再結晶組織の生成が充分に行
なわれず、したがつて磁気特性の改善が充分にな
されない。また、より完全な集合組織、すなわち
〔001〕軸の圧延方向への集積率が高い二次再結晶
組織を得るためには、冷間圧延および焼鈍を2回
以上繰返すことが望ましいが、場合によつては1
回のみでも良く、要は希望する磁気特性に応じた
集合組織の程度と製造コストとの兼ね合いで決定
すれば良い。圧延後の高温焼鈍熱処理は二次再結
晶を行なわせるためのものであり、その焼鈍温度
は1000℃以上が必要である。1000℃未満では一次
再結晶後の二次再結晶が円滑に行なわれない。な
お冷間圧延および焼鈍を2回以上繰返す場合、最
後の焼鈍処理において二次再結晶粒が生成されれ
ば良いから、最後の焼鈍処理の温度を前述の範囲
に設定すれば良く、それ以前の中間段階の焼鈍は
1000℃未満でも良い。また二次再結晶は、通常は
一次再結晶粒が生成されてからある潜伏期間を過
ぎた後に開始されるから、二次再結晶のための焼
鈍は0.25時間以上行うことが望ましく、また2時
間以上焼鈍してもそれ以上は工業的なメリツトが
ない。 上述のような冷間圧延後の焼鈍時には、初期に
は一次再結晶が行なわれて微細な一次再結晶粒が
生成される。そしてその後の通常の一次再結晶粒
の成長が基地内に分散しているAlNにより抑制
され、ある潜伏期間の後、各結晶粒の内、圧延方
向に〔001〕軸が配向している結晶粒、すなわち
(110)〔001〕方位の結晶粒が急速に成長していわ
ゆる二次再結晶現象が生じる。したがつて二次再
結晶により(110)〔001〕方位の集合組織が得ら
れる。 二次再結晶のための焼鈍後には、通常は組織の
一相化のため溶体化処理を行う。この溶体化処理
は1000℃〜1300℃程度から焼入れすれば良いが、
前述の二次再結晶により得られた集合組織を破壊
してランダムな方位の結晶を発生させたりあるい
は所望の方向から外れた方位の結晶の成長を防止
するためには、溶体化処理のための熱処理温度は
二次再結晶温度以下とすることが望ましい。そし
てまた、二次再結晶のための焼鈍直後の冷却過程
を利用して溶体化処理を行うこともでき、その場
合には二次再結晶のための焼鈍後に改めて溶体化
のみのために加熱する必要がなくなる。 上述のように溶体化処理した後には、さらに良
好な磁気特性を得るため、通常は磁界中熱処理お
よび時効処理を行う。すなわち、従来から高Cr
のFe―Cr―Co磁石合金において提案されている
ように磁界中にて630℃〜700℃程度の恒温熱処理
を0.25〜4時間程度行ない、その後600℃前後で
0.5〜5時間程度時効処理を行う。このようにす
ればスピノーダル変態により非磁性相中に単磁区
状の強磁性相が分散析出し、しかもその単磁区状
強磁性相粒子が磁界方向に整列した状態となる。
ここで前述のように冷間圧延および二次再結晶の
ための焼鈍後には、圧延方向に磁化容易軸である
〔001〕軸が揃つた集合組織が得られている。した
がつてその合金にさらに磁界を圧延方向(〔001〕
軸方向)に加えながらの磁界中熱処理および時効
処理を行えば、前述のような集合組織であること
と磁界処理効果とが相俟つて、著しく高い配向率
で単磁区状強磁性相粒子が〔001〕軸方向に析出
されることになり、その結果著しく高い異方性磁
気特性を有する磁石合金が得られることとなる。 以下にこの発明の実施例を記す。 実施例 1 第1表に示す8種類の組成の合金(ただし第1
表備考欄中〇印は本発明の組成範囲内の合金、×
印は本発明の組成範囲を外れた合金である)を溶
解鋳造し、熱間鍛造により厚さ5mmの板材とした
後、1300℃から水冷して組織を一相化した。次い
で冷間圧延により厚みが0.5mmとなるまで圧延し
た。得られた薄板材を露点+30℃の湿水素中にて
1050℃に加熱して脱炭処理を行ない、さらに1300
℃にて5時間焼鈍して二次再結晶を行なわせた
後、No.1―1〜No.2―2の各試料については1100
℃から、またNo.2―3、2―4の試料については
1000℃からそれぞれ冷水中に焼入れした。次いで
各合金についての最適の温度で磁場中恒温処理お
よび時効処理を行つた。その各合金に対する磁場
中恒温処理温度と時効処理温度とを第2表の左欄
に示す。磁場中恒温処理は各温度で3時間行な
い、時効処理は各温度で10時間行つた。得られた
各磁石合金の磁気特性を測定した結果を、第2表
の右欄に示す。第2表から、AlおよびNを前述
の範囲内で加えた磁石合金は、AlおよびNの添
加量が前記範囲外のものと比較して高い磁気特性
が得られていることが明らかである。
This invention is based on Fe-Cr-Co containing high concentration of Cr.
Regarding the manufacturing method of the system magnet alloy, by adding small amounts of Al and N and performing cold rolling and high temperature annealing, a magnet material having a texture in which the axis of easy magnetization of secondary recrystallized grains is aligned in the rolling direction is obtained. It is something. Recently, high Cr Fe―Cr―
Co-based magnetic alloys have been developed. This magnetic alloy has a composition whose main components are 20 to 31% Cr, 6 to 24% Co, and the balance Fe. After solution treatment at high temperature, it is subjected to magnetic field heat treatment such as constant temperature magnetic field treatment and cooling in a magnetic field. This allows so-called spinodal decomposition to be performed, whereby single-domain fine particles of a ferromagnetic phase are precipitated with shape anisotropy in a non-magnetic matrix phase, thereby providing magnetic anisotropy. Unlike ferrite magnets, etc., this magnetic alloy can be rolled, so it is attracting attention as a material that can be used for various purposes. However, it is actually difficult to give the above-mentioned magnetic alloy such high magnetic anisotropy only by spinodal decomposition through heat treatment in a magnetic field, and therefore it is actually difficult to improve its magnetic properties beyond a certain level. Ta. By the way, the alloy according to this invention (Fe-Cr-Co
For silicon steel sheets, i.e., Fe-Si alloys, which have components and compositions that are completely different from those of the Fe-Si alloys, the growth of primary recrystallized grains can be suppressed by adding appropriate additive elements and performing cold rolling and high-temperature annealing. hand
