JPH01223136A - Production of microcellular polyolefin film - Google Patents

Production of microcellular polyolefin film

Info

Publication number
JPH01223136A
JPH01223136A JP63047878A JP4787888A JPH01223136A JP H01223136 A JPH01223136 A JP H01223136A JP 63047878 A JP63047878 A JP 63047878A JP 4787888 A JP4787888 A JP 4787888A JP H01223136 A JPH01223136 A JP H01223136A
Authority
JP
Japan
Prior art keywords
polyolefin
melting point
organic solid
stretching
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047878A
Other languages
Japanese (ja)
Inventor
Tatsuya Ito
達也 伊藤
Katsuhiro Tsuchiya
勝洋 土屋
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63047878A priority Critical patent/JPH01223136A/en
Publication of JPH01223136A publication Critical patent/JPH01223136A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain the subject film suitable as separators in electrolytic capacitors, cells or batteries, etc., without fish eyes, by adding two kinds of low- and high-melting organic solids to a polyolefin, melt extrusion molding the resultant mixture and extracting the low-melting organic solid. CONSTITUTION:(A) An organic solid (preferably dicyclohexyl phthalate or triphenyl phosphite) having 35-100 deg.C, preferably 45-80 deg.C melting point, 200-1,000mol.wt., polarity and polar groups in the molecular structure in an amount of 80-180pts.vol., preferably 90-160pts.vol. and (B) an organic solid (e.g., phthalic anhydride) having >=105 deg.C melting point which is within the range of <=the melting point of the above-mentioned polyolefin +50 deg.C, preferably >=the melt crystallization temperature of the afore-mentioned polyolefin and <=the melting point of the polyolefin in an amount of 0.01-20pts.vol., preferably 0.05-10pts.vol. are added to 100pts.vol. polyolefin and the resultant mixture is melt extrusion molded. At least the component (A) is then extracted to afford the aimed film having continuous micropores.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電解コンデンサ、電気2重層コンデンサ、バ
ッテリー等のセパレータあるいはミクロフィルターとし
て好適なポリオレフィン微孔性膜の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a polyolefin microporous membrane suitable as a separator or microfilter for electrolytic capacitors, electric double layer capacitors, batteries, etc.

なお、ここでいう微孔性膜とは、少なくとも厚み方向に
連続した微細孔を有するフィルム状、チユーブ状あるい
は中空糸状のものを指す。
The term "microporous membrane" as used herein refers to a film-like, tube-like, or hollow fiber-like film having micropores continuous at least in the thickness direction.

[従来の技術] ポリオレフィン微孔性膜の製造方法としては、従来より
、可塑剤等の常温有機液体を無機微粒子に吸着させ、ポ
リオレフィンに添加し、シート成形後、該常温有機液体
あるいは無機微粒子を抽出する方法(特公昭5B−32
171等)が知られている。
[Prior Art] Conventionally, a method for manufacturing a polyolefin microporous membrane involves adsorbing a room temperature organic liquid such as a plasticizer onto inorganic fine particles, adding it to the polyolefin, and after forming a sheet, the room temperature organic liquid or the inorganic fine particles are added to the polyolefin. Extraction method (Special Publication Showa 5B-32
171 etc.) are known.

[発明が解決しようとする課題] しかしながら、該方法では、次の様な問題点を有してい
た。すなわち、有機液体をポリオレフィンに添加する方
法では、担体として特定量の無機微粒子が必須であるた
め、中密度ポリエチレン、低密度ポリエチレン、ポリプ
ロピレン、ポリ4メチルペンテン1等の側鎖分岐の多い
、チクソトロピー性の強いポリマーに関し、該技術を適
用しようとすると無機粒子添加によりざらにチクソトロ
ピー性が強まり、押出安定性が得られないため、厚みの
均一性に劣り、特に膜厚の薄い微孔性膜が得られない、
あるいは、無機粒子を添加するために、後工程で抽出す
る場合でも完全に抽出するためには長時間必要であった
り、無機粒子の凝集物が原因と思われるボイド状欠点が
あるという課題があった。
[Problems to be Solved by the Invention] However, this method had the following problems. In other words, in the method of adding an organic liquid to polyolefin, a specific amount of inorganic fine particles is essential as a carrier, so thixotropic materials with many branched side chains such as medium density polyethylene, low density polyethylene, polypropylene, poly(4-methylpentene) etc. When applying this technology to polymers with strong oxidation, the addition of inorganic particles greatly increases thixotropy, making it impossible to obtain extrusion stability, resulting in poor thickness uniformity, and in particular, it is difficult to obtain thin microporous membranes. I can't do it,
Furthermore, since inorganic particles are added, even if extraction is performed in a subsequent process, it takes a long time to complete the extraction process, and there are problems in that there are void-like defects that are thought to be caused by aggregates of inorganic particles. Ta.

[課題を解決するための手段] 本発明は連続した微細孔を有するポリオレフィン微孔性
膜の製造方法であって、ポリオレフィン100容量部に
、融点が35〜100℃、分子量が200〜1oooで
、かつ分子構造中(分極性及び極性基を含有する有機固
体(I>を80〜180容量部、および融点が105°
C以上、該ポリオレフィンの融点+50℃以下の有機固
体(II)を0.01〜20容量部添加し溶融押出成形
後、少なくとも有機固体(1)を抽出するポリオレフィ
ン微孔性膜の製造方法に関するものである。
[Means for Solving the Problem] The present invention is a method for producing a polyolefin microporous membrane having continuous micropores, in which 100 parts by volume of a polyolefin having a melting point of 35 to 100°C and a molecular weight of 200 to 100, and in the molecular structure (80 to 180 parts by volume of an organic solid containing polarizability and polar groups, and a melting point of 105°
C or above, relates to a method for producing a polyolefin microporous membrane, which comprises adding 0.01 to 20 parts by volume of an organic solid (II) having a melting point of the polyolefin +50°C or less and extracting at least the organic solid (1) after melt extrusion molding. It is.

本発明においてポリオレフィンとは、高密度ポリエチレ
ン、中密度ポリエチレン、低密度ポリエチレン、ポリプ
ロピレン、ポリブテン、ポリメチルペンテン、ポリメチ
ルブテン等のαオレフイン重合体及びこれらの共重合体
及びブレンド体である。
In the present invention, polyolefins include α-olefin polymers such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, polypropylene, polybutene, polymethylpentene, and polymethylbutene, and copolymers and blends thereof.

これらの中でも、ポリエチレン系樹脂、ポリプロピレン
系樹脂が、機械特性、耐薬品性、コスト性にバランスし
ており、さらに重量平均分子量(Mw)30x104を
越えるものが好ましい。
Among these, polyethylene resins and polypropylene resins are preferred, as they have well-balanced mechanical properties, chemical resistance, and cost performance, and have a weight average molecular weight (Mw) of more than 30x104.

