JPH09302120A - Production of finely porous membrane of polyolefin - Google Patents

Production of finely porous membrane of polyolefin

Info

Publication number
JPH09302120A
JPH09302120A JP8137453A JP13745396A JPH09302120A JP H09302120 A JPH09302120 A JP H09302120A JP 8137453 A JP8137453 A JP 8137453A JP 13745396 A JP13745396 A JP 13745396A JP H09302120 A JPH09302120 A JP H09302120A
Authority
JP
Japan
Prior art keywords
polyolefin
molecular weight
die
weight
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8137453A
Other languages
Japanese (ja)
Other versions
JP3641321B2 (en
Inventor
Kotaro Takita
耕太郎 滝田
Koichi Kono
公一 河野
Norimitsu Kaimai
教充 開米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP13745396A priority Critical patent/JP3641321B2/en
Publication of JPH09302120A publication Critical patent/JPH09302120A/en
Application granted granted Critical
Publication of JP3641321B2 publication Critical patent/JP3641321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing the subject mambrane high in strength, useful as a separator for batteries, etc., at a low cost in high productivity, by heating and drawing a solution of an ultrahigh molecular weight polyolefin. SOLUTION: A solution comprising 10-80% of a polyolefin composition containing >=1wt.% of an ultrahigh molecular weight polyolefin having >=7×10<5> weight-average molecular weight and 90-20wt.% of a solution is prepared. The solution is extruded from a die having 0.5-2.5mm die gap at 120-250 deg.C die temperature into a sheet shape, drawn at a draw ratio of 110-5,000% while cooling to form a gelatinous molding. The gelatinous molding is heated and drawn at least in the uniaxial direction at 5-50 times and then the residual solvent is removed. Preferably the solution is extruded from a die having 1.5-2.5mm die gap at 160-230 deg.C die temperature into a sheet shape and drawn at 110-1,000% draw ratio while cooling to form a gelatinous molding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超高分子量ポリオ
レフィンを含有するポリオレフィン組成物からなる微多
孔膜を製造する方法に関し、特に高強度のポリオレフィ
ン微多孔膜を低コスト及び高い生産性で製造する方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a microporous membrane composed of a polyolefin composition containing an ultrahigh molecular weight polyolefin, and particularly to produce a high-strength microporous polyolefin membrane at low cost and with high productivity. Regarding the method.

【0002】[0002]

【従来の技術】微多孔膜は、電池用セパレーター、電解
コンデンサー用隔膜、各種フィルター、透湿防水衣料、
逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種用途に
用いられている。
2. Description of the Related Art Microporous membranes are used for battery separators, electrolytic capacitor diaphragms, various filters, moisture-permeable waterproof clothing,
It is used for various applications such as reverse osmosis filtration membrane, ultrafiltration membrane, and microfiltration membrane.

【0003】超高分子量ポリオレフィンを用いた高強度
の微多孔膜の製造法が種々提案されている。例えば、特
開昭60−242035号、特開昭61−495312
号、特開昭61−195133号、特開昭63−396
02号、特開昭63−273651号等には、超高分子
量ポリオレフィンを含むポリオレフィン組成物を溶媒に
加熱溶解した溶液からゲル状シートを成形し、前記ゲル
状シートを加熱延伸、溶媒の抽出除去による微多孔膜を
製造する方法が記載されている。
Various methods for producing a high-strength microporous membrane using an ultrahigh molecular weight polyolefin have been proposed. For example, JP-A-60-242035 and JP-A-61-495312
JP-A-61-195133, JP-A-63-396
02, JP-A-63-273651, etc., a gel-like sheet is formed from a solution obtained by heating and dissolving a polyolefin composition containing an ultrahigh molecular weight polyolefin, and the gel-like sheet is heated and stretched, and the solvent is extracted and removed. Describes a method for producing a microporous membrane.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記発
明においては、ゲル状シートを逐次または同時の二軸延
伸法によって微細な孔を多数形成させており、高倍率の
二軸延伸によらなければ、高強度で微細で孔径分布のシ
ャープな孔を持つ微多孔膜が得られないためにコスト及
び生産性に問題があった。
However, in the above invention, a large number of fine pores are formed in the gel-like sheet by a sequential or simultaneous biaxial stretching method. There is a problem in cost and productivity because a microporous membrane having high strength, fine pores with a sharp pore size distribution cannot be obtained.

【0005】したがって、本発明は、従来知られている
微多孔膜の製造方法のこのような問題点を改良するもの
で、微細孔を有する高強度のポリオレフィン微多孔膜を
低コスト及び高い生産性で製造する方法を提供すること
である。
Therefore, the present invention solves the above-mentioned problems in the conventional method for producing a microporous membrane, and provides a high-strength polyolefin microporous membrane having fine pores at low cost and high productivity. It is to provide a method of manufacturing in.