Generates secondary recrystallized grains in which the [100] axis, which is the axis of easy magnetization of the Fe-Si alloy, is aligned in the rolling direction, thereby producing an anisotropic silicon steel sheet with a texture called Goss structure. method is known. A silicon steel sheet having such a Goss structure exhibits high magnetic properties as an anisotropic magnetic material because the integration rate of the [100] axis, which is the axis of easy magnetization, in the rolling direction is extremely high as described above. However, the method for obtaining a Goss structure as described above has only been put to practical use with silicon steel sheets, and has not yet been put into practical use with other alloys. In other words, in general, in alloy materials, if the constituent elements and contents of the alloy differ, the behavior of the metal structure during various treatments and processing will be completely different. It is thought that the method for obtaining the structure is difficult to apply as it is to materials other than silicon steel sheets, and for this reason, it has not been attempted for other alloys. Against the background of the above circumstances, the inventors of this invention believe that if it is possible to obtain a texture similar to the Goss structure in silicon steel sheets for Fe-Cr-Co magnet alloys, it will be possible to obtain high magnetic properties with anisotropy. We thought that it would be possible to obtain a magnetic material of 100%, and conducted extensive research to develop a manufacturing method for it. By adding specific amounts of specific additive elements, we found that it would be possible to obtain a magnetic material that could be cold-rolled and heated at high temperatures in the same way as silicon steel sheets. It was discovered that by annealing, it is possible to obtain a texture in which the [001] axis, which is the axis of easy magnetization, is aligned in the rolling direction in Fe-Cr-Co magnet alloys, and that magnet alloys with this texture actually have high They discovered that it exhibits magnetic properties and came up with this invention. That is, the manufacturing method of the present invention is to add 0.05 to 2% of Al (aluminum) and 0.003 to 0.2% of N (nitrogen) as additive elements to the Fe-Cr-Co-based magnetic alloy, and then cold-roll and high-temperature annealing (110 ) [001] The basic feature is to obtain the texture of the orientation. Such Al and N are dispersed as AlN in the alloy matrix, and their
AlN acts as an inhibitor to the growth of primary recrystallized grains during high-temperature annealing after cold rolling, and prevents the growth of primary recrystallized grains. By generating crystal grains, the texture described above is obtained. Specifically, the manufacturing method of the first invention of the present application uses Al0.05
Fe-Cr containing ~2% (weight%, same below)
-After casting Co-based alloy molten metal, it is cold rolled to 1000℃.
Annealed at a temperature above, and at least contain 0.003 to 0.2% N at the stage before the annealing, resulting in a final product of 20 to 31% Cr, Co6
~24%, Al0.05~2%, N0.003~0.2%,
This method is characterized by obtaining an alloy having a composition in which the balance consists of Fe and unavoidable impurities. Moreover, the manufacturing method of the second invention is to obtain a magnetic alloy having a component composition further containing 28% or less of Mo in addition to the above-mentioned constituent elements specified in the first invention. Furthermore, the manufacturing method of the third invention includes, in addition to each component element specified in the first invention, as a selected ingredient,
Nb2% or less, V4% or less, Ti3% or less, Zr2% or less,