特にポリプロピレン樹脂(以下PP樹脂と略称する)は
、耐熱性の点で優れているので好ましい。
In particular, polypropylene resin (hereinafter abbreviated as PP resin) is preferable because it has excellent heat resistance.

ざらに機械強度を良好とし、微細孔を均一とするために
は、PP樹脂の極限粘度(以下[η]と略称する)が2
.1〜3.3dl/a、好ましくは、2゜3〜3.0d
110、メルトインデックス(MI)が0.1〜3Q/
10分の範囲のものが優れている。
In order to have good mechanical strength and uniform micropores, the intrinsic viscosity of the PP resin (hereinafter abbreviated as [η]) must be 2.
.. 1 to 3.3 dl/a, preferably 2°3 to 3.0 d
110, melt index (MI) is 0.1-3Q/
Those within the 10 minute range are excellent.

また、該PP樹脂のアイソタクチックインデックス(以
下IIと略称する)は、93%以上であることが好まし
く、ざらに好ましくは97%以上である。IIがこの範
囲にあると空孔径、空孔率共に良好となるばかりか、添
加した有機固体の抽出速度が大きく、抽出時間が短時間
ですみコスト性に優れる。
Further, the isotactic index (hereinafter abbreviated as II) of the PP resin is preferably 93% or more, more preferably 97% or more. If II is within this range, not only will the pore diameter and porosity be good, but the extraction rate of the added organic solid will be high, the extraction time will be short, and the cost will be excellent.

また、該ポリエチレン樹脂としては密度が0093G/
cm3以上のものが耐溶剤性、寸法安定性、微孔性に優
れるので好ましい。
In addition, the density of the polyethylene resin is 0093G/
Those having a diameter of cm3 or more are preferable because they have excellent solvent resistance, dimensional stability, and microporosity.

次に、本発明に用いる有機固体(I)とは、融点が35
〜100℃であることが必要であり、好ましくは、45
〜80℃である。融点が低すぎると、PPとのブレンド
時に押出機スクリューの供給部でスリップを生じる原因
となり、実質的にブレンドできず、無機微粒子の添加が
必須となり、本発明の目的を果たさない。
Next, the organic solid (I) used in the present invention has a melting point of 35
-100°C, preferably 45°C
~80°C. If the melting point is too low, it will cause slippage in the feed section of the extruder screw when blending with PP, making it virtually impossible to blend, making it necessary to add inorganic fine particles, and failing to achieve the purpose of the present invention.

一方、融点が高すぎると、抽出速度が遅くなり、コスト
的な問題を生じるばかりか、ポリオレフィンとのブレン
ド物をキャストした際の相分離構造が不均一となり、孔
径分布が広がったり、延伸できない場合も生ずる。
On the other hand, if the melting point is too high, the extraction rate will be slow, causing cost problems, and when the blend with polyolefin is cast, the phase separation structure will be non-uniform, resulting in a widened pore size distribution and the inability to stretch. Also occurs.

また、有機固体(1)の分子量は、200〜1000で
あることが必要であり、好ましくは、300〜700で
ある。分子量が小さすぎると、ポリオレフィンに対する
溶解性が高くなっていくために、空孔率、空孔径共に小
さいものしかできず、本発明の目的を果たさない。一方
、分子量が太きすぎると、該有機固体(1)のポリオレ
フィン中での分散径が大きくなり、形成される空孔が大
きく、孔径分布も広がり、本発明の目的を果たさない。
Further, the molecular weight of the organic solid (1) needs to be 200 to 1000, preferably 300 to 700. If the molecular weight is too small, the solubility in the polyolefin will increase, resulting in only small porosity and pore diameter, which will not achieve the purpose of the present invention. On the other hand, if the molecular weight is too large, the dispersion diameter of the organic solid (1) in the polyolefin becomes large, the pores formed are large, and the pore size distribution is widened, so that the purpose of the present invention is not achieved.

また、抽出時間も長くなるため、コストアップの原因と
なる。
Furthermore, the extraction time becomes longer, which causes an increase in cost.

更に、該有機固体(I)の分子構造の中には、分極性及
び極性基を含有していることが必要である。ここで、分
極性の基とは、ベンゼン環、ナフタレン環等の芳香族環
を含む基を指し、極性基とは、例えば合波書店「理化学
辞典」に記されているような有極性分子を構成要素とす
るものであり、カルボニル基、アミノ基、スルホン基、
水酸基等が例示される。該有機固体(I>中に分極性の
基のみである様な、例えば、低分子量ポリスチレンの様
なものでは、ポリオレフィンに対する分散性が極めて高
いために、多量に添加し抽出したとしても、孔径、空孔
率共に低いものしかできず、電解液を含浸した際の抵抗
が増大する。一方、極性基のみを含有する様な有機固体
(■)、例えば。
Furthermore, it is necessary that the molecular structure of the organic solid (I) contains polarizable and polar groups. Here, the term "polarizable group" refers to a group containing an aromatic ring such as a benzene ring or a naphthalene ring, and the term "polar group" refers to a polar molecule, such as that described in Goiba Shoten's "Rikagaku Dictionary". The constituent elements are carbonyl groups, amino groups, sulfone groups,
Examples include hydroxyl group. Organic solids (such as low molecular weight polystyrene that contain only polarizable groups in I) have extremely high dispersibility in polyolefins, so even if a large amount is added and extracted, the pore size, Only those with low porosity can be produced, and the resistance increases when impregnated with an electrolyte.On the other hand, organic solids (■) containing only polar groups, for example.

脂肪酸エステルの様なものでは、ポリオレフィンに多量
に添加した際に相分離構造の分散径が大きくなるためか
、キャストされたシートあるいはチューブ状物が著しく
もろくなり引続くプロセスが実質的に不可能である。も
ちろん、極性基及び分極性基のいずれも含有しないよう
な物質では、ポリオレフィン(添加した際の相分離構造
が均一に形成できないばかりか、抽出溶媒がポリオレフ
ィンを溶解し易いものに限定されてくるために抽出が困
雌になる。
When fatty acid esters are added in large quantities to polyolefins, the dispersed diameter of the phase-separated structure increases, making the cast sheets or tubes extremely brittle, making subsequent processes virtually impossible. be. Of course, with substances that do not contain either polar groups or polarizable groups, polyolefin (not only will it not be possible to form a uniform phase separation structure when added, but the extraction solvent will be limited to those that easily dissolve the polyolefin). Extraction becomes difficult.

