JPH01222477A - Wiring connecting electrode and manufacture thereof - Google Patents

Wiring connecting electrode and manufacture thereof

Info

Publication number
JPH01222477A
JPH01222477A JP4795188A JP4795188A JPH01222477A JP H01222477 A JPH01222477 A JP H01222477A JP 4795188 A JP4795188 A JP 4795188A JP 4795188 A JP4795188 A JP 4795188A JP H01222477 A JPH01222477 A JP H01222477A
Authority
JP
Japan
Prior art keywords
layer
contact
tic
window
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4795188A
Other languages
Japanese (ja)
Inventor
Tsutomu Hosoda
勉 細田
Yasuhisa Sato
泰久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4795188A priority Critical patent/JPH01222477A/en
Publication of JPH01222477A publication Critical patent/JPH01222477A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a contact electrode having a low contact resistance without possibility of forming of an insulation film by a method wherein a natural oxide film of a contact window is removed and a TiC layer is coated or formed thereon, and then an Al wiring layer is deposited. CONSTITUTION:A contact forming region is provided inside an Si substrate 1 and a contact forming window 3 is made on the surface of the substrate 1. The semiconductor substrate 1 is placed in a sputtering system, a natural oxide film formed on the surface of Si inside the window is first removed through a plasma etching of a short period and it follows that a TiC layer 5 is deposited thereon through an active etching. A process follows, where an Al layer 6 of a wiring layer is deposited through a sputtering. As mentioned above, an electrode of this design is structured so as to interpose TiC, so that only SiC and TiSi2 both small in resistivity are formed due to the reaction between TiC and Si even if the electrode is subjected to a heat treatment in the succeeding processes, consequently an excellent ohmic contact can be realized.

Description

【発明の詳細な説明】 〔概 要〕 本発明はAlfjl線を有する半導体装置の配線接続電
極、特にコンタクト電極に関し、 Si基板とAl配線の間に良好なオーミックコンタクト
を形成することを目的とし、 Aj/Si間のバリヤ膜としてTiCを用いる構造であ
って、製造方法は、コンタクト窓部の自然酸化膜を除去
し、T i C層を被着或いは生成した後、Al配線層
を堆積形成するように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to wiring connection electrodes, particularly contact electrodes, for semiconductor devices having Alfjl wires, and aims to form good ohmic contact between a Si substrate and Al wiring. This is a structure in which TiC is used as a barrier film between Aj/Si, and the manufacturing method is to remove the natural oxide film in the contact window, deposit or form a TiC layer, and then deposit an Al wiring layer. Configure it as follows.

〔産業上の利用分野〕[Industrial application field]

本発明はAl配線を有する半導体装置の配線接続電極に
関わり、特にA7/Si間に形成されるバリヤ層に関わ
る。本発明は配線接続電極の中でも、特にコンタクト電
極に適用して優れた効果を示すので、以下コンタクト電
極の場合について説明する。
The present invention relates to a wiring connection electrode of a semiconductor device having Al wiring, and particularly to a barrier layer formed between A7/Si. Since the present invention exhibits excellent effects when applied to contact electrodes among wiring connection electrodes, the case of contact electrodes will be described below.

今日の半導体工業で取り扱われる半導体装置の大部分は
Si3板に形成された集積回路である。
Most of the semiconductor devices handled in today's semiconductor industry are integrated circuits formed on Si3 plates.

このSi系集積回11i(IC)の内部配線にはAlが
用いられることが多いが、Al層をSiに接触させて形
成すると、Si原子がjal、1層内に移動(マイグレ
ーション)して、コンタクトが不良になり、更に、Si
基板側のコンタクト形成領域が浅い拡散領域であればA
lがSi基板に拡散してSi基板内の接合を破壊するこ
とが起こる。
Al is often used for the internal wiring of this Si-based integrated circuit 11i (IC), but when an Al layer is formed in contact with Si, Si atoms migrate into one layer. The contact becomes defective, and furthermore, the Si
A if the contact formation region on the substrate side is a shallow diffusion region
It occurs that l diffuses into the Si substrate and destroys the junctions within the Si substrate.