A magnetic alloy having a composition containing one or more of W4% or less is obtained. In addition to the respective component elements specified in the first invention, the manufacturing method of the fourth invention further includes Mo28% or less, Nb2% or less as selected components, V4% or less,
A magnetic alloy having a component composition containing one or more of Ti 3% or less, Zr 2% or less, and W 4% or less is obtained. The manufacturing method of this invention will be explained in more detail below. The Fe-Cr-Co alloy targeted by this invention has 20 to 31% Cr, 6 to 24% Co, and the balance is Fe, but if necessary,
A part of Fe may be replaced with 28% or less of Mo, and if necessary, one or more selected from the following elements may be contained. Nb2% or less, V4% or less, Ti3% or less, Zr2% or less, W4% or less. In this invention, 0.05 to 2% of Al and 0.003 to 0.2% of N are further added to the above-mentioned components. These Al and N are used to generate AlN, which acts as an inhibitor to suppress the growth of primary recrystallized grains during later high-temperature annealing.
Al less than 0.05% and N 0.003% are sufficient amounts.
Since AlN cannot be generated and therefore the effect of suppressing the growth of primary recrystallized grains during high-temperature annealing cannot be obtained, a texture with a (110) [001] orientation cannot be obtained. Moreover, if Al exceeds 2%, the residual magnetic flux density of the finally obtained magnetic alloy will decrease, and if N exceeds 0.2%, cold rolling will become difficult. The above-mentioned Al and N act as inhibitors (AlN) to the growth of primary recrystallized grains during high-temperature annealing after cold rolling, and promote secondary recrystallization, so basically, before high-temperature annealing, It is fine if it is added to AlN and dispersed as AlN.
Since it is difficult to diffusely add a sufficient amount of Fe--Cr--Co alloy after casting, a predetermined amount of Fe--Cr--Co alloy can be added alone or as a master alloy when melting the Fe--Cr--Co alloy molten metal. On the other hand, N may be added by melting it in the air and combining it with Al when melting the molten alloy, or by injecting N 2 during melting, or by adding nitrogen compounds to the molten alloy. However, since N can be diffused to some extent even in solid phase alloys, it is possible to annealing in a N2 atmosphere after cold rolling, or in a N2 atmosphere until the temperature is raised during high-temperature annealing for secondary recrystallization. Alternatively, AlN may be generated by being diffused from the outside after cold rolling by switching to an H 2 atmosphere after the temperature rise is completed. Of course, a method of adding N to the molten metal and a method of diffusing N after cold rolling may be used in combination. Specific examples of such nitrogen addition means include the following methods (a) to (e). (a) When melting the alloy, chromium nitride is mixed with Fe, Cr,
Add after Co and other additives have melted off. In this case, when chromium nitride decomposes after addition of chromium nitride, a portion of the nitrogen in chromium nitride is often lost, so it is necessary to predict the amount of nitrogen that will be lost before adding. In order to improve this addition yield,
It is also effective to increase the pressure in the melting furnace with an inert gas (usually helium or argon). (b) During alloy melting, nitrogen gas is introduced into the melting furnace and nitrogen is dissolved into the molten metal. It is also effective to blow nitrogen gas into the molten metal using a lance in order to promote the dissolution of nitrogen into the molten metal. (c) After solidifying the alloy, the alloy is heated to a high temperature and exposed to a nitrogen atmosphere or a nitrogen-containing atmosphere such as ammonia, thereby dissolving nitrogen from the surface. However, in this case, in order to prevent the nitrided layer from being concentrated only on the surface, it is desirable to perform annealing for homogenization after the nitriding process. (d) As a method for adding nitrogen after alloy solidification, the method used as a general nitriding method for steel materials, that is, NaCN, which is a nitrogen-containing compound,