【0006】[0006]

【課題を解決するための手段】本発明者らは、超高分子
量ポリオレフィンの溶液を特定の条件下で剪断結晶化を
行いながらシート状に押し出して、特定の引取り比で得
られたゲル状シートを、特定の範囲で少なくとも一軸方
向に延伸することにより、低コストで、生産性が高く高
強度の微多孔膜が得られることを見い出し、本発明に想
到した。
Means for Solving the Problems The present inventors have extruded a solution of an ultrahigh molecular weight polyolefin into a sheet form while performing shear crystallization under a specific condition, and obtain a gel form obtained at a specific take-up ratio. It was found that a microporous membrane with low cost, high productivity and high strength can be obtained by stretching a sheet in at least a uniaxial direction within a specific range, and conceived the present invention.

【0007】すなわち、本発明は、重量平均分子量7×
105 以上の超高分子量ポリオレフィン成分を1重量%
以上含有するポリオレフィン組成物10〜80重量%
と、溶媒90〜20重量%からなる溶液を調製し、前記
溶液をダイギャップが0.5〜2.5mmのダイから、
ダイ温度が120〜250℃でシート状に押し出し、冷
却しながら引取り比110〜5000%で引取り、ゲル
状成形物を形成し、ゲル状成形物を少なくとも一軸方向
に5〜50倍に加熱延伸し、しかる後残存する溶媒を除
去することを特徴とするポリオレフィン微多孔膜の製造
方法である。
That is, the present invention has a weight average molecular weight of 7 ×
1% by weight of 10 5 or more ultra high molecular weight polyolefin component
Polyolefin composition containing 10 to 80% by weight
And a solution consisting of 90 to 20% by weight of a solvent are prepared, and the solution is applied from a die having a die gap of 0.5 to 2.5 mm,
Extrude into a sheet at a die temperature of 120 to 250 ° C., take it off with cooling at a take-up ratio of 110 to 5000% to form a gel-like molded article, and heat the gel-like molded article 5 to 50 times in at least one axial direction. A method for producing a polyolefin microporous membrane, which comprises stretching and then removing the remaining solvent.

【0008】[0008]

【発明の実施の形態】本発明を以下に詳細に説明する。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below.

【0009】本発明において製造するポリオレフィン微
多孔膜は、重量平均分子量7×105 以上の成分を1重
量%以上含有するポリオレフィンからなる。ポリオレフ
ィン中に重量平均分子量7×105 以上の成分が1重量
%未満では、延伸性の向上に寄与する超高分子量ポリオ
レフィンの分子鎖の絡み合いが不十分となるので、強度
を十分に向上させるのが困難となる。一方、超高分子量
成分の含有率の上限は特に限定的ではないが、90重量
%を超えると目的とするポリオレフィン溶液の高濃度化
の達成及び延伸が困難となるため好ましくない。なお、
上記ポリオレフィンは分子量1×103 以下の成分を実
質的に含有しないのが好ましい。また、上記ポリオレフ
ィンの分子量分布(重量平均分子量/数平均分子量)は
300以下、特に5〜50であるのが好ましい。分子量
分布が300を超えると、延伸時に低分子量成分の破断
が起こり膜全体の強度が低下するため好ましくない。上
記ポリオレフィンとしては、エチレン、プロピレン、1
−ブテン、4−メチル−ペンテン−1、1−ヘキセンな
どを重合した結晶性の単独重合体、2段重合体、又は共
重合体及びこれらのブレンド物等が挙げられる。これら
のうちではポリプロピレン、ポリエチレン(特に高密度
ポリエチレン)及びこれらの組成物等が好ましい。
The polyolefin microporous membrane produced in the present invention comprises a polyolefin containing 1% by weight or more of a component having a weight average molecular weight of 7 × 10 5 or more. If the content of the component having a weight average molecular weight of 7 × 10 5 or more in the polyolefin is less than 1% by weight, the entanglement of the molecular chains of the ultrahigh molecular weight polyolefin that contributes to the improvement of the stretchability is insufficient, so that the strength is sufficiently improved. Will be difficult. On the other hand, the upper limit of the content of the ultrahigh molecular weight component is not particularly limited, but if it exceeds 90% by weight, it is difficult to achieve the desired high concentration of the polyolefin solution and to stretch it, which is not preferable. In addition,
It is preferable that the polyolefin does not substantially contain a component having a molecular weight of 1 × 10 3 or less. Further, the molecular weight distribution (weight average molecular weight / number average molecular weight) of the above polyolefin is preferably 300 or less, particularly preferably 5 to 50. When the molecular weight distribution exceeds 300, the low molecular weight component is broken during stretching and the strength of the entire film is reduced, which is not preferable. As the above-mentioned polyolefin, ethylene, propylene, 1
Examples include crystalline homopolymers obtained by polymerizing butene, 4-methyl-pentene-1, 1-hexene and the like, two-stage polymers, copolymers and blends thereof. Among these, polypropylene, polyethylene (particularly high-density polyethylene), and compositions thereof are preferred.

【0010】このポリオレフィンは、上記分子量及び分
子量分布を有していれば、多段重合によるものであって
も、2種以上のポリオレフィンによる組成物であって
も、いずれでもよい。
As long as the polyolefin has the above-mentioned molecular weight and molecular weight distribution, it may be one obtained by multi-stage polymerization or a composition of two or more kinds of polyolefins.