以上の様な特性を有する有機固体(I)の中でも、塩化
ビニル等の可塑剤として使用されているフタル酸エステ
ル、リン酸エステル等が優れており、特に、ジシクロへ
キシルフタレート(DCHP)、あるいはトリフェニル
フォスフエイト(TPP)から選ばれた少なくとも1種
であることが好ましい。
Among the organic solids (I) having the above characteristics, phthalate esters, phosphate esters, etc., which are used as plasticizers for vinyl chloride, etc., are excellent, and in particular, dicyclohexyl phthalate (DCHP), Preferably, it is at least one selected from triphenyl phosphate (TPP).

該有機固体(I>の添加量は、ポリオレフィン樹脂10
0容量部に対し、80〜.180容量部であることが必
要であり、さらに好ましく90〜160容量部であるこ
とが望ましい。添加量が少ないと、連続した微細孔が形
成されず、電解コンデンサ等の、セパレータとして使用
した場合、電解液抵抗が増大し、使用できない。一方、
添加量が多すぎると、押出機に原料を供給した際に、吐
出変動を生じ、均一な膜にならないばかりか、膜の機械
強度が低下し、使用に耐えない。
The amount of the organic solid (I> added is 10% of the polyolefin resin
80~.0 volume part. It is necessary that the amount is 180 parts by volume, and more preferably 90 to 160 parts by volume. If the amount added is small, continuous micropores will not be formed, and when used as a separator for electrolytic capacitors, etc., the resistance of the electrolyte will increase, making it unusable. on the other hand,
If the amount added is too large, discharge fluctuations will occur when the raw material is supplied to the extruder, and not only will a uniform film not be obtained, but the mechanical strength of the film will decrease, making it unusable.

ざらに、本発明では、融点が105℃以上、該ポリオレ
フィンの融点+50℃以下、好ましくは −該ポリオレ
フィンの溶融結晶化温度以上該ポリオレフィンの融点以
下の範囲である有機固体(II)をポリオレフィン10
0容量部に対し0.01〜20容量部、好ましくは0.
05〜10容量部添加する必要がある。
Roughly speaking, in the present invention, the organic solid (II) having a melting point of 105° C. or more, the melting point of the polyolefin + 50° C. or less, preferably - the melt crystallization temperature of the polyolefin or more and the melting point of the polyolefin or less, is used as polyolefin 10.
0.01 to 20 parts by volume, preferably 0.0 parts by volume.
It is necessary to add 0.5 to 10 parts by volume.

有機固体(I)の融点が105℃未満であると、溶融成
形後の有機固体(1)の分散均一性におとり、この結果
形成された微細孔の分布が広いものになってしまう。一
方融点が該ポリオレフィンの融点+50℃を越えるとフ
ィッシュアイ、ボイドの原因となり電解コンデンサ等の
セパレータとして使用した場合ショート等の原因となる
If the melting point of the organic solid (I) is less than 105°C, the dispersion uniformity of the organic solid (1) after melt molding will be affected, resulting in a wide distribution of the formed micropores. On the other hand, if the melting point exceeds the melting point of the polyolefin +50°C, it causes fish eyes and voids, and when used as a separator for electrolytic capacitors, etc., it causes short circuits.

また、有機固体(II)は、分子量(Mn)が100〜
6000の範囲、X線回折による結晶化度が50%以上
と結晶性が高いことが、形成される微細孔の均一性を良
好とする上で好ましく、さらに該ポリオレフィンあるい
は該有機固体(I>の少なくとも一方と相溶性に優れた
ものであることが好ましい。これらの特徴を具備する有
機固体としては、無水フタル酸、フタル酸、ポリオレフ
ィン低分子量物が挙げられる。また、有機固体(II)
の添加量は0.01容量部未満であると成形時の冷却条
件が有機固体(I)を均一分散させる上で狭いものとな
り、一方、20容量部を越えると押出性が不安定になる
Further, the organic solid (II) has a molecular weight (Mn) of 100 to
6000, and the degree of crystallinity by X-ray diffraction is 50% or more, which is preferable in order to improve the uniformity of the formed micropores. It is preferable that it has excellent compatibility with at least one of the organic solids. Examples of organic solids having these characteristics include phthalic anhydride, phthalic acid, and low molecular weight polyolefins.
If the amount added is less than 0.01 parts by volume, the cooling conditions during molding will be too narrow for uniformly dispersing the organic solid (I), while if it exceeds 20 parts by volume, extrudability will become unstable.

また、ポリオレフィン樹脂には、熱安定剤、酸化防止剤
、有機あるいは無機滑剤、帯電防止剤等を添加しても良
く、特にステアリン酸カルシウム等の脂肪酸の金属塩を
全組成物に対して0.01〜5重量部添加しておくと、
吐出性等が良好となるので好ましい。
Further, a heat stabilizer, an antioxidant, an organic or inorganic lubricant, an antistatic agent, etc. may be added to the polyolefin resin, and in particular, a metal salt of fatty acid such as calcium stearate may be added at 0.01% of the total composition. If ~5 parts by weight is added,
This is preferable because it improves discharge properties and the like.

ざらに、無機微粒子の添加については、添加による押出
し性の悪化が生じない範囲で添加することは許されるが
、極力添加しないことが好ましく、ポリオレフィン樹脂
100容量部に対し、10容量部以下、ざらに好ましく
は5容量部以下としておくことが好ましい。
Regarding the addition of inorganic fine particles, it is permissible to add them to the extent that extrudability does not deteriorate due to the addition, but it is preferable not to add them as much as possible. The amount is preferably 5 parts by volume or less.

次に上述のブレンド物を溶融押出し、成形する際の温度
は、該有機固体(1)の融点(Tml)以上、該ポリオ
レフィンの溶融結晶化温度(T llIc )以下であ
ることが、ポリオレフィンと有機固体(1)との相分離
を均一に進行させ、連続した微細孔が形成する上で好ま
しい。
Next, the temperature at which the above-mentioned blend is melt-extruded and molded is equal to or higher than the melting point (Tml) of the organic solid (1) and lower than the melt crystallization temperature (TllIc) of the polyolefin. This is preferable because phase separation from the solid (1) proceeds uniformly and continuous micropores are formed.

ざらに、冷却時の冷却速度は、極力大きいことが好まし
く、さらに押出したシート・フィルム状物あるいは、チ
ューブ、中空糸の表裏が均一に冷却されることが好まし
い。この観点から、これら溶融押出し物の冷却は、上述
の温度に保たれた水槽中に導いて行うことが好ましい。
In general, it is preferable that the cooling rate during cooling is as high as possible, and it is further preferable that the front and back surfaces of the extruded sheet/film material, tube, or hollow fiber are cooled uniformly. From this point of view, it is preferable to cool these melt extrudates by introducing them into a water bath maintained at the above-mentioned temperature.

ここで、冷却に使用する液体は、通常水が良く使用され
るが、必要に応じエチレングリ′コール、ジエチレング
リコール等の沸点の高い液体を水と混合しておいてもよ
く、またこれに限定されるものではない。
Here, the liquid used for cooling is usually water, but if necessary, a liquid with a high boiling point such as ethylene glycol or diethylene glycol may be mixed with water, and the liquid is not limited to this. It's not something you can do.

また、溶融物をTダイにてフィルムあるいはシート状に
成形する場合には、静電印加法により十分な押圧力にて
密着させることにより、水槽キャスト法と同等の冷却速
度が得られる。
Furthermore, when the melt is formed into a film or sheet using a T-die, a cooling rate equivalent to that of the water bath casting method can be obtained by applying sufficient pressure to adhere the melt using the electrostatic application method.

以上の様にして、成形する際のドラフト比は4以上とし
ておくことが、相分離構造の均一性・連続貫通孔性に優
れるために好ましく、ざらに6以上であるとより好まし
い。
As described above, it is preferable to set the draft ratio at the time of molding to 4 or more in order to improve the uniformity of the phase separation structure and the continuous through-hole property, and it is more preferable to set the draft ratio to 6 or more.

以上の様にして得られた成形品は、該有機固体(I>の
良溶媒であり、かつ該ポリオレフィンの貧溶媒中に導い
て、該有機固体(I>の好ましくは95%以上、より好
ましくは99%以上を抽出することにより、微孔性膜を
得る。ここで、使用する溶媒としては、トリクロルメタ
ン、トリクロルエタン、アセトン、メチルエチルケトン
、酢酸エチル、メタノール、トルエン、キシレン等が挙
げられる。この中でも、トリクロルエタン、トリクロル
エチレン等のハロゲン系溶媒は抽出能力も高く、発火の
危険も無いため工業上良く使用される。
The molded article obtained as described above is preferably 95% or more of the organic solid (I>, more preferably 95% or more, and more preferably A microporous membrane is obtained by extracting 99% or more of this.The solvent used here includes trichloromethane, trichloroethane, acetone, methyl ethyl ketone, ethyl acetate, methanol, toluene, xylene, etc. Among them, halogenated solvents such as trichloroethane and trichlorethylene are often used industrially because they have high extraction ability and are free from the risk of ignition.

また、キャストされた成形品は、延伸することにより機
械特性及び微細孔の連続貫通孔性が良好となるので好ま
しい。ここで延伸する際には延伸前の抽出で、添加した
有機固体(1)の95%以上、好ましくは99%以上を
取り除いておくことが連続貫通孔性を良好とする上で好
ましいが、必ずしも抽出は延伸の前に行なう必要は無く
、延伸の後に抽出を行なう、あるいは延伸しながら抽出
を行なう、部分的に抽出を行ない延伸し、次に完全に抽
出する等の方法が可能である。
In addition, a cast molded product is preferred because mechanical properties and continuous through-hole properties of fine pores are improved by stretching. When stretching here, it is preferable to remove 95% or more, preferably 99% or more of the added organic solid (1) by extraction before stretching in order to improve the continuous through-hole property. It is not necessary to perform extraction before stretching, and methods such as performing extraction after stretching, performing extraction while stretching, partial extraction, stretching, and then complete extraction are possible.

ここで、延伸は(該ポリオレフィンのガラス転移点)〜
(該ポリオレフィンの融点−10℃)の温度にて、少な
くとも一軸に1.5〜10倍、好ましくは1.7〜7倍
延伸することが機械特性、連続貫通孔性を良好とする上
で好ましい。また、この時に少なくとも一部の延伸工程
において、延伸速度が5ooo%/分以下、好ましくは
2000%/分以下、さらに好ましくは1000%/分
以下の低速延伸工程を含んでいるとざらに連続貫通孔性
が良好となるので好ましく、例えば−軸延伸にて複数段
に延伸ゾーンを設け、少なくともいずれかの延伸ゾーン
にて上記低速延伸を行なう方法、あるいは、二輪に延伸
する方法においていずれか一方向の延伸工程に上記低速
延伸工程を含めば良い。ここで、二輪に延伸する方法と
しては、長手方向に任意の延伸速度で1.5〜10倍延
伸した後、幅方向に上記低速延伸法により、1.1〜4
倍、好ましくは、1.1〜2倍、ざらに好ましくは1.
2〜1゜5倍で延伸することにより面積倍率で1.7〜
15倍、好ましくは2〜10倍の範囲としておくと、機
械特性・連続貫通孔性・微孔形状の均一性いずれも良好
となるので好ましい。
Here, the stretching is (glass transition point of the polyolefin) ~
(The melting point of the polyolefin -10°C) It is preferable to stretch at least uniaxially 1.5 to 10 times, preferably 1.7 to 7 times, in order to improve mechanical properties and continuous through-hole properties. . At this time, if at least some of the stretching steps include a low-speed stretching step in which the stretching speed is 500%/min or less, preferably 2000%/min or less, and more preferably 1000%/min or less, continuous penetration may occur. This method is preferable because the porosity becomes good, and for example, a method in which a plurality of stretching zones are provided in -axial stretching and the above-mentioned low-speed stretching is performed in at least one of the stretching zones, or a method in which two wheels are stretched in any one direction. The above-mentioned low-speed stretching step may be included in the stretching step. Here, as a method of stretching the two wheels, after stretching in the longitudinal direction at an arbitrary stretching speed of 1.5 to 10 times, in the width direction by the above-mentioned low speed stretching method,
twice, preferably 1.1 to 2 times, more preferably 1.
By stretching at 2-1°5 times, the area magnification is 1.7-1.
A range of 15 times, preferably 2 to 10 times, is preferred because mechanical properties, continuous through-hole properties, and uniformity of pore shape are all improved.

以上のような延伸の後に、必要に応じ再度抽出を行なう
ことにより、添加した有機固体(1)の95%以上、好
ましくは99%以上を抽出した後、該ポリオレフィンの
溶融結晶化温度以上、融点−5℃以下の温度で0〜20
%、好ましくは1〜10%のリラックスを許しながら熱
固定すると、熱寸法安定性が良好となるので好ましい。
After the above-mentioned stretching, extraction is carried out again if necessary to extract 95% or more, preferably 99% or more of the added organic solid (1), and then the polyolefin has a melt crystallization temperature or higher, a melting point 0 to 20 at temperatures below -5℃
%, preferably 1 to 10%, is preferable because thermal dimensional stability is improved.

ざらに本発明においては、必要に応じ微孔性膜に紫外線
照射処理、コロナ放電処理、低温プラズマ処理等の表面
処理、界面活性剤塗布、あるいはスルホン化、メチルメ
タアクリレート等のグラフト処理による親水化処理を行
なっても良い。特に本発明により得られる微孔性膜を水
溶液系のミクロフィルター、電解液セパレータとして使
用する際には、親水化処理を行なうことが好ましい。
Roughly, in the present invention, if necessary, the microporous membrane may be subjected to surface treatment such as ultraviolet irradiation treatment, corona discharge treatment, or low-temperature plasma treatment, coating with a surfactant, or hydrophilization by sulfonation or grafting treatment with methyl methacrylate, etc. Processing may be performed. In particular, when the microporous membrane obtained according to the present invention is used as an aqueous microfilter or an electrolyte separator, it is preferable to perform a hydrophilic treatment.

本発明において、抽出後延伸する際に、延伸前あるいは
延伸中に上記の親水化処理を行なうことができる。こう
するとコスト性が向上するばかりか、処理が均一にでき
るので好ましい。
In the present invention, when stretching is performed after extraction, the above-mentioned hydrophilic treatment can be performed before or during stretching. This is preferable because it not only improves cost efficiency but also enables uniform processing.

以上の様にして得られたフィルムは、通常平均孔径が0
.05〜5μm1空孔率が50〜85%の範囲であり、
空孔の均一性の優れるばかりか、製法上、ボイド状の欠
点が生じることがなく、耐ピンホール性が良好であるた
めに、ミクロフィルター、電解コンデンサ、リチウム電
池等の電解液セパレータとして有用であるばかりか、本
フィルムを基体フィルムとして表層に例えば気体分離能
等の分離能を有する様な機能性膜のコーチングを行うこ
とにより、酸素富化膜、パーベーパレーション等の用途
等にも使用できる。
The film obtained in the above manner usually has an average pore size of 0.
.. 05-5μm1 porosity is in the range of 50-85%,
Not only does it have excellent pore uniformity, but due to the manufacturing process, no void-like defects occur, and it has good pinhole resistance, making it useful as an electrolyte separator for microfilters, electrolytic capacitors, lithium batteries, etc. Not only that, but by using this film as a base film and coating the surface with a functional membrane that has separation ability such as gas separation ability, it can also be used for applications such as oxygen enrichment membranes and pervaporation. .

[特性の測定方法及び効果の評価方法1次に本発明に関
する測定方法及び評価方法について、まとめて示す。
[Method of Measuring Characteristics and Method of Evaluating Effects 1] Next, the measuring methods and evaluation methods related to the present invention will be summarized.

(1)PPの極限粘度([η]) ASTM  D  1601に準拠し、試料0.10を
135℃のテトラリン100m1に完全溶解させ、この
溶液を粘度計で135℃の恒温槽中で、測定して比粘度
Sより次式にしたがって極限粘度を求める。
(1) Intrinsic viscosity of PP ([η]) According to ASTM D 1601, 0.10 of the sample was completely dissolved in 100 ml of tetralin at 135°C, and this solution was measured with a viscometer in a constant temperature bath at 135°C. The limiting viscosity is determined from the specific viscosity S according to the following formula.

[η]−8/(0,1x (1+0.22xS))(2
)  メルトインデックス(M I )P E : A
ST)1−D1238−651に従い測定する。
[η]-8/(0,1x (1+0.22xS))(2
) Melt index (M I ) P E : A
ST) 1-D1238-651.

P P : ASTH−01238−62Tに従い測定
する。
PP: Measured according to ASTH-01238-62T.

単位はいずれもg/10分 (3)PPのアイソタクチックインデックス(II) 試料を130℃で2時間真空乾燥する。これから重量W
(111g)の試料をとり、ソックスレー抽出器に入れ
、沸1In−へブタンで12時間抽出する。
All units are g/10 minutes (3) Isotactic index of PP (II) The sample is vacuum dried at 130° C. for 2 hours. From now on weight W
A sample of (111 g) was taken, placed in a Soxhlet extractor, and extracted with boiling ln-hebutane for 12 hours.

次に、この試料を取出し、アセトンで十分洗浄した後、
130℃で6時間真空乾燥し、その後重量W’  (1
11g>を測定し、次式で求める。
Next, take out this sample, wash it thoroughly with acetone, and then
Vacuum drying at 130°C for 6 hours, then weight W' (1
11g> is measured and calculated using the following formula.

1N%)−(W’ /W)X100 (4)  ポリオレフィンの融点及び溶融結晶化温度走
査型熱量計DSC−2型(Perkin E1mer社
製)を用い、試料5II9を窒素気流下で、昇温速度2
0℃/分にて室温より測定し、融解に伴う吸熱ピーク温
度を融点とする。
1N%) - (W' /W) 2
Measurement is performed from room temperature at 0°C/min, and the endothermic peak temperature accompanying melting is defined as the melting point.

引続き、280℃まで昇温し、5分間保持した侵に20
℃/分の降下速度にて温度を下げる過程で、ポリオレフ
ィンの結晶化に伴う潜熱のピーク温度を溶融結晶化温度
とする。
Subsequently, the temperature was raised to 280℃ and held for 5 minutes.
In the process of lowering the temperature at a rate of drop per minute, the peak temperature of latent heat accompanying crystallization of the polyolefin is defined as the melt crystallization temperature.

(5)  有機固体(I)の融点 ASTM−E−28に従い測定する。(5) Melting point of organic solid (I) Measured according to ASTM-E-28.

(6)  有機固体(If>の分子量 蒸気圧浸透圧法により測定される分子量(Mn)とする
(6) Molecular weight of organic solid (If> Molecular weight (Mn) measured by vapor pressure osmotic pressure method.

(7)MDC長手方向)強度 サンプル長手方向(MD)の破断強度をJISK678
2に従い測定し、kg/15mm+で表す。
(7) MDC longitudinal direction) strength Sample longitudinal direction (MD) breaking strength of JISK678
2 and expressed in kg/15mm+.

<8)ESR(等価直列抵抗) 特開昭61−187221号に記載された方法に基づき
、γブチロラクトン+トリエチルアミン+7タル酸を溶
解し、3.1mS/cm (25℃)の電解液を用意し
た。サンプルを30〜35mm角に切り取り、該電解液
を含浸し空孔のほぼ1゜0%を電解液で置換後、5枚重
ねとして白金黒処理白金電極にはさみ測定し、各シート
当たりのESRを求めた。
<8) ESR (Equivalent Series Resistance) Based on the method described in JP-A-61-187221, γ-butyrolactone + triethylamine + 7-talic acid was dissolved to prepare an electrolytic solution of 3.1 mS/cm (25°C). . The sample was cut into 30-35 mm squares, impregnated with the electrolyte solution, and approximately 1.0% of the pores were replaced with the electrolyte solution.The samples were then stacked as 5 sheets and measured between platinum black-treated platinum electrodes, and the ESR of each sheet was measured. I asked for it.

ここで、比較サンプルとして電解コンデンサ紙(v二’
51MER2,5−50)(7)ESR値を比較値とし
て、該マニラ紙未満のESRを有する微孔性膜を01該
マニラ紙以上のESRを有する微孔性膜をXと評価した
Here, electrolytic capacitor paper (v2'
51 MER2, 5-50) (7) Using the ESR value as a comparison value, a microporous membrane having an ESR of less than the manila paper was evaluated as 01. A microporous membrane having an ESR of more than the manila paper was evaluated as X.

なお、測定条件は以下の通りであった。Note that the measurement conditions were as follows.

(a)電極:白金黒処理白金電極(25mm角)測定荷
重240g (b)インピーダンス測定機 AG−4311LCRMETER(空腔電気(株)製) 測定条件:1kHz、25℃ (9)  平均孔径 水銀ポロシメータ(HICRO)lER,ITIcs社
製 PORESIZER9300)により、微細孔直径
の分布を測定し、数平均を平均孔径とした。
(a) Electrode: Platinum black treated platinum electrode (25 mm square) Measuring load: 240 g (b) Impedance measuring device AG-4311LCRMETER (manufactured by Kuuken Denki Co., Ltd.) Measurement conditions: 1 kHz, 25°C (9) Average pore diameter mercury porosimeter ( The distribution of micropore diameters was measured using HICRO)lER, PORESIZER9300 (manufactured by ITIcs), and the number average was taken as the average pore diameter.

6φ 空孔率(P「) 試料(10x10cm>を流動パラフィンに24時間浸
漬し、表層の流動パラフィンを十分に拭きとった後の重
量(W2)を測定し、該試料の浸漬前の重量(Wl)流
動パラフィンの密度(ρ)より空孔体積(Vo )を次
式で求める。
6φ Porosity (P'') A sample (10 x 10 cm) was immersed in liquid paraffin for 24 hours, the weight (W2) was measured after wiping off the liquid paraffin on the surface layer, and the weight of the sample before immersion (Wl ) The pore volume (Vo) is determined from the density (ρ) of liquid paraffin using the following formula.

Vo −(W2−Wl)#) 空孔率(P「)は、見掛は体積(厚み、寸法より計算さ
れる値)■と空孔体積■Oより計算される。
Vo - (W2-Wl)#) The porosity (P'') is calculated from the apparent volume (a value calculated from thickness and dimensions) ■ and the pore volume ■O.

Pr−Vo/VXI00 (%) 01)  ドラフト比 押出機口金の断面積(Sl)とキャストされたシート状
もしくはチューブ状物の断面積(S2)との比Sl /
32で定義する。
Pr-Vo/VXI00 (%) 01) Draft ratio The ratio of the cross-sectional area of the extruder die (Sl) to the cross-sectional area of the cast sheet or tube-like product (S2) Sl /
Defined in 32.

(ロ)実施例中のブレンド物の構成比 実施例中のブレンド物の構成比は、各ブレンド組成物の
重量比と真比重より換算したものである。
(b) Composition ratio of blends in Examples The composition ratios of blends in Examples are calculated from the weight ratio and true specific gravity of each blend composition.

01  ポリオレフィンの重量平均分子!(MW)ゲル
パーミェーションクロマトグラフによる。
01 Weight average molecule of polyolefin! (MW) by gel permeation chromatography.

装置: GPC−150C(WATER3社製)カラム
: 5hodex KF−80M(昭和電工社製)溶媒
二〇−ジクロロベンゼン 分子量校正:単分散ポリスチレン (ロ)有機固体(II)の融点:前出のDSC法により
測定する。
Apparatus: GPC-150C (manufactured by WATER3) Column: 5hodex KF-80M (manufactured by Showa Denko) Solvent 20-dichlorobenzene Molecular weight calibration: Monodisperse polystyrene (b) Melting point of organic solid (II): Previous DSC method Measured by

[実施例] 次に本発明について、実施例に基づき、説明する。[Example] Next, the present invention will be explained based on examples.

(原料の調製) 表1に示すように、ポリプロピレン(PP)パウダー(
いずれも、三井ノープレンパウダー)、有機固体(I>
として、ジシクロへキシルフタレート(DCHP)、ト
リフェニルホスフェイト(TPP)、DOP (ジオク
チルフタレート)。
(Preparation of raw materials) As shown in Table 1, polypropylene (PP) powder (
Both are Mitsui Noprene Powder), organic solid (I>
as dicyclohexyl phthalate (DCHP), triphenyl phosphate (TPP), DOP (dioctyl phthalate).

低分子量ポリスチレン(“ハイマー”5T−75゜三洋
化成(株)製)、有機固体(II)として、無水フタル
酸、低分子量ポリプロピレン(ビスコール660−P)
とを用意し、2軸スクリユ一押出機を用い溶融ブレンド
し、ベレット化した。なお、DOPを添加する際には、
無機微粒子(“アエロジル”200日本アエロジル(株
)製)に予めり。
Low molecular weight polystyrene (“Himer” 5T-75゜ manufactured by Sanyo Kasei Co., Ltd.), phthalic anhydride as organic solid (II), low molecular weight polypropylene (Viscol 660-P)
were prepared and melt-blended using a twin-screw extruder to form pellets. In addition, when adding DOP,
Inorganic fine particles (“Aerosil” 200 manufactured by Nippon Aerosil Co., Ltd.) are preliminarily applied.

Pを吸着させ、樹脂パウダーに添加した。P was adsorbed and added to the resin powder.

実施例1〜3 原料Aを用い、4φmm押出機よりTダイを用いシート
状に溶融押出し、ドラフト比6にて、90℃のキャステ
ィングドラム上にタングステン線に5kvの直流電圧を
印加して密着させつつ冷却固化した(静電印加法、実施
例1)。また、静電印加を行わないで、同様な条件で冷
却固化した(実施例2)。
Examples 1 to 3 Using raw material A, melt-extrude it into a sheet using a T-die from a 4φmm extruder, and apply a DC voltage of 5 kV to a tungsten wire on a casting drum at 90°C at a draft ratio of 6 to make it adhere. The mixture was cooled and solidified (electrostatic application method, Example 1). In addition, it was cooled and solidified under the same conditions without electrostatic application (Example 2).

さらに、溶融シートを、水槽(50℃、水)に導き、ド
ラフト比7にて導きながら、冷却固化した(実施例3)
Furthermore, the molten sheet was introduced into a water tank (50°C, water) and cooled and solidified while being introduced at a draft ratio of 7 (Example 3)
.

以上の様にして得られたキャストフィルムを40℃の1
−1−1トリクロルエタン抽出槽に導き、2分間の抽出
時間を保ちながら、添加したDCHPの99%以上を抽
出し、100℃にて溶媒を乾燥後巻きとった。
The cast film obtained in the above manner was heated to 1°C at 40°C.
-1-1 The sample was introduced into a trichloroethane extraction tank, and 99% or more of the added DCHP was extracted while maintaining an extraction time of 2 minutes. After drying the solvent at 100°C, the sample was rolled up.

こうして得られた抽出フィルムをロール式延伸装置を用
い130℃にて、3.5倍に長手方向(MD)に延伸し
、引き続きステンターに導き幅方向(TD)に延伸温度
135℃、延伸速度500%/分にて1.4倍に延伸侵
、幅方向に5%のリラックスを許しながら140℃にて
熱固定し巻きとった。
The extracted film thus obtained was stretched 3.5 times in the longitudinal direction (MD) at 130°C using a roll-type stretching device, and then introduced into a stenter and stretched in the transverse direction (TD) at a temperature of 135°C and a stretching speed of 500. The film was stretched 1.4 times at a rate of %/min, heat-set at 140° C. while allowing 5% relaxation in the width direction, and then wound up.

以上のようにして、得られたフィルムの製造条件及び特
性を表2にまとめて示すが、機械特性、に優れ、電解コ
ンデンサー紙よりも優れた抵抗特性を有する微孔性膜で
あることがわかる。
The manufacturing conditions and properties of the film obtained as described above are summarized in Table 2, and it can be seen that it is a microporous film with excellent mechanical properties and resistance properties superior to electrolytic capacitor paper. .

比較例1 原料として表1のC(PP+DOP+アエロジル200
)を用い、実施例1で用いた押出し装置を用いキャステ
ィングドラムにて冷却固化を試みたが、溶融物の押出し
安定性に劣るために、250μm以下の薄いキャストフ
ィルムは得られなかった(ドラフト比2)。また、ドラ
ム密着性に劣るために小径ロールにてドラム面に軽く押
圧しながら成形した。つぎに、実施例1で用いた抽出槽
に導き、添加したDOPの99%以上を抽出するため6
分必要であった。
Comparative Example 1 C (PP+DOP+Aerosil 200) in Table 1 was used as raw material.
) and tried cooling and solidifying it in a casting drum using the extrusion device used in Example 1, but a thin cast film of 250 μm or less could not be obtained due to poor extrusion stability of the melt (draft ratio 2). In addition, since the drum adhesion was poor, the molding was performed while lightly pressing the drum surface with a small diameter roll. Next, the DOP was introduced into the extraction tank used in Example 1, and in order to extract more than 99% of the added DOP,
It was necessary.

こうして得られた抽出フィルムを実施例1〜3と同様に
延伸した。ただし延伸性を良好とするために延伸温度を
それぞれ135℃(MD延伸)、145℃(TD延伸)
とした。
The thus obtained extraction film was stretched in the same manner as in Examples 1-3. However, in order to improve the stretchability, the stretching temperature was set to 135°C (MD stretching) and 145°C (TD stretching), respectively.
And so.

こうして得られたフィルムの特性を表2に示すが、MD
強度が小さ、いぼかりか、ESRに劣り、微細孔の連続
性に劣ることが分る。ざらに、部分的に無機微粒子の凝
集物によるボイド状欠点を有していた。
The properties of the film thus obtained are shown in Table 2, and MD
It can be seen that the strength is small, the surface is uneven, the ESR is poor, and the continuity of micropores is poor. In general, there were some void-like defects due to aggregates of inorganic fine particles.

実施例4 原料として、表1のBを用い、ドラフト比20にて68
℃の水槽に導いて冷却固化し、厚み60μmのキャスト
フィルムを得た。
Example 4 Using B in Table 1 as the raw material, at a draft ratio of 20, 68
The mixture was introduced into a water bath at 0.degree. C. and cooled and solidified to obtain a cast film with a thickness of 60 .mu.m.

引続き実施例1の抽出装置で、添加したDCHPの99
%以上を抽出し、乾燥後巻きとった。
Subsequently, in the extraction apparatus of Example 1, 99% of the added DCHP was extracted.
% or more was extracted, dried and rolled up.

こうして得られた抽出フィルムをロール式延伸装置を用
い135℃にて、3.0倍に長手方向(MD)に200
0%/分の延伸速度で延伸し、長手方向に5%のリラッ
クスを許しながら150℃にて熱固定し巻きとった。こ
うして、得られたフィルムの特性を表2に示すが、ES
Rに優れ連続貫通孔性に優れていることがわかる。
The extracted film thus obtained was stretched 3.0 times by 200° in the longitudinal direction (MD) at 135°C using a roll-type stretching device.
The film was stretched at a stretching speed of 0%/min, heat-set at 150° C. while allowing 5% relaxation in the longitudinal direction, and wound up. The properties of the film thus obtained are shown in Table 2, and the ES
It can be seen that it has excellent R and continuous through-hole properties.

比較例2 原料として表1のDを用い、水槽温度を80℃とした以
外は実施例3と同様に冷却固化し巻きとった。引続き1
−1−1トリクロルエタン抽出槽に導き抽出を行ったが
、添加した低分子量ポリスチレンの99%以上を抽出す
るために20分必要とした。次にこうして得られた抽出
フィルムを、138℃にて3.0倍に延伸し引続き14
5℃にて5%のリラックスを許しながら熱固定し、巻き
とった。
Comparative Example 2 D was used as the raw material in Table 1, and the material was cooled, solidified, and wound in the same manner as in Example 3, except that the water tank temperature was 80°C. Continued 1
-1-1 The mixture was introduced into a trichloroethane extraction tank and extracted, but it took 20 minutes to extract more than 99% of the added low molecular weight polystyrene. Next, the extracted film thus obtained was stretched to 3.0 times at 138°C and then stretched to 14
It was heat-set at 5° C. while allowing 5% relaxation, and then rolled up.

こうして得られた微孔性フィルムの特性を表2に示すが
、ESRに劣り、連続貫通孔性に劣ることがわかる。
The properties of the microporous film thus obtained are shown in Table 2, and it can be seen that the ESR is poor and the continuous pores are poor.

[発明の効果] 本発明は、ポリオレフィン微孔性膜を得る方法として、
該ポリオレフィンに添加する有機固体(I)の分子構造
を規定し、しかも融点が105℃以上該ポリオレフィン
の融点以下の有機固体(II)を添加し、少なくとも有
機固体(1)を抽出する方法を採用することにより、次
の様な効果を奏するものである。
[Effects of the Invention] The present invention provides a method for obtaining a polyolefin microporous membrane, including:
A method is adopted in which the molecular structure of the organic solid (I) to be added to the polyolefin is defined, and an organic solid (II) having a melting point of 105°C or higher and a melting point of the polyolefin or lower is added and at least organic solid (1) is extracted. By doing so, the following effects can be achieved.

(1)  再抽出物質の添加のために無機微粒子等の添
加側物質が必要となくなり、製造できる微孔性膜にフィ
ツシアイ状の欠点がないばかりか、溶融押出時のチクソ
トロピー性をベースポリオレフィンと比較し著しく損な
うことがなく、多くのポリオレフィンに対し適用できる
(1) Additive materials such as inorganic fine particles are no longer required due to the addition of re-extracted substances, and the microporous membrane that can be produced not only does not have fissure-like defects, but also has thixotropy during melt extrusion compared to base polyolefin. It can be applied to many polyolefins without causing significant damage.

(2)  キャスト時の相分離構造の均一性、連続性に
優れるために、製造できる微孔のサイズの均−性及び厚
み方向の連続貫通孔性にすぐれ、電解コンデンサ、電池
等のセパレータとして使用した際に内部抵抗が小さく優
れた特性を発揮する。
(2) Due to the excellent uniformity and continuity of the phase separation structure during casting, it has excellent uniformity in the size of the micropores that can be produced and continuous pores in the thickness direction, and is used as separators for electrolytic capacitors, batteries, etc. It exhibits excellent characteristics with low internal resistance when

(3)  孔径、空孔率等の微孔特性のキャスト温度依
存性が小ざく常に再現性の良い均一な微孔性膜が製造可
能となった。
(3) It has become possible to produce a uniform microporous membrane with good reproducibility, in which the dependence of microporous properties such as pore diameter and porosity on casting temperature is small.

Claims (6)

【特許請求の範囲】[Claims] (1)連続した微細孔を有するポリオレフィン微孔性膜
の製造方法であつて、ポリオレフィン100容量部に、
融点が35〜100℃、分子量が200〜1000で、
かつ分子構造中に分極性及び極性基を含有する有機固体
( I )を80〜180容量部、および融点が105℃
以上、該ポリオレフィンの融点+50℃以下の有機固体
(II)を0.01〜20容量部添加し溶融押出成形後、
少なくとも有機固体( I )を抽出するポリオレフィン
微孔性膜の製造方法。
(1) A method for producing a polyolefin microporous membrane having continuous micropores, the method comprising: adding 100 parts by volume of polyolefin to
The melting point is 35-100°C, the molecular weight is 200-1000,
and 80 to 180 parts by volume of an organic solid (I) containing polarizable and polar groups in its molecular structure, and a melting point of 105°C.
As mentioned above, after adding 0.01 to 20 parts by volume of organic solid (II) having a melting point of the polyolefin +50°C or less, and melt extrusion molding,
A method for producing a polyolefin microporous membrane for extracting at least an organic solid (I).
(2)溶融押出し後の冷却・固化を水槽中で行なうこと
を特徴とする請求項1記載のポリオレフィン微孔性膜の
製造方法。
(2) The method for producing a polyolefin microporous membrane according to claim 1, wherein cooling and solidification after melt extrusion are performed in a water bath.
(3)溶融押出しを、T型ダイにより行ない、かつ冷却
・固化をドラム上で行ない、かつ静電印加により溶融物
を該ドラム上に押圧することを特徴とする請求項1記載
のポリオレフィン微孔性膜の製造方法。
(3) The polyolefin micropores according to claim 1, wherein the melt extrusion is performed using a T-shaped die, cooling and solidification are performed on a drum, and the melt is pressed onto the drum by electrostatic application. Method for producing sexual membranes.
(4)溶融押出し時のドラフト比が4以上であることを
特徴とする請求項1〜3のいずれかに記載のポリオレフ
ィン微孔性膜の製造方法。
(4) The method for producing a polyolefin microporous membrane according to any one of claims 1 to 3, wherein the draft ratio during melt extrusion is 4 or more.
(5)少なくとも有機固体( I )を抽出後、少なくと
も一軸に1.5〜10倍延伸する工程を含むことを特徴
とする請求項1記載の微孔性膜の製造方法。
(5) The method for producing a microporous membrane according to claim 1, further comprising the step of stretching at least uniaxially by 1.5 to 10 times after extracting at least the organic solid (I).
(6)延伸する際の引き伸ばし速度が5000%/分以
下であることを特徴とする請求項5記載のポリオレフィ
ン微孔性膜の製造方法。
(6) The method for producing a polyolefin microporous membrane according to claim 5, wherein the stretching speed during stretching is 5000%/min or less.
JP63047878A 1988-03-01 1988-03-01 Production of microcellular polyolefin film Pending JPH01223136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047878A JPH01223136A (en) 1988-03-01 1988-03-01 Production of microcellular polyolefin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047878A JPH01223136A (en) 1988-03-01 1988-03-01 Production of microcellular polyolefin film

Publications (1)

Publication Number Publication Date
JPH01223136A true JPH01223136A (en) 1989-09-06

Family

ID=12787643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047878A Pending JPH01223136A (en) 1988-03-01 1988-03-01 Production of microcellular polyolefin film

Country Status (1)

Country Link
JP (1) JPH01223136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202829A (en) * 2009-03-05 2010-09-16 Asahi Kasei E-Materials Corp Method of manufacturing polyolefin microporous film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202829A (en) * 2009-03-05 2010-09-16 Asahi Kasei E-Materials Corp Method of manufacturing polyolefin microporous film

Similar Documents

Publication Publication Date Title
JP4121846B2 (en) Polyolefin microporous membrane and production method and use thereof
KR100667052B1 (en) Microporous Polyolefin Membrane And Method For Producing The Same
TWI403549B (en) Method for preparing a microporous polyolefin membrane and the microporous polyolefin membrane
JP5283379B2 (en) Polyolefin microporous membrane and method for producing the same
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
US8313678B2 (en) Preparing method of microporous high density polyethylene film
JP5005387B2 (en) Method for producing polyolefin microporous membrane
JP5342775B2 (en) Method for producing polyolefin microporous membrane and microporous membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
KR101354708B1 (en) Method of manufacturing a multi-component separator film with ultra high molecule weight polyethylene for lithium secondary battery and a multi-component separator film for lithium secondary battery therefrom
WO2018173904A1 (en) Microporous polyolefin membrane and battery including same
JP2513786B2 (en) Polyolefin microporous film
JP2001200082A (en) Polyethylene microporous membrane and its manufacturing method
JPH01223136A (en) Production of microcellular polyolefin film
JP2541262B2 (en) Polyolefin Microporous Membrane and Electrolyte Separator
JPS63205332A (en) Production of microporous polyolefin film
JPH0192243A (en) Production of polyolefin porous membrane
JP2005209452A (en) Method for producing microporous membrane and use of microporous membrane to be obtained by that producing method
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JP2000248088A (en) Polyolefin microporous membrane and its production
JP2000348706A (en) Separator for battery
JP2569670B2 (en) Polypropylene microporous film and battery separator
JPH01221440A (en) Microporous polypropylene film
JPH01201342A (en) Production of hydrophilic microporous polyolefin film
JPH09302120A (en) Production of finely porous membrane of polyolefin