It is also possible to use a method in which KCN, NaCNO, etc. are melted and immersed in the melt to form a nitride layer on the surface. In this case as well, as in the case (c) above, it is desirable to perform annealing for homogenization. In this case, it is also effective to add chloride or the like to promote nitridation. (e) It is also effective to use the ion nitriding method, which is applied to steel materials, especially completed or semi-finished molds. The alloy melt to which the necessary components have been added and produced as described above is cast into an ingot by an appropriate casting method, and then cold rolled and subjected to high temperature annealing heat treatment. Of course, before cold rolling, the ingot is often subjected to hot rolling or hot forging to form a plate material of a predetermined thickness, but these steps will not be described in detail here. The cold rolling is preferably performed until the rolling rate (processing rate) reaches 40% or more. If it is less than 40%, the recrystallized structure will not be sufficiently generated during annealing after rolling, and therefore the magnetic properties will not be sufficiently improved. In addition, in order to obtain a more complete texture, that is, a secondary recrystallized structure with a high accumulation rate of the [001] axis in the rolling direction, it is desirable to repeat cold rolling and annealing two or more times, but in some cases So it's 1
It may be only a few times, and the key point is to decide based on the balance between the degree of texture depending on the desired magnetic properties and the manufacturing cost. The high-temperature annealing heat treatment after rolling is for secondary recrystallization, and the annealing temperature must be 1000°C or higher. If the temperature is lower than 1000°C, the secondary recrystallization after the primary recrystallization will not be carried out smoothly. In addition, when cold rolling and annealing are repeated two or more times, it is sufficient that secondary recrystallized grains are generated in the last annealing treatment, so the temperature of the last annealing treatment should be set within the above range, and the temperature of the previous annealing treatment should be set within the above range. The intermediate stage annealing is
It may be less than 1000℃. In addition, secondary recrystallization usually starts after a certain incubation period has passed after primary recrystallization grains are formed, so it is desirable to carry out annealing for 0.25 hours or more, and for 2 hours. Even if it is annealed beyond this point, there is no industrial merit. During annealing after cold rolling as described above, primary recrystallization is initially performed to generate fine primary recrystallized grains. The subsequent growth of normal primary recrystallized grains is suppressed by the AlN dispersed within the base, and after a certain incubation period, the crystal grains whose [001] axis is oriented in the rolling direction That is, crystal grains with (110) [001] orientation grow rapidly, resulting in the so-called secondary recrystallization phenomenon. Therefore, a texture with (110) [001] orientation is obtained by secondary recrystallization. After annealing for secondary recrystallization, solution treatment is usually performed to make the structure one-phase. This solution treatment can be done by quenching from about 1000℃ to 1300℃, but