【0011】多段重合の場合、例えば、重量平均分子量
が7×105 以上の超高分子量成分を1重量%以上含有
し、かつ分子量分布が300以下となるように、オレフ
ィンを多段重合することにより製造することができる。
多段重合法としては、二段重合により、高分子量部分と
低分子量部分とを製造する方法を採用するのが好まし
い。
In the case of multi-stage polymerization, for example, multi-stage polymerization of olefins is carried out so that the ultra-high molecular weight component having a weight average molecular weight of 7 × 10 5 or more is contained in an amount of 1 wt% or more and the molecular weight distribution is 300 or less. It can be manufactured.
As the multistage polymerization method, it is preferable to adopt a method of producing a high molecular weight portion and a low molecular weight portion by two-stage polymerization.

【0012】また、2種以上のポリオレフィンによる組
成物の場合、前記オレフィンの単独重合体又は共重合体
で重量平均分子量が7×105 以上の超高分子量ポリオ
レフィンと、重量平均分子量が7×105 未満のポリオ
レフィンとを分子量分布が上記範囲となるように、適量
混合することによって得ることができる。
In the case of a composition comprising two or more kinds of polyolefins, a homopolymer or copolymer of the above-mentioned olefins, an ultrahigh molecular weight polyolefin having a weight average molecular weight of 7 × 10 5 or more, and a weight average molecular weight of 7 × 10 5. It can be obtained by mixing an appropriate amount of a polyolefin having a molecular weight of less than 5 so that the molecular weight distribution falls within the above range.

【0013】組成物の場合、ポリオレフィン組成物中の
超高分子量ポリオレフィンの含有量は、ポリオレフィン
組成物全体を100重量%として、1重量%以上であ
る。超高分子量ポリオレフィンの含有量が1重量%未満
では、延伸性の向上に寄与するところが不十分である。
一方、上限は特に限定的ではない。
In the case of the composition, the content of the ultrahigh molecular weight polyolefin in the polyolefin composition is 1% by weight or more based on 100% by weight of the entire polyolefin composition. When the content of the ultra high molecular weight polyolefin is less than 1% by weight, it is insufficient to contribute to the improvement of stretchability.
On the other hand, the upper limit is not particularly limited.

【0014】また、ポリオレフィン組成物中の超高分子
量ポリオレフィン以外のポリオレフィン(重量平均分子
量が7×105 未満のポリオレフィン)の分子量の下限
としては、1×104 以上のものが好ましい。重量平均
分子量が1×104 未満のポリオレフィンを用いると、
延伸時に破断が起こりやすく、目的の微多孔膜がえられ
ないので好ましくない。したがって重量平均分子量が1
×105 以上7×105 未満のポリオレフィンを超高分
子量ポリオレフィンに配合するのが好ましい。なお、上
述したような超高分子量成分を含有するポリオレフィン
には、必要に応じて、酸化防止剤、紫外線吸収剤、アン
チブロッキング剤、顔料、染料、無機充填材などの各種
添加剤を本発明の目的を損なわない範囲で添加すること
ができる。
The lower limit of the molecular weight of the polyolefin other than the ultrahigh molecular weight polyolefin (polyolefin having a weight average molecular weight of less than 7 × 10 5 ) in the polyolefin composition is preferably 1 × 10 4 or more. When a polyolefin having a weight average molecular weight of less than 1 × 10 4 is used,
It is not preferable because breakage easily occurs during stretching and the desired microporous membrane cannot be obtained. Therefore, the weight average molecular weight is 1
× preferably blended with 10 5 or more 7 × 10 5 less than the polyolefin ultra high molecular weight polyolefin. In addition, the polyolefin containing the ultrahigh molecular weight component as described above, if necessary, various additives such as antioxidants, ultraviolet absorbers, antiblocking agents, pigments, dyes, inorganic fillers of the present invention. It can be added in a range that does not impair the purpose.

【0015】本発明の微多孔膜の製造方法は、上述のポ
リオレフィン組成物を溶媒に加熱溶解することにより、
溶液を調製する。この溶媒としては、ノナン、デカン、
デカリン、p−キシレン、ウンデカン、ドデカン、流動
パラフィンなどの脂肪族または環式の炭化水素、あるい
は沸点がこれらに対応する鉱油留分などを用いることが
できる。またこの溶媒の粘度としては、25℃における
粘度が30〜500cSt、特に50〜200cStで
あるのが好ましい。25℃における粘度が30cSt未
満では、不均一吐出を生じ、混練が困難であり、一方5
00cStを超えると、後工程での脱溶媒が容易でなく
なる。
The method for producing a microporous membrane of the present invention comprises heating and dissolving the above polyolefin composition in a solvent,
Prepare solution. Nonane, decane,
An aliphatic or cyclic hydrocarbon such as decalin, p-xylene, undecane, dodecane, liquid paraffin, or a mineral oil fraction having a boiling point corresponding thereto can be used. The viscosity of the solvent at 25 ° C. is preferably 30 to 500 cSt, particularly preferably 50 to 200 cSt. If the viscosity at 25 ° C. is less than 30 cSt, non-uniform discharge occurs, and kneading is difficult.
If it exceeds 00 cSt, it will not be easy to remove the solvent in the subsequent step.