〔従来の技術〕[Conventional technology]

このような障害を防止するため、SiとAlの間にバリ
ヤ膜を介在させることが知られている。
In order to prevent such troubles, it is known to interpose a barrier film between Si and Al.

近年このバリヤ膜の材料として、1000〜3000人
程度の窒化チタン(TiN)F@が多く用いられるよう
になっている。このTiNは化学的に安定で比較的抵抗
率が低いことから、バリヤ材料としての評価が高い。
In recent years, titanium nitride (TiN) F@ of about 1,000 to 3,000 has been increasingly used as a material for this barrier film. Since TiN is chemically stable and has a relatively low resistivity, it is highly evaluated as a barrier material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、TiNをバリヤ層として設けたSi基板
が熱処理を受けると、コンタクト抵抗が異常に増加する
場合がある。これは、コンタクト部に絶縁物である窒化
シリコン(S i N X)の皮膜が生じたためと考え
られる。
However, when a Si substrate provided with TiN as a barrier layer is subjected to heat treatment, the contact resistance may increase abnormally. This is considered to be because a film of silicon nitride (S i N x ), which is an insulator, was formed on the contact portion.

本発明の目的は、Al配線を使用するSi系集積回路に
於いて、絶縁皮膜が生成するおそれがなく、コンタク日
氏抗の低いコンタクト電極及びその形成法を提供するこ
とである。
An object of the present invention is to provide a contact electrode with low contact resistance and a method for forming the same in a Si-based integrated circuit using Al wiring without the risk of forming an insulating film.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明のコンタクト電極は バリヤ材料としてTiCを使用し、 製造方法では、コンタクト窓部の自然酸化膜を除去し、
TiC層を被着し或いは生成した後、A!配線層を堆積
形成することが行われる。
In order to achieve the above object, the contact electrode of the present invention uses TiC as a barrier material, and in the manufacturing method, the natural oxide film in the contact window is removed,
After depositing or producing the TiC layer, A! A wiring layer is deposited and formed.

更に、T i C層を被着する処理としてリアクティブ
スパッタによってコンタクト窓内にTiC層を被着する
か、或いは スパッタによりコンタクト窓内にTiを堆積して炭化水
素ガス雰囲気中で熱処理することが行われる。
Furthermore, as a process for depositing the TiC layer, the TiC layer may be deposited within the contact window by reactive sputtering, or Ti may be deposited within the contact window by sputtering and then heat treated in a hydrocarbon gas atmosphere. It will be done.

〔作 用〕[For production]

上記工程中、Si上にTiを被着した場合、炭化水素ガ
ス雰囲気中で熱処理することで生成する物質はTiCと
Ti51gであり、本発明のコンタクト電極はA7/S
t間にTiC膜を備えることになり、これがバリヤとし
て機能する。
During the above process, when Ti is deposited on Si, the substances produced by heat treatment in a hydrocarbon gas atmosphere are TiC and Ti51g, and the contact electrode of the present invention is A7/S
A TiC film is provided between t and functions as a barrier.

TicがSiと反応した場合、生成する物質はSiCと
Ti51gであり、SiCは半導体であるが、本発明の
ように不純物を含むg iSI域が対象であれば、Si
Cも不純物ドープされるので導電性を示す、また、Ti
5izも通常のシリサイド同様低抵抗である。従ってT
iCとSi基板との反応についての配慮は不要となる。
When Tic reacts with Si, the substances produced are SiC and Ti51g, and SiC is a semiconductor, but if the target is the g iSI region containing impurities as in the present invention, Si
Since C is also doped with impurities, it exhibits conductivity, and Ti
5iz also has low resistance like normal silicide. Therefore T
There is no need to consider the reaction between iC and the Si substrate.

〔実施例〕〔Example〕

第1図は請求項(1)に対応する本発明のコンタクト電
極の構造を示す断面模式図である。第4図と比較すれば
明らかなように、本発明ではSi基基板色Al配線6と
の間にT10層5が設けられている。該TiC層はバリ
ヤ膜として機能し、AlとSiの相互作用を防止する。
FIG. 1 is a schematic cross-sectional view showing the structure of a contact electrode of the present invention corresponding to claim (1). As is clear from a comparison with FIG. 4, in the present invention, a T10 layer 5 is provided between the Si-based substrate color Al wiring 6. The TiC layer functions as a barrier film and prevents interaction between Al and Si.