In order to destroy the texture obtained by the above-mentioned secondary recrystallization to generate randomly oriented crystals or to prevent the growth of crystals oriented away from the desired direction, it is necessary to The heat treatment temperature is desirably lower than the secondary recrystallization temperature. It is also possible to perform solution treatment using the cooling process immediately after annealing for secondary recrystallization, in which case heating is performed only for solution treatment after annealing for secondary recrystallization. There will be no need. After the solution treatment as described above, heat treatment in a magnetic field and aging treatment are usually performed in order to obtain even better magnetic properties. In other words, conventionally high Cr
As proposed for Fe-Cr-Co magnet alloys, constant temperature heat treatment at 630°C to 700°C in a magnetic field is performed for about 0.25 to 4 hours, and then at around 600°C.
Aging treatment is performed for about 0.5 to 5 hours. In this way, a single magnetic domain ferromagnetic phase is dispersed and precipitated in the nonmagnetic phase due to spinodal transformation, and the single domain ferromagnetic phase particles are aligned in the direction of the magnetic field.
Here, as described above, after cold rolling and annealing for secondary recrystallization, a texture is obtained in which the [001] axis, which is the axis of easy magnetization, is aligned in the rolling direction. Therefore, the magnetic field is further applied to the alloy in the rolling direction ([001]
If heat treatment and aging treatment are performed in a magnetic field while applying the axial direction), the above-mentioned texture and the effect of the magnetic field treatment will combine to form single-domain ferromagnetic phase particles with a significantly high orientation rate. [001] is deposited in the axial direction, resulting in a magnet alloy with significantly high anisotropic magnetic properties. Examples of this invention are described below. Example 1 Alloys with eight types of compositions shown in Table 1 (however,
In the notes column of the table, ○ marks are alloys within the composition range of the present invention, ×
The alloys (marked with the mark are alloys outside the composition range of the present invention) were melted and cast, hot forged to form a plate with a thickness of 5 mm, and then water-cooled from 1300°C to make the structure one-phase. Then, it was cold rolled until the thickness was 0.5 mm. The obtained thin plate material was placed in wet hydrogen with a dew point of +30°C.
It is heated to 1050℃ for decarburization treatment, and further heated to 1300℃.
After annealing at ℃ for 5 hours and performing secondary recrystallization, each sample of No. 1-1 to No. 2-2 was heated to 1100℃.
℃, and for samples No. 2-3 and 2-4.
Each was quenched in cold water from 1000℃. Next, constant temperature treatment in a magnetic field and aging treatment were performed at the optimum temperature for each alloy. The constant temperature treatment temperature in a magnetic field and the aging treatment temperature for each alloy are shown in the left column of Table 2. The constant temperature treatment in a magnetic field was carried out at each temperature for 3 hours, and the aging treatment was carried out at each temperature for 10 hours. The results of measuring the magnetic properties of each of the obtained magnet alloys are shown in the right column of Table 2. From Table 2, it is clear that the magnetic alloys in which Al and N are added within the above-mentioned ranges have higher magnetic properties than those in which the amounts of Al and N added are outside the above-mentioned ranges.