【0016】加熱溶解は、ポリエチレン組成物を溶媒中
で完全に溶解する温度で攪拌しながら行うか、又は押出
機中で均一混合して溶解する方法で行う。溶媒中で攪拌
しながら溶解する場合は、温度は使用する重合体及び溶
媒により異なるが、例えばポリエチレン組成物の場合に
は140〜250℃の範囲である。ポリオレフィン組成
物の高濃度溶液から微多孔膜を製造する場合は、押出機
中で溶解するのが好ましい。
The heating dissolution is carried out by stirring the polyethylene composition at a temperature at which it is completely dissolved in a solvent, or by uniformly mixing and dissolving it in an extruder. When dissolved in a solvent while stirring, the temperature varies depending on the polymer and solvent used, but in the case of a polyethylene composition, for example, it is in the range of 140 to 250 ° C. When producing a microporous membrane from a high-concentration solution of the polyolefin composition, it is preferable to dissolve it in an extruder.

【0017】押出機中で溶解する場合は、まず押出機に
上述したポリオレフィンを供給し、溶融する。溶融温度
は、使用するポリオレフィンの種類によって異なるが、
ポリオレフィンの融点+30〜100℃が好ましい。例
えば、ポリエチレンの場合は160〜230℃、特に1
70〜200℃であるのが好ましく、ポリプロピレンの
場合は190〜270℃、特に190〜250℃である
のが好ましい。次に、この溶融状態のポリオレフィンに
対して、液状の溶媒を押出機の途中から供給する。
In the case of melting in the extruder, first, the above-mentioned polyolefin is supplied to the extruder and melted. The melting temperature depends on the type of polyolefin used,
The melting point of polyolefin +30 to 100 ° C is preferable. For example, in the case of polyethylene, 160 to 230 ° C, especially 1
It is preferably 70 to 200 ° C, and in the case of polypropylene, 190 to 270 ° C, particularly 190 to 250 ° C. Next, a liquid solvent is supplied to the molten polyolefin from the middle of the extruder.

【0018】ポリオレフィンと溶媒との配合割合は、ポ
リオレフィンと溶媒の合計を100重量%として、ポリ
オレフィンが10〜80重量%、好ましくは15〜70
重量%であり、溶媒が90〜20重量%、好ましくは8
5〜30重量%である。ポリオレフィンが10重量%未
満では(溶媒が90重量%を超えると)、シート状に成
形する際に、ダイ出口で、スウェルやネックインが大き
くシートの成形が困難となる。一方、ポリオレフィンが
80重量%を超えると(溶媒が20重量%未満では)、
均一な溶液の調製が困難となる。
The blending ratio of the polyolefin and the solvent is 10 to 80% by weight, preferably 15 to 70% by weight, based on 100% by weight of the total of the polyolefin and the solvent.
% By weight, solvent 90 to 20% by weight, preferably 8
It is 5 to 30% by weight. When the content of polyolefin is less than 10% by weight (when the content of solvent exceeds 90% by weight), swell and neck-in are large at the die exit when forming into a sheet, and it becomes difficult to form the sheet. On the other hand, when the polyolefin content exceeds 80% by weight (when the solvent content is less than 20% by weight),
It is difficult to prepare a uniform solution.

【0019】なお、上記溶媒は途中にサイドフィーダー
等を有する押出機を用いて、押出機の途中から溶融状態
のポリオレフィンに供給する必要がある。超高分子量ポ
リオレフィンを含むポリオレフィンと溶媒とを同時に供
給すると、粘度差が大き過ぎるために混合ができず、ポ
リオレフィンと押出機のスクリューとが共回りを起こし
溶液を調製できない。このようにして溶融状態のポリオ
レフィンに溶媒を添加し、押出機中で混練することによ
り、均一な濃度のポリオレフィンの高濃度溶液を短時間
で調製することができる。
The solvent must be supplied to the molten polyolefin from the middle of the extruder by using an extruder having a side feeder or the like in the middle. When the polyolefin containing the ultra high molecular weight polyolefin and the solvent are simultaneously supplied, the viscosity difference is too large to mix them, and the polyolefin and the screw of the extruder co-rotate, so that the solution cannot be prepared. Thus, by adding the solvent to the molten polyolefin and kneading it in the extruder, a highly concentrated solution of the polyolefin having a uniform concentration can be prepared in a short time.

【0020】次に、このようにして溶融混練したポリオ
レフィンの加熱溶液を直接に、あるいはさらに別の押出
機を介して、または一旦冷却してペレット化した後、再
度押出機を介して、ダイ等から押し出して成形する。
Next, the melted and kneaded polyolefin heated solution is directly or through another extruder, or once cooled and pelletized, and then again through the extruder, a die or the like. To extrude and mold.

【0021】ダイは、通常長方形の口金形状をしたシー
ト用ダイが用いられる。剪断結晶化を行わせるためにダ
イギャップは0.5〜2.5mmであり、好ましくは
1.5〜2.5mmである。0.5mm未満ではシェア
ーがかかりすぎて表面肌荒れを起こし、2.5mmを超
えるとシートが得られない。押し出し成形温度は150
〜250℃であり、好ましくは160〜230℃であ
る。250℃を超えると劣化が生じるため好ましくな
く、150℃未満ではポリオレフィン溶液の移送が困難
で、吐出が安定しなくなるため好ましくない。この際押
し出し速度は、通常20〜30cm/分ないし2〜3m
/分である。
As the die, a sheet die having a rectangular die shape is usually used. The die gap is 0.5 to 2.5 mm, and preferably 1.5 to 2.5 mm for performing shear crystallization. If it is less than 0.5 mm, too much shear is applied to cause rough surface, and if it exceeds 2.5 mm, a sheet cannot be obtained. Extrusion temperature is 150
To 250 ° C, preferably 160 to 230 ° C. If the temperature exceeds 250 ° C, deterioration occurs, which is not preferable, and if the temperature is lower than 150 ° C, it is difficult to transfer the polyolefin solution and the discharge becomes unstable, which is not preferable. At this time, the extrusion speed is usually 20 to 30 cm / min to 2 to 3 m.
/ Min.

【0022】このようにしてダイから押し出された溶液
は、冷却することによりゲル状成形物に形成される。冷
却は少なくともゲル化温度以下までは50℃/分以上の
速度で行うのが好ましい。一般に冷却速度が遅いと、得
られるゲル状組成物の高次構造が粗くなり、それを形成
する疑似細胞単位も大きなものとなるが、冷却速度が速
いと、密な細胞単位となる。冷却速度が50℃/分未満
では、結晶化度が上昇し、延伸に適したゲル状組成物と
なりにくい。冷却方法としては、冷風、冷却水、その他
の冷却媒体に直接接触させる方法、冷媒で冷却したロー
ルに接触させる方法などを用いることができる。
The solution thus extruded from the die is cooled to form a gel-like molded product. Cooling is preferably performed at a rate of 50 ° C./min or more up to at least the gelation temperature. In general, when the cooling rate is low, the higher order structure of the obtained gel-like composition becomes coarse, and the pseudo cell unit that forms it becomes large. However, when the cooling rate is high, the cell unit becomes dense. When the cooling rate is less than 50 ° C./minute, the crystallinity increases and it is difficult to obtain a gel composition suitable for stretching. As a cooling method, a method of directly contacting with cold air, cooling water, or other cooling medium, a method of contacting with a roll cooled with a refrigerant, or the like can be used.

【0023】ダイから押し出されたゲル状シートは、1
10〜5000%、好ましくは110〜1000%の高
引取り比で引取りながら冷却固化し、剪断結晶化させ
る。引取り比が5000%を超えるとネックインが大き
くなり、また延伸時に破断を起こしやすくなり好ましく
なく、110%未満では剪断結晶化が十分には起こら
ず、微多孔膜が得られない。引取る際には、バンク成形
法を用いることも可能である。
The gel-like sheet extruded from the die has 1
It is cooled and solidified while being collected at a high take-up ratio of 10 to 5000%, preferably 110 to 1000%, and sheared and crystallized. If the take-up ratio exceeds 5000%, neck-in becomes large, and breakage easily occurs during stretching, which is not preferable, and if it is less than 110%, shear crystallization does not sufficiently occur and a microporous membrane cannot be obtained. It is also possible to use a bank molding method when taking it back.

【0024】次に、このゲル状成形物を少なくとも一軸
方向に延伸を行う。延伸はゲル状成形物を加熱し、通常
のテンター法で、5〜50倍、好ましくは10〜20倍
に延伸する。この延伸によって、結晶間の開裂が生じ、
孔が形成される。倍率が50倍を超えると、延伸操作な
どで制約が生じる。倍率が5倍未満では十分な結晶間の
開裂が行われず、満足できる微多孔膜が得られない。
Next, this gel-like molded product is stretched in at least a uniaxial direction. As for the stretching, the gel-like molded product is heated and stretched 5 to 50 times, preferably 10 to 20 times by a normal tenter method. This stretching causes cleavage between crystals,
A hole is formed. When the magnification exceeds 50 times, there are restrictions in the stretching operation and the like. If the magnification is less than 5 times, sufficient cleavage between crystals is not performed, and a satisfactory microporous membrane cannot be obtained.

【0025】延伸温度はポリエチレンの融点+10℃以
下、好ましくはポリエチレンの結晶分散温度から結晶融
点未満の範囲である。
The stretching temperature is not higher than the melting point of polyethylene + 10 ° C., preferably in the range from the crystal dispersion temperature of polyethylene to less than the crystal melting point.

【0026】得られた延伸成形物は、溶剤で洗浄し残留
する溶媒を除去する。洗浄溶剤としては、ペンタン、ヘ
キサン、ヘプタンなどの炭化水素、塩化メチレン、四塩
炭素などの塩素化炭化水素、三フッ化エタンなどのフッ
化炭化水素、ジエチルエーテル、ジオキサンなどのエー
テル類などの易揮発性のものを用いることができる。こ
れらの溶剤はポリオレフィン組成物の溶解に用いた溶媒
に応じて適宜選択し、単独もしくは混合して用いる。洗
浄方法は、溶剤に侵漬し抽出する方法、溶剤をシャワー
する方法、またはこれらの組合せによる方法などにより
行うことができる。
The obtained stretch molded product is washed with a solvent to remove the remaining solvent. Examples of cleaning solvents include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and tetrasalt carbon, fluorinated hydrocarbons such as trifluoroethane, ethers such as diethyl ether and dioxane. A volatile one can be used. These solvents are appropriately selected according to the solvent used for dissolving the polyolefin composition, and used alone or as a mixture. The washing method can be performed by a method of immersing in a solvent for extraction, a method of showering the solvent, a method of a combination thereof, or the like.

【0027】上述のような洗浄は、延伸成形物中の残存
溶媒が1重量%未満になるまで行う。その後洗浄溶剤を
乾燥するが、洗浄溶剤の乾燥方法は加熱乾燥、風乾など
の方法で行うことができる。乾燥した延伸成形物は、結
晶分散温度〜融点の温度範囲で熱固定することが望まし
い。
The above-mentioned washing is carried out until the residual solvent in the stretch-molded product is less than 1% by weight. Thereafter, the washing solvent is dried, and the washing solvent can be dried by a method such as heat drying or air drying. It is desirable that the dried stretch molded product is heat-set at a temperature in the range of the crystal dispersion temperature to the melting point.

【0028】さらに、得られた微多孔膜を逐次または同
時の二軸延伸機で4〜49倍、好ましくは25〜49倍
に延伸することにより孔径をコントロールすることがで
きる。
Further, the pore diameter can be controlled by stretching the obtained microporous membrane successively or simultaneously with a biaxial stretching machine at a ratio of 4-49 times, preferably 25-49 times.

【0029】以上のようにして製造したポリエチレン微
多孔膜は、空孔率が35〜95%で平均貫通孔径が0.
001〜0.5μで、かつ破断強度が500kg/cm
2 以上である。また本発明のポリエチレン微多孔膜の厚
さは、用途に応じて適宜選択しうるが、一般に0.1〜
100μであり、好ましくは2〜50μにすることがで
きる。
The polyethylene microporous membrane produced as described above has a porosity of 35 to 95% and an average through pore diameter of 0.
001-0.5μ, and breaking strength is 500 kg / cm
2 or more. The thickness of the polyethylene microporous membrane of the present invention may be appropriately selected depending on the application, but is generally 0.1 to
It can be 100 μ, and preferably 2 to 50 μ.

【0030】なお、得られたポリエチレン微多孔膜は、
必要に応じてさらに、プラズマ照射、界面活性剤含浸、
表面グラフト等の親水化処理などの表面修飾を施すこと
ができる。
The obtained polyethylene microporous membrane is
If necessary, further plasma irradiation, surfactant impregnation,
Surface modification such as hydrophilic treatment such as surface grafting can be performed.

【0031】[0031]

【実施例】以下に本発明について実施例を挙げてさらに
詳細に説明するが、本発明は実施例に特に限定されるも
のではない。なお、実施例における試験方法は次の通り
である。 (1)膜厚:断面を走査型電子顕微鏡により測定。 (2)透気度:JIS P8117に準拠して測定。 (3)破断強度:ASTM D882に準拠して測定。 (4)平均孔径:オムニソープ360(日機装(株))
によって測定。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not particularly limited to the examples. In addition, the test method in an Example is as follows. (1) Film thickness: The cross section was measured with a scanning electron microscope. (2) Air permeability: Measured according to JIS P8117. (3) Breaking strength: measured according to ASTM D882. (4) Average pore size: Omni soap 360 (Nikkiso Co., Ltd.)
Measured by.

【0032】実施例1 重量平均分子量が2×106 の超高分子量ポリエチレン
5.5重量部、重量平均分子量が3.0×105 の高密
度ポリエチレン24.5重量部、酸化防止剤をポリエチ
レン100重量部当たり0.375重量部を二軸押出機
(58mmφ,L/D=42、強混練タイプ)に投入し
た。またこの二軸押出機のサイドフィーダーから流動パ
ラフィン70重量部を供給し、溶融混練して押出機中に
てポリエチレン溶液を調製した。
Example 1 5.5 parts by weight of ultra high molecular weight polyethylene having a weight average molecular weight of 2 × 10 6 , 24.5 parts by weight of high density polyethylene having a weight average molecular weight of 3.0 × 10 5 , and an antioxidant of polyethylene 0.375 parts by weight per 100 parts by weight was charged into a twin-screw extruder (58 mmφ, L / D = 42, strong kneading type). Further, 70 parts by weight of liquid paraffin was supplied from the side feeder of this twin-screw extruder and melt-kneaded to prepare a polyethylene solution in the extruder.

【0033】続いて、この押出機の先端に設置されたT
ダイからダイギャップ1.5mm、温度180℃で押し
出し、冷却ロールで引取り比500%で引取りながらゲ
ル状シートを成形した。続いてこのゲル状シートを、1
15℃で5倍に横一軸延伸を行い、延伸膜を得た。得ら
れた延伸膜を塩化メチレンで洗浄して残留する流動パラ
フィンを抽出除去した後、乾燥および熱処理を行いポリ
エチレン微多孔膜を得た。このポリエチレン微多孔膜の
物性評価の結果を第1表に示す。
Subsequently, the T installed at the tip of the extruder.
A gel sheet was formed by extruding from a die at a die gap of 1.5 mm and a temperature of 180 ° C., and taking it with a cooling roll at a take-up ratio of 500%. Then, apply this gel-like sheet to 1
Lateral uniaxial stretching was performed 5 times at 15 ° C to obtain a stretched film. The stretched film obtained was washed with methylene chloride to extract and remove the residual liquid paraffin, followed by drying and heat treatment to obtain a polyethylene microporous film. Table 1 shows the results of evaluating the physical properties of this polyethylene microporous membrane.

【0034】実施例2 実施例1において、延伸倍率を横一軸方向に10倍にし
た以外は、実施例1と同様にして微多孔膜を得た。以上
のようにして得られた微多孔膜は表1の物性を有してい
た。
Example 2 A microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio was 10 times in the lateral uniaxial direction. The microporous membrane obtained as described above had the physical properties shown in Table 1.

【0035】実施例3 実施例2において、引き取り比を1000%にする以外
は実施例2と同様にして微多孔膜を得た。以上のように
して得られた微多孔膜は表1の物性を有していた。
Example 3 A microporous membrane was obtained in the same manner as in Example 2 except that the take-up ratio was 1000%. The microporous membrane obtained as described above had the physical properties shown in Table 1.

【0036】実施例4 実施例3において、ポリエチレンとして重量平均分子量
が1×106 の超高分子量ポリエチレン30重量部を用
いる以外は実施例3と同様にして微多孔膜を得た。以上
のようにして得られた微多孔膜は表1の物性を有してい
た。
Example 4 A microporous membrane was obtained in the same manner as in Example 3 except that 30 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1 × 10 6 was used as polyethylene. The microporous membrane obtained as described above had the physical properties shown in Table 1.

【0037】実施例5 実施例3において、ポリエチレンとして重量平均分子量
が2.5×106 の超高分子量ポリエチレンを7重量
部、重量平均分子量が3.0×105 の高密度ポリエチ
レン33重量部、溶媒として流動パラフィンを60重量
部用いる以外は実施例3と同様にして微多孔膜を得た。
以上のようにして得られた微多孔膜は表1の物性を有し
ていた。
Example 5 In Example 3, 7 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2.5 × 10 6 was used as polyethylene, and 33 parts by weight of high-density polyethylene having a weight average molecular weight of 3.0 × 10 5. A microporous membrane was obtained in the same manner as in Example 3 except that 60 parts by weight of liquid paraffin was used as the solvent.
The microporous membrane obtained as described above had the physical properties shown in Table 1.

【0038】実施例6 実施例1において、延伸倍率を二軸方向に面倍率で25
倍にする以外は実施例1と同様にして微多孔膜を得た。
以上のようにして得られた微多孔膜は表1の物性を有し
ていた。
Example 6 In Example 1, the stretching ratio is 25 in the biaxial direction in terms of areal ratio.
A microporous membrane was obtained in the same manner as in Example 1 except that the number of times was doubled.
The microporous membrane obtained as described above had the physical properties shown in Table 1.

【0039】実施例7 実施例2において、ダイ温度を200℃、ダイギャップ
を2.5mmで、バンク成形により200%引取りをす
る以外は実施例2と同様にして微多孔膜を得た。以上の
ようにして得られた微多孔膜は表1の物性を有してい
た。
Example 7 A microporous membrane was obtained in the same manner as in Example 2 except that the die temperature was 200 ° C., the die gap was 2.5 mm, and 200% take-off was performed by bank molding. The microporous membrane obtained as described above had the physical properties shown in Table 1.

【0040】比較例1 実施例1において、シート成形条件で、ダイ温度を20
0℃、ダイギャップを2.5mm、引取り比を100%
にし、延伸を横軸方向に10倍にした以外は実施例1と
同様にして微多孔膜を得た。以上のようにして得られた
微多孔膜は表2の物性を有していた。
Comparative Example 1 In Example 1, the die temperature was set to 20 under the sheet forming conditions.
0 ℃, die gap 2.5mm, take-back ratio 100%
A microporous membrane was obtained in the same manner as in Example 1 except that the stretching was 10 times in the horizontal axis direction. The microporous membrane obtained as described above had the physical properties shown in Table 2.

【0041】比較例2 実施例1において、シート成形条件で、ダイ温度を20
0℃、ダイギャップを0.3mm、引取り比を100%
にし、延伸を横軸方向に10倍にした以外は実施例1と
同様にして微多孔膜を得た。以上のようにして得られた
微多孔膜は表2の物性を有していた。
Comparative Example 2 In Example 1, the die temperature was set to 20 under the sheet forming conditions.
0 ℃, die gap 0.3mm, take-back ratio 100%
A microporous membrane was obtained in the same manner as in Example 1 except that the stretching was 10 times in the horizontal axis direction. The microporous membrane obtained as described above had the physical properties shown in Table 2.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 表1及び表2から明らかなように、引取り比を110〜
5000%にすることにより、高強度の微多孔膜が得ら
れることがわかる。
[Table 2] As is clear from Tables 1 and 2, the take-up ratio is 110-110.
It can be seen that a high-strength microporous film can be obtained by setting the content to 5000%.

【0044】[0044]

【発明の効果】以上詳述したように本発明の方法であ
る、超高分子量ポリオレフィンを含有するポリオレフィ
ン組成物溶液からゲル状シートを、特定のダイギャッ
プ、特定のダイ温度、特定の引取り比で成形することに
より、高強度の微多孔膜が容易に得られる。
As described in detail above, according to the method of the present invention, a gel-like sheet is prepared from a solution of a polyolefin composition containing an ultrahigh molecular weight polyolefin, with a specific die gap, a specific die temperature, and a specific take-up ratio. By molding with, a high-strength microporous membrane can be easily obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量が7×105 以上の超高
分子量ポリオレフィン成分を1重量%以上含有するポリ
オレフィン組成物10〜80重量%と、溶媒90〜20
重量%からなる溶液を調製し、前記溶液をダイギャップ
が0.5〜2.5mmのダイから、ダイ温度が120〜
250℃でシート状に押し出し、冷却しながら引取り比
110〜5000%で引取り、ゲル状成形物を形成し、
ゲル状成形物を少なくとも一軸方向に5〜50倍に加熱
延伸し、しかる後残存する溶媒を除去することを特徴と
するポリオレフィン微多孔膜の製造方法。
1. A polyolefin composition containing 10 to 80% by weight of an ultrahigh molecular weight polyolefin component having a weight average molecular weight of 7 × 10 5 or more and 1% by weight or more, and a solvent of 90 to 20.
A solution consisting of 10 wt% is prepared, and the solution is applied from a die having a die gap of 0.5 to 2.5 mm and a die temperature of 120 to
Extruded into a sheet at 250 ° C., and with cooling at a take-up ratio of 110 to 5000%, a gel-like molded product is formed,
A method for producing a polyolefin microporous membrane, which comprises heat-drawing a gel-like molded article at least uniaxially by a factor of 5 to 50, and then removing the remaining solvent.
【請求項2】 請求項1に記載のポリオレフィン微多孔
膜の製造方法において、前記溶液をダイギャップが1.
5〜2.5mmのダイから、ダイ温度が160〜230
℃でシート状に押し出し、冷却しながら引取り比110
〜1000%で引取り、ゲル状成形物を形成することを
特徴とするポリオレフィン微多孔膜の製造方法。
2. The method for producing a polyolefin microporous film according to claim 1, wherein the solution has a die gap of 1.
From the die of 5 to 2.5 mm, the die temperature is 160 to 230
Extruded into a sheet at ℃, take-up ratio 110 while cooling
A method for producing a polyolefin microporous membrane, characterized in that the gel-like molded product is formed by taking it out at ˜1000%.
JP13745396A 1996-05-08 1996-05-08 Method for producing polyolefin microporous membrane Expired - Lifetime JP3641321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13745396A JP3641321B2 (en) 1996-05-08 1996-05-08 Method for producing polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13745396A JP3641321B2 (en) 1996-05-08 1996-05-08 Method for producing polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JPH09302120A true JPH09302120A (en) 1997-11-25
JP3641321B2 JP3641321B2 (en) 2005-04-20

Family

ID=15198968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13745396A Expired - Lifetime JP3641321B2 (en) 1996-05-08 1996-05-08 Method for producing polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP3641321B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
WO2021015268A1 (en) * 2019-07-25 2021-01-28 東レ株式会社 Microporous polyolefin membrane, multilayer body, and nonaqueous electrolyte secondary battery using same
WO2022202095A1 (en) * 2021-03-23 2022-09-29 東レ株式会社 Microporous polyolefin film, separator for battery, and secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
WO2021015268A1 (en) * 2019-07-25 2021-01-28 東レ株式会社 Microporous polyolefin membrane, multilayer body, and nonaqueous electrolyte secondary battery using same
WO2022202095A1 (en) * 2021-03-23 2022-09-29 東レ株式会社 Microporous polyolefin film, separator for battery, and secondary battery

Also Published As

Publication number Publication date
JP3641321B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP4033246B2 (en) Method for producing highly permeable polyolefin microporous membrane
JP4997278B2 (en) Polyethylene microporous membrane and method for producing the same
JP3347835B2 (en) Method for producing microporous polyolefin membrane
JP2657430B2 (en) Polyolefin microporous membrane and method for producing the same
JP4494637B2 (en) Polyolefin microporous membrane and method for producing the same
JP2657434B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator using the same
EP0824958B1 (en) Method of producing microporous polyolefin membrane
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
JPWO1999021914A6 (en) Method for producing high permeability polyolefin microporous membrane
JPH0364334A (en) Microporous polyolefin film and its preparation
WO2006106783A1 (en) Microporous polyolefin film and process for producing the same
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JP2001200081A (en) Polyethylene microporous membrane and its manufacturing method
JPH05222236A (en) Production of polyolefinic microporous film
JP2001200082A (en) Polyethylene microporous membrane and its manufacturing method
JP3638401B2 (en) Method for producing polyolefin microporous membrane
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JP3641321B2 (en) Method for producing polyolefin microporous membrane
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JP3250894B2 (en) Method for producing microporous polyolefin membrane
JPH1192587A (en) Preparation of polyolefin microporous film
JPH093228A (en) Production of polyolefin finely porous membrane
JP3673623B2 (en) Method for producing polyolefin microporous membrane
JPH09104775A (en) Production of microporous polyolefin film
JP2657441B2 (en) Method for producing microporous polyolefin membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term