第2図に請求項(2)に対応する実施例の工程が示され
ている。以下、第2図を参照しながら第1の実施例の工
程を説明する。
FIG. 2 shows the steps of an embodiment corresponding to claim (2). Hereinafter, the steps of the first embodiment will be explained with reference to FIG.

コンタクトを形成するSi基板領域は特に限定されるも
のではないが、本実施例の形状はバイポーラトランジス
タのベースコンタクト領域を想定したものである。Si
基板1内にコンタクト形成領域2が存在し、その表面に
コンタクト形成用の窓3が開けられている。この状態が
第2図(alであり、図の4は選択酸化で形成された酸
化膜である。
Although the Si substrate region where the contact is formed is not particularly limited, the shape of this embodiment is assumed to be the base contact region of a bipolar transistor. Si
A contact formation region 2 is present in the substrate 1, and a contact formation window 3 is opened in the surface thereof. This state is shown in FIG. 2 (al), and 4 in the figure is an oxide film formed by selective oxidation.

ここまで処理の進んだ半導体基板をスパッタ装置に装填
し、先ず短時間のプラズマエツチングで窓内のSi表面
に存在する自然酸化膜を除去する。
The semiconductor substrate that has been processed up to this point is loaded into a sputtering device, and the natural oxide film present on the Si surface within the window is first removed by short-time plasma etching.

続いてリアクティブスパッタによってTiCJi5を堆
積する。これは反応ガスAr+CHn、DC電力IKW
程度の条件のマグネトロンスパッタリングである。堆積
するTiC層の厚さは1000Å以下でよい。
Subsequently, TiCJi5 is deposited by reactive sputtering. This is reaction gas Ar+CHn, DC power IKW
This is magnetron sputtering under certain conditions. The thickness of the deposited TiC layer may be 1000 Å or less.

更に続けて配線層であるAl層6をスパッタ堆積する。Subsequently, an Al layer 6, which is a wiring layer, is deposited by sputtering.

以上の処理によって第2図(b)に示される状態が実現
する。これは第1図に示された構造とはソ゛同じである
。Al層の形成法はスパッタである必要はなく、通常の
ように蒸着法であってもよい。
The above processing realizes the state shown in FIG. 2(b). This is very similar to the structure shown in FIG. The method for forming the Al layer does not have to be sputtering, and may be a conventional vapor deposition method.

このようにTiCを介在させた構造であれば、後続工程
で熱処理を受けても、TiCとSiの反応により低抵抗
率のSiCとTi5izを生ずるのみで、TiNの如き
絶縁物質を生ずることがなく、良好なオーミックコンタ
クトが形成される。
With a structure in which TiC is interposed in this way, even if heat treatment is performed in a subsequent process, the reaction between TiC and Si will only produce low resistivity SiC and Ti5iz, without producing an insulating material such as TiN. , a good ohmic contact is formed.

第3図に請求項(3)に対応する実施例の工程が示され
ている。以下、第3図を参照しながら第2の実施例の工
程を説明する。
FIG. 3 shows the steps of an embodiment corresponding to claim (3). Hereinafter, the steps of the second embodiment will be explained with reference to FIG.

本実施例でも、コンタクト形成部に窓を開けるところま
では上記第1の実施例と同じである。コンタクト窓3が
開けられた半導体基板1をスパッタ装置に装填し、先ず
短時間のプラズマエツチングで窓内のSi表面に存在す
る自然酸化膜を除去して、通常のスパッタ処理でTi層
7を1000人程度堆積する。この状況が第3図(al
に示されている。
This embodiment is also the same as the first embodiment up to the point where the window is opened in the contact forming portion. The semiconductor substrate 1 with the contact window 3 opened therein is loaded into a sputtering device, and the natural oxide film present on the Si surface within the window is first removed by short-time plasma etching, and then the Ti layer 7 is deposited to a thickness of 1,000 yen by normal sputtering. Accumulates about the same amount as a person. This situation is shown in Figure 3 (al
is shown.

続いて、メタン雰囲気中で1000℃、10分の熱処理
を行う。その結果、Siと反応したTiはTiSixと
なり、メタンから生じたCと反応したTiはTiCとな
る。この熱処理雰囲気としては、メタン以外にもプロパ
ンのような炭化水素が使用できる。
Subsequently, heat treatment is performed at 1000° C. for 10 minutes in a methane atmosphere. As a result, Ti reacted with Si becomes TiSix, and Ti reacted with C generated from methane becomes TiC. In addition to methane, a hydrocarbon such as propane can be used as the heat treatment atmosphere.

更に続いて、Al配線層6が堆積されるところは上記第
1の実施例と同じである。この状態が第3図(b)に示
されており、図の2はコンタクト形成領域、4は選択酸
化膜、5はTiCl3はTi5izである。本実施例で
も低抵抗率のTi5izとTi0層がバリヤとして機能
するので、コンタクト抵抗が低く、安定なコンタクト電
極が形成される。
Subsequently, the Al wiring layer 6 is deposited in the same manner as in the first embodiment. This state is shown in FIG. 3(b), where 2 is a contact formation region, 4 is a selective oxide film, and 5 is TiCl3, which is Ti5iz. In this embodiment as well, since the low resistivity Ti5iz and Ti0 layers function as a barrier, a stable contact electrode with low contact resistance is formed.

以上、本発明をSi基板に設けるコンタクト電極の場合
について説明したが、ポリSi配線にkl配線を接続す
る場合に適用しても相当の効果を示すことは当業者に容
易に理解されるところである。
Although the present invention has been described above in the case of a contact electrode provided on a Si substrate, those skilled in the art will easily understand that the present invention can also be applied to the case where a KL wiring is connected to a poly-Si wiring and exhibits considerable effects. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法によってSi基板に
Al配線の良好なコンタクトを形成することが出来る。
As explained above, by the method of the present invention, a good contact of Al wiring can be formed on a Si substrate.

更に本発明は、ポリSi配績とAj配線の接続に適用し
ても相当の効果を示す。
Furthermore, the present invention exhibits considerable effects when applied to the connection between poly-Si distribution and Aj wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のコンタクト電極の構造を示す断面模式
図、 第2図は第1の実施例の製造工程を示す断面模式図、 第3図は第2の実施例の製造工程を示す断面模式図 第4図はバリヤ膜を設けた公知の構造を示す断面模式図 であって、 図に於いて 1はSi基板、 2はコンタクト形成領域、 3はコンタクト窓、 4は選択酸化膜、 5はTiC層、 6はAl層、 7はTi層、 8はTi5iz、 9はTiN層である。 本発明のコンタクト電極の構造を示す断面模式図第1図 第1の実施例の製造工程を示す断面模式図第2図 第2の実施例の製造工程を示す断面模式図第3図 バリヤ膜を設けた公知の構造を示す断面模式図第4図 ’aon−
FIG. 1 is a cross-sectional schematic diagram showing the structure of the contact electrode of the present invention. FIG. 2 is a cross-sectional schematic diagram showing the manufacturing process of the first embodiment. FIG. 3 is a cross-sectional diagram showing the manufacturing process of the second embodiment. Schematic diagram FIG. 4 is a schematic cross-sectional diagram showing a known structure provided with a barrier film, in which 1 is a Si substrate, 2 is a contact formation region, 3 is a contact window, 4 is a selective oxide film, 5 is a TiC layer, 6 is an Al layer, 7 is a Ti layer, 8 is a Ti5iz layer, and 9 is a TiN layer. Fig. 1 is a cross-sectional schematic diagram showing the structure of the contact electrode of the present invention. Fig. 1 is a cross-sectional schematic diagram showing the manufacturing process of the first embodiment. Fig. 2 is a cross-sectional schematic diagram showing the manufacturing process of the second embodiment. Fig. 4 is a cross-sectional schematic diagram showing a known structure provided.

Claims (3)

【特許請求の範囲】[Claims] (1)不純物を含有する単結晶或いは多結晶のSi層と
Al配線層との間にTiC膜が設けられて成ることを特
徴とする配線接続電極。
(1) A wiring connection electrode characterized in that a TiC film is provided between a monocrystalline or polycrystalline Si layer containing impurities and an Al wiring layer.
(2)不純物を含有する単結晶或いは多結晶のSi層の
表面に配線接続電極窓を開けた後、 前記配線接続電極窓内の自然酸化膜を除去し、リアクテ
ィブスパッタによって少なくも前記窓内にTiC層を被
着し、 しかる後、Al層を堆積する工程を包含することを特徴
とする配線接続電極の製造方法。
(2) After opening a wiring connection electrode window on the surface of the single crystal or polycrystalline Si layer containing impurities, the natural oxide film within the wiring connection electrode window is removed, and at least the inside of the window is removed by reactive sputtering. 1. A method for manufacturing a wiring connection electrode, comprising the steps of: depositing a TiC layer on the substrate, and then depositing an Al layer.
(3)不純物を含有する単結晶或いは多結晶のSi層の
表面に配線接続電極窓を開けた後、 前記配線接続電極窓内の自然酸化膜を除去し、スパッタ
により少なくも前記窓内にTiを堆積して炭化水素ガス
雰囲気中で熱処理し、 しかる後、Al層を堆積する工程を包含することを特徴
とする配線接続電極の製造方法。
(3) After opening a wiring connection electrode window on the surface of the single crystal or polycrystalline Si layer containing impurities, removing the natural oxide film within the wiring connection electrode window, and sputtering at least Ti within the window. 1. A method for manufacturing a wiring connection electrode, comprising the steps of: depositing an Al layer, heat-treating it in a hydrocarbon gas atmosphere, and then depositing an Al layer.
JP4795188A 1988-03-01 1988-03-01 Wiring connecting electrode and manufacture thereof Pending JPH01222477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4795188A JPH01222477A (en) 1988-03-01 1988-03-01 Wiring connecting electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4795188A JPH01222477A (en) 1988-03-01 1988-03-01 Wiring connecting electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01222477A true JPH01222477A (en) 1989-09-05

Family

ID=12789667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4795188A Pending JPH01222477A (en) 1988-03-01 1988-03-01 Wiring connecting electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01222477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003841A1 (en) * 1989-09-09 1991-03-21 Tadahiro Ohmi Element, method of fabricating the same, semiconductor element and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003841A1 (en) * 1989-09-09 1991-03-21 Tadahiro Ohmi Element, method of fabricating the same, semiconductor element and method of fabricating the same

Similar Documents

Publication Publication Date Title
US5733816A (en) Method for depositing a tungsten layer on silicon
JP3584129B2 (en) Method for manufacturing capacitor of semiconductor device
US5183782A (en) Process for fabricating a semiconductor device including a tungsten silicide adhesive layer
JPS63133650A (en) Method of forming silicide adhesive layer on polycrystalline silicon layer
JP3122845B2 (en) Method for forming metal wiring of semiconductor device
JPH04233230A (en) Interconnection method for silicon region isolated on semiconductor substrate
KR0158441B1 (en) Method of manufacturing semiconductor device
JPH08236769A (en) Gate electrode of semiconductor element and its manufacture
WO1993011558A1 (en) Method of modifying contact resistance in semiconductor devices and articles produced thereby
JPH01222477A (en) Wiring connecting electrode and manufacture thereof
JPH07130854A (en) Wiring structure body and its forming method
JP3206527B2 (en) Method for manufacturing semiconductor device
US5211987A (en) Method and apparatus for forming refractory metal films
JP2871943B2 (en) Method for manufacturing semiconductor device
KR100332127B1 (en) Method for forming conductive layer in semiconductor device
KR100515076B1 (en) Method for forming diffusion barrier layer in semiconductor device
JPS6384154A (en) Manufacture of semiconductor device
US6127270A (en) Methods of forming refractory metal silicide components and methods of restricting silicon surface migration of a silicon structure
JPH0342832A (en) Forming method for multilayer insulating film
JP2555754B2 (en) Thin film formation method
JPS62165328A (en) Method of alloying metal after oxidization
JPH02114641A (en) Manufacture of semiconductor device
KR930007188B1 (en) Manufacturing method of semiconductor device
JPS6074675A (en) Semiconductor device
JPH0562933A (en) Manufacture of semiconductor device