【表】【table】

【表】 実施例 2 第3表の試料番号3―1、3―2に示す合金成
分の溶湯を溶製し、鋳造後、実施例1と同じ条件
で処理して、磁石合金を製造した。ここで、窒素
の添加は、溶製時に窒化クロムを添加することに
よつて行なつた。なお二次再結晶焼鈍後の焼入れ
は1100℃から行ない、また磁場中恒温処理温度、
時効処理温度は第4表中に記載した通りである。 実施例 3 第3表の試料番号4―1、4―2に示す合金成
分の溶湯を溶製し、鋳造後、実施例1と同じ条件
で処理して、磁石合金とした。ここで、窒素の添
加は、溶製時において窒素ガスを溶湯中にセラミ
ツク製ランスを介して吹込むことによつて行なつ
た。なお二次再結晶焼鈍後の焼入れは1100℃から
行ない、また磁場中恒温処理の温度、時効処理温
度は第4表中に示した通りである。 実施例 4 Fe―Cr―Co―Al合金を常法により溶製し、鋳
造後、圧延して厚さ0.5mmとし、次いでNaCl30
%、CuCl260%、CaCN210%の組成を有するソル
トバス中に入れて600℃で窒化処理を行なつた。
窒化処理終了後、さらに1000℃で10時間均一化処
理を行ない、次いで0.25mm厚まで冷間圧延し、さ
らに1200℃で30分間二次再結晶焼鈍を行ない、磁
場中恒温処理および時効処理を行なつた。このと
きの窒化処理後の成分組成は第3表の試料番号5
―1に示す通りである。また比較のため、窒化処
理は行なわずにその他の工程を上記と同様とした
試料の成分組成を第3表の試料番号5―2に示
す。さらに、上記工程のうち、窒化処理を0.5mm
厚の段階では行なわず、0.25mm厚の厚さまで冷間
圧延した段階で前記同様の窒化処理を行なつた試
料の成分組成を第3表の試料番号5―3に示す。 以上の実施例2〜4で得られた各試料につい
て、磁気特性を調べた結果を第4表に示す。
[Table] Example 2 Molten metals having alloy components shown in sample numbers 3-1 and 3-2 in Table 3 were melted, cast, and treated under the same conditions as in Example 1 to produce magnet alloys. Here, nitrogen was added by adding chromium nitride during melting. The quenching after secondary recrystallization annealing is performed from 1100℃, and the constant temperature treatment temperature in a magnetic field is
The aging treatment temperature is as listed in Table 4. Example 3 Molten metals having alloy components shown in sample numbers 4-1 and 4-2 in Table 3 were melted, cast, and treated under the same conditions as Example 1 to obtain magnet alloys. Here, nitrogen was added by blowing nitrogen gas into the molten metal through a ceramic lance during melting. The quenching after the secondary recrystallization annealing was performed from 1100°C, and the temperature of the constant temperature treatment in a magnetic field and the temperature of the aging treatment were as shown in Table 4. Example 4 Fe-Cr-Co-Al alloy was melted by a conventional method, cast, rolled to a thickness of 0.5 mm, and then NaCl30
%, CuCl 2 60%, and CaCN 2 10% in a salt bath at 600° C. for nitriding.
After the nitriding treatment, it was further homogenized at 1000℃ for 10 hours, then cold-rolled to a thickness of 0.25mm, and then subjected to secondary recrystallization annealing at 1200℃ for 30 minutes, and subjected to constant temperature treatment in a magnetic field and aging treatment. Summer. The component composition after the nitriding treatment at this time is sample number 5 in Table 3.
-1. For comparison, sample number 5-2 in Table 3 shows the composition of a sample in which the nitriding treatment was not performed and the other steps were the same as above. Furthermore, in the above process, nitriding treatment is performed by 0.5mm.
Sample No. 5-3 in Table 3 shows the composition of a sample in which the same nitriding treatment was performed at the stage of cold rolling to a thickness of 0.25 mm, but not at the thickness stage. Table 4 shows the results of examining the magnetic properties of the samples obtained in Examples 2 to 4 above.

【表】【table】

【表】 実施例 5 第5表の試料番号6〜10に示す成分組成の合金
を次ようにして溶製、鋳造した。すなわち、Al
およびNの添加原料を除いた溶解原料を配合して
アルゴンガスを1気圧封入した高周波溶解炉で溶
解し、溶落後Al0.1%を投入し、3分後に窒化ク
ロムを投入し、完全に溶解してから鋳鉄製鋳型に
鋳込んだ。この鋳塊を3mmまで圧延してから、ア
ルゴンガス雰囲気中で1200℃×30分焼鈍し、二次
再結晶させた。その後、650℃で3時間磁場中恒
温処理し、さらに630℃で10時間時効処理を行な
つた。各合金について磁気特性を調べた結果を第
6表に示す。
[Table] Example 5 Alloys having the compositions shown in sample numbers 6 to 10 in Table 5 were melted and cast in the following manner. That is, Al
The raw materials for melting except for the additive raw materials of N are blended and melted in a high-frequency melting furnace filled with 1 atm of argon gas. After melting, 0.1% Al is added, and after 3 minutes, chromium nitride is added to ensure complete melting. It was then cast into a cast iron mold. This ingot was rolled to 3 mm and then annealed at 1200° C. for 30 minutes in an argon gas atmosphere for secondary recrystallization. Thereafter, it was subjected to constant temperature treatment in a magnetic field at 650°C for 3 hours, and further subjected to aging treatment at 630°C for 10 hours. Table 6 shows the results of examining the magnetic properties of each alloy.

【表】【table】

【表】 以上の説明で明らかなようにこの発明の製法に
よれば、磁化容易軸である〔001〕軸を圧延方向
に揃えた集合組織を有する異方性Fe―Cr―Co系
磁石合金を製造することができ、したがつて高い
磁気特性を有する異方性磁石材料を実際的に製造
することができる効果が得られる。
[Table] As is clear from the above explanation, according to the manufacturing method of the present invention, an anisotropic Fe-Cr-Co magnet alloy having a texture in which the [001] axis, which is the axis of easy magnetization, is aligned in the rolling direction. Therefore, an effect is obtained in which an anisotropic magnet material having high magnetic properties can be practically produced.

Claims (1)

【特許請求の範囲】 1 Al0.05〜2%(重量%、以下同じ)を含有す
るFe―Cr―Co系合金溶湯を鋳造後、冷間圧延し
て1000℃以上の温度において焼鈍し、かつ少なく
とも前記焼鈍以前の段階においてN0.003〜0.2%
を含有させておき、これにより最終的にCr20〜
31%、Co6〜24%、Al0.05〜2%、N0.003〜0.2
%を含有し、残部がFeおよび不可避的不純物よ
りなる成分組成の合金を得ることを特徴とする磁
石合金の製法。 2 Al0.05〜2%を含有するFe―Cr―Co系合金
溶湯を鋳造後、冷間圧延して1000℃以上の温度に
おいて焼鈍し、かつ少なくとも前記焼鈍以前の段
階においてN0.003〜0.2%を含有させておき、こ
れにより最終的にCr20〜31%、Co6〜24%、
Mo28%以下、Al0.05〜2%、N0.003〜0.2%を含
有し、残部がFeおよび不可避的不純物よりなる
成分組成の合金を得ることを特徴とする磁石合金
の製法。 3 Al0.05〜2%を含有するFe―Cr―Co系合金
溶湯を鋳造後、冷間圧延して1000℃以上の温度に
おいて焼鈍し、かつ少なくとも前記焼鈍以前の段
階においてN0.003〜0.2%を含有させておき、こ
れにより最終的にCr20〜31%、Co6〜24%、
Al0.05〜2%、N0.003〜0.2%を含有し、かつ
Nb2%以下、V4%以下、Ti3%以下、Zr2%以下、
W4%以下のうちの1種または2種以上を含有し、
残部がFeおよび不可避的不純物よりなる成分組
成の合金を得ることを特徴とする磁石合金の製
法。 4 Al0.05〜2%を含有するFe―Cr―Co系合金
溶湯を鋳造後、冷間圧延して1000℃以上の温度に
おいて焼鈍し、かつ少なくとも前記焼鈍以前の段
階においてN0.003〜0.2%を含有させておき、こ
れにより最終的にCr20〜31%、Co6〜24%、
Mo28%以下、Al0.05〜2%、N0.003〜0.2%を含
有し、かつNb2%以下、V4%以下、Ti3%以下、
Zr2%以下、W4%以下のうちの1種または2種
以上を含有し、残部がFeおよび不可避的不純物
よりなる成分組成の合金を得ることを特徴とする
磁石合金の製法。
[Scope of Claims] 1. A molten Fe-Cr-Co alloy containing 0.05 to 2% (by weight, same hereinafter) of Al is cast, then cold rolled and annealed at a temperature of 1000°C or higher, and N0.003~0.2% at least at the stage before the annealing
By this, Cr20 ~
31%, Co6~24%, Al0.05~2%, N0.003~0.2
%, with the remainder consisting of Fe and unavoidable impurities. 2 After casting a molten Fe-Cr-Co alloy containing 0.05 to 2% Al, it is cold rolled and annealed at a temperature of 1000°C or higher, and at least 0.003 to 0.2% N is added at a stage before the annealing. This results in a final content of 20 to 31% Cr, 6 to 24% Co,
A method for producing a magnetic alloy, characterized by obtaining an alloy having a composition containing 28% or less of Mo, 0.05 to 2% of Al, and 0.003 to 0.2% of N, with the balance consisting of Fe and inevitable impurities. 3 After casting a molten Fe-Cr-Co alloy containing 0.05 to 2% Al, it is cold rolled and annealed at a temperature of 1000°C or higher, and at least 0.003 to 0.2% N is added at a stage before the annealing. This results in a final content of 20 to 31% Cr, 6 to 24% Co,
Contains Al0.05~2%, N0.003~0.2%, and
Nb2% or less, V4% or less, Ti3% or less, Zr2% or less,
Contains one or more of W4% or less,
A method for producing a magnetic alloy, characterized by obtaining an alloy having a composition in which the remainder consists of Fe and unavoidable impurities. 4 After casting a molten Fe-Cr-Co alloy containing 0.05 to 2% Al, it is cold rolled and annealed at a temperature of 1000°C or higher, and at least 0.003 to 0.2% N is added at a stage before the annealing. This results in a final content of 20 to 31% Cr, 6 to 24% Co,
Contains Mo28% or less, Al0.05-2%, N0.003-0.2%, and Nb2% or less, V4% or less, Ti3% or less,
A method for producing a magnetic alloy, characterized by obtaining an alloy having a composition containing one or more of Zr 2% or less and W 4% or less, with the balance consisting of Fe and inevitable impurities.
JP7474580A 1980-06-03 1980-06-03 Manufacture of magnetic alloy Granted JPS56169722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7474580A JPS56169722A (en) 1980-06-03 1980-06-03 Manufacture of magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7474580A JPS56169722A (en) 1980-06-03 1980-06-03 Manufacture of magnetic alloy

Publications (2)

Publication Number Publication Date
JPS56169722A JPS56169722A (en) 1981-12-26
JPH0122325B2 true JPH0122325B2 (en) 1989-04-26

Family

ID=13556085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7474580A Granted JPS56169722A (en) 1980-06-03 1980-06-03 Manufacture of magnetic alloy

Country Status (1)

Country Link
JP (1) JPS56169722A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230457A (en) * 1983-06-13 1984-12-25 Matsushita Electric Ind Co Ltd Rotor of brushless motor
JPS60131949A (en) * 1983-12-19 1985-07-13 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet

Also Published As

Publication number Publication date
JPS56169722A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
JP4653261B2 (en) Method for producing grain-oriented electrical steel strip with high magnetic properties from thin slabs
RU2318883C2 (en) Non-oriented electrical steel strip continuous casting method
KR100566597B1 (en) Method for producing a magnetic grain oriented steel sheet with low level loss by magnetic reversal and high polarisation
KR101149792B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same
BRPI0410333B1 (en) Process for producing non-oriented electric steel
SK27999A3 (en) Process for the production of grain oriented electrical steel strip starting from thin slabs
JP2019501282A (en) Oriented electrical steel sheet and manufacturing method thereof
KR100526377B1 (en) Method for producing silicon-chromium grain oriented electrical steel
SK284364B6 (en) Process for the inhibition control in the production of grain-oriented electrical sheets
CA2445895C (en) Method for producing a high permeability grain oriented electrical steel
JP2002060842A (en) Method for producing grain oriented silicon steel sheet having high magnetic flux density
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH0122325B2 (en)
KR930011404B1 (en) Process for manufacturing double oriented electrical steel having high magnetic flux density
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
KR101263795B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, Method for manufacturing the same, and a slab using therefor
JPH0122324B2 (en)
JP2000024763A (en) Method for casting metal
RU2038389C1 (en) Method for producing silicon textured steel
JPH075984B2 (en) Method for producing Cr-based stainless steel thin plate using thin casting method
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH08199239A (en) Production of grain oriented magnetic steel sheet with high magnetic flux density
US2906653A (en) Die-casting of iron in chill-moulds
JPH04224625A (en) Manufacture of grain-oriented high silicon steel sheet