JPH01222173A - Heat pump system - Google Patents

Heat pump system

Info

Publication number
JPH01222173A
JPH01222173A JP4672588A JP4672588A JPH01222173A JP H01222173 A JPH01222173 A JP H01222173A JP 4672588 A JP4672588 A JP 4672588A JP 4672588 A JP4672588 A JP 4672588A JP H01222173 A JPH01222173 A JP H01222173A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure reducing
reducing device
valve
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4672588A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanimura
佳昭 谷村
Kiyoshi Sakuma
清 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4672588A priority Critical patent/JPH01222173A/en
Publication of JPH01222173A publication Critical patent/JPH01222173A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the stabilization of a circuit during defrosting operation and shorten the defrosting time as well, by providing a third refrigerant circuit where the inlet side of a condenser is connected to the outlet side of a second pressure reducing device in a second refrigerant circuit by way of a third pressure reducing device and a fifth on/off valve. CONSTITUTION:When a heat pump system enters into a defrosting operation, on/off valves 9, 11, and 15 are opened while on/off valves 8 and 10 are closed. Then, refrigerant gas sent from a compressor 1 partially enters a third refrigerant circuit 16, passes through a third pressure reducing device 3b, and a fifth on/off valve 15, then enters a vaporizer 4. The rest of the refrigerant is sent to a condenser 2 where the heat is radiated and heating is carried out. The quantity of refrigerant gas, which flows into a cooling circuit 16, is controlled from the quantity of refrigerant throttled by the quantity of a pressure reducing device 3b so that liquid may be constantly kept on the inlet side of a second pressure reducing device 3a. The pressure of the refrigerant which enters the vaporizer 4 is not subjected to a sudden change against a change in the quantity throttled by the pressure reducing device 3a so that it can be sent to a vaporizer 4 at the optimum refrigerant pressure. The refrigerant which has passed through the refrigerant circuit 16 joins the refrigerant, which has left the pressure reducing device 3a, at the inlet side of the vaporizer 4 and is sent under a gas-liquid phase status where all of them are subjected to condensation, radiating heat, then turned into refrigerant liquid, thereby carrying out defrosting from the vaporizer 4.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、除霜性能を改善したヒートポンプ装置に関
するものである。
The present invention relates to a heat pump device with improved defrosting performance.

【従来の技術】[Conventional technology]

第2図は、例えば特開昭62−175559号公報に示
されている蓄熱槽を利用した七−トポンプ装置の冷媒回
路構成図である。第2図において、1は圧縮機、2は凝
縮器、3および3aは膨張弁または毛細管のような第1
および第2の減圧装置、4は蒸発器、5は蓄熱槽6に相
変化温度が0〜30℃の間にある蓄熱材7とともに内蔵
された蓄熱。 吸熱用の熱交換器、8〜11は第1〜第4の開閉弁、I
2ば第1の冷媒回路、13は第2の冷媒回路、14は除
霜用冷媒回路である。そして、圧縮機1と凝縮器2と第
1の減圧装置3と蒸発器4とが環状に接続されて冷凍4
イクルが構成されている。この冷凍サイクルは、凝縮器
2の出口側と蒸発器4の出口側との間に、第1の開閉弁
8.熱交換器5.第1の減圧装置3および蒸発器4をこ
の順に接続した第1の冷媒回路12と、第2の開閉弁9
および第2の減圧装置3aをこの順に接続した第2の冷
媒回路13とが並列に接続されている。 また、第1.第2の冷媒回路12.13が蒸発器4の出
口側で合流した部分が第3の開閉弁10を介して圧縮機
1の吸入側に接続され、さらに第1の開閉弁8と熱交換
器5の間が第4の開閉弁11を介して圧縮機1の吸入側
に接続された除霜用冷媒回路14が具備されている。 次に、このヒートポンプ装置の冷媒回路の動作について
説明する。 まず、暖房運転時は、第1.第3の開閉弁8゜10が開
き、第2.第4の開閉弁9,11が閉じる。そして、冷
媒は第5図に実線矢印で示すように流れ、圧縮機1から
出た高温高圧の冷媒ガスが凝縮器2に送られ、ここで暖
房のため放熱し、凝縮液化する。暖房効果を発揮し凝縮
器2を出た40℃前後の冷媒液は、第1の冷媒回路12
を通り第1の開閉弁8から蓄熱槽6内の熱交換器5に送
られ、蓄熱槽6内に充填されている相変化潤度が0〜3
0℃の間にあるM熱材7を加熱しこれに蓄熱する。熱交
換器5を出た冷媒液は、第1の減圧装置3を通って減圧
され、低温、低圧となった後、蒸発器4に送られて蒸発
する。蒸発した冷媒ガスは第3の開閉弁10を通って圧
縮機1に戻るサイクルを繰り返す。この運転において、
外気温が低く冷媒の蒸発温度が0℃以下になる場合には
、蒸発器4の伝熱面に霜が付着し、暖房能力の低下をき
たす。このため霜を取り除く除霜運転が必要になり、こ
の運転が次に行われる。 除霧運転時は、第1.第3の開閉弁8,10が閉じ、第
2.第4の開閉弁9,11が開き、冷媒は第2図に破線
矢印で示すように流れ、圧縮機1から出た高温、高圧の
冷媒ガスが凝縮器2に送られ、ここで放熱して暖房が行
われる。しかし、冷媒ガスはその暖房効果をすべて発揮
せず、一部に冷媒ガスを残した気液混合状態で、第2の
冷媒回路13を通り、第2の開閉弁9から第2の減圧装
置3aに送られろ。ここで、気液2相の冷媒は中間圧力
まで減圧され、例丸ば凝縮温度が10℃〜20℃程度の
状態になって蒸発器4に送られ、ここで放熱することで
全体が凝縮して冷媒液となる。 この放熱によって蒸発器4に付着していた霜が融かされ
除霜が行われろ。蒸発器4を出た冷媒液は第1の冷媒回
路12の第1の減圧装置3を通り、低扁、低圧となって
蓄熱槽6内の熱交換器5に送られる。ここで冷媒液は蓄
熱材7から吸熱し蒸発して冷媒ガスとなり、除霜用冷媒
回路14を通り第4の開閉弁11を経て圧縮機1に戻り
、除霜が完了するまで続けられろ。除霜完了時には、第
1〜第4の開閉弁8〜11が上記暖房運転状態に戻り、
暖房運転が再開される。
FIG. 2 is a block diagram of a refrigerant circuit of a seven-tooth pump device using a heat storage tank, as disclosed in, for example, Japanese Patent Laid-Open No. 175559/1982. In FIG. 2, 1 is a compressor, 2 is a condenser, 3 and 3a are expansion valves or capillary tubes, etc.
and a second pressure reducing device, 4 is an evaporator, and 5 is a heat storage built in a heat storage tank 6 together with a heat storage material 7 having a phase change temperature between 0 and 30°C. Heat exchanger for heat absorption, 8 to 11 are first to fourth on-off valves, I
2 is a first refrigerant circuit, 13 is a second refrigerant circuit, and 14 is a defrosting refrigerant circuit. The compressor 1, the condenser 2, the first pressure reducing device 3, and the evaporator 4 are connected in an annular manner.
The cycle is configured. This refrigeration cycle has a first on-off valve 8. between the outlet side of the condenser 2 and the outlet side of the evaporator 4. Heat exchanger5. A first refrigerant circuit 12 to which a first pressure reducing device 3 and an evaporator 4 are connected in this order, and a second on-off valve 9
and a second refrigerant circuit 13 in which the second pressure reducing device 3a is connected in this order are connected in parallel. Also, 1st. The part where the second refrigerant circuits 12 and 13 join on the outlet side of the evaporator 4 is connected to the suction side of the compressor 1 via the third on-off valve 10, and further connected to the first on-off valve 8 and the heat exchanger. 5 is provided with a defrosting refrigerant circuit 14 connected to the suction side of the compressor 1 via a fourth on-off valve 11. Next, the operation of the refrigerant circuit of this heat pump device will be explained. First, during heating operation, 1. The third on-off valve 8°10 opens, and the second on-off valve 8°10 opens. The fourth on-off valves 9 and 11 close. Then, the refrigerant flows as shown by solid arrows in FIG. 5, and the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is sent to the condenser 2, where it radiates heat for heating and is condensed and liquefied. The refrigerant liquid at around 40°C that exerts a heating effect and exits the condenser 2 is transferred to the first refrigerant circuit 12.
is sent from the first on-off valve 8 to the heat exchanger 5 in the heat storage tank 6, and the phase change moisture content filled in the heat storage tank 6 is 0 to 3.
The M heat material 7 at a temperature between 0° C. is heated and heat is stored therein. The refrigerant liquid that has exited the heat exchanger 5 is depressurized through the first pressure reducing device 3 to have a low temperature and low pressure, and then is sent to the evaporator 4 where it is evaporated. The evaporated refrigerant gas passes through the third on-off valve 10 and returns to the compressor 1, repeating the cycle. In this operation,
When the outside temperature is low and the evaporation temperature of the refrigerant is 0° C. or lower, frost adheres to the heat transfer surface of the evaporator 4, resulting in a reduction in heating capacity. Therefore, a defrosting operation is required to remove the frost, and this operation is performed next. During fog removal operation, 1. The third on-off valves 8, 10 are closed, and the second on-off valves 8, 10 are closed. The fourth on-off valves 9 and 11 open, and the refrigerant flows as shown by the dashed arrow in Fig. 2, and the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is sent to the condenser 2, where it radiates heat. Heating takes place. However, the refrigerant gas does not exert its heating effect at all, and passes through the second refrigerant circuit 13 in a gas-liquid mixed state with some refrigerant gas remaining, and is passed from the second on-off valve 9 to the second pressure reducing device 3a. Be sent to. Here, the gas-liquid two-phase refrigerant is reduced to an intermediate pressure, and is sent to the evaporator 4 with a condensation temperature of about 10°C to 20°C, where it radiates heat and condenses as a whole. It becomes a refrigerant liquid. The frost adhering to the evaporator 4 is melted by this heat radiation, and defrosting is performed. The refrigerant liquid exiting the evaporator 4 passes through the first pressure reducing device 3 of the first refrigerant circuit 12, becomes low profile and has a low pressure, and is sent to the heat exchanger 5 in the heat storage tank 6. Here, the refrigerant liquid absorbs heat from the heat storage material 7, evaporates, becomes refrigerant gas, passes through the defrosting refrigerant circuit 14, returns to the compressor 1 via the fourth on-off valve 11, and continues until defrosting is completed. When defrosting is completed, the first to fourth on-off valves 8 to 11 return to the heating operation state,
Heating operation will resume.

【発明が解決しようとする課M】[Problem M that the invention attempts to solve]

従来のヒーl、ポンプ装置は、除霜運転時に上述したよ
うに、冷媒が凝縮器の出口では気液2相状態であるため
、第1の減圧装置の少しの絞り量の変化でも蒸発器に入
る冷媒の圧力が大きく変化し、蒸発器に入る冷媒の圧力
制御が困難であり、最適な除霜運転ができないという問
題点があった。 この発明は、上記のような問題点を解決するためになさ
れたもので、蒸発器に入る冷媒の圧力の最適制御が達成
でき、これによって除霜時間の短縮化および除霜運転中
の暖房能力の確保などの除霧運転の最適化が達成できる
ヒートポンプ装置を得ることを目的としている。
In the conventional heat pump device, as mentioned above during defrosting operation, the refrigerant is in a gas-liquid two-phase state at the outlet of the condenser, so even a slight change in the throttle amount of the first pressure reducing device will cause the refrigerant to flow into the evaporator. There was a problem in that the pressure of the refrigerant entering the evaporator varied greatly, making it difficult to control the pressure of the refrigerant entering the evaporator, making it impossible to perform optimal defrosting operation. This invention was made to solve the above problems, and it is possible to achieve optimal control of the pressure of the refrigerant entering the evaporator, thereby shortening the defrosting time and increasing the heating capacity during defrosting operation. The aim is to obtain a heat pump device that can achieve optimization of fog removal operation, such as ensuring

【課題を解決するための手段】[Means to solve the problem]

この発明に係るヒートポンプ装置は、上記のような冷媒
回路を備えたものにおいて、凝縮器の入口側を第2の冷
媒回路の第2の減圧装置の出口側に第3の減圧装置およ
び第5の開閉弁を介して接続した第3の冷媒回路を具備
させたものである。
In the heat pump device according to the present invention, in which the inlet side of the condenser is connected to the outlet side of the second pressure reducing device of the second refrigerant circuit, a third pressure reducing device and a fifth pressure reducing device are arranged. It is equipped with a third refrigerant circuit connected via an on-off valve.

【作  用】[For production]

この発明におけるヒートポンプ装置は、除霜運転時に、
第3の冷媒回路に設けた第5の開閉弁が開き、凝縮器出
口の冷媒が常に液状態になるように、吐出ガスの一部を
凝縮器を通さないでバイパスさせることにより、第1の
減圧装置の絞り量制御が容易にでき、蒸発器の冷媒圧力
の最適化が図られ、効率よく除霜運転を行うことができ
ろ。
The heat pump device according to the present invention, during defrosting operation,
The fifth on-off valve provided in the third refrigerant circuit opens and a portion of the discharged gas is bypassed without passing through the condenser so that the refrigerant at the condenser outlet is always in a liquid state. It is possible to easily control the throttling amount of the pressure reducing device, optimize the refrigerant pressure in the evaporator, and perform defrosting operations efficiently.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を第1図について説明する。 第1図は、この発明の一実施例によると−トポンプ装置
の冷媒回路構成図茶“ある。第1図において、1は圧縮
機、2は凝縮器、3および3aは膨張弁または毛細管の
ような第1および第2の減圧装置、4は蒸発器、5は蓄
熱槽6に相変化温度が0〜30℃間にある蓄熱材7とと
もに内蔵された蓄熱、吸熱用の熱交換器、8〜11は第
1〜第4の開閉弁、12は第1の冷媒回路、13は第2
の冷媒回路、14は除霜用冷媒回路であり、第1の冷媒
回路12と第2の冷媒回路13は凝縮器2の出口側と蒸
発器4の出口側との間に並列に接続されており、以上の
構成は第2図に示す従来のものと同様である。 16は膨張弁または毛細管のような第3の減圧装置3b
と第5の開閉弁15とをこの順に備えた第3の冷媒回路
であり、その両端はis器2の入口側と第2の減圧装置
3aの出口側とに接続されている。 次に、以上のように構成されたと−トポンプ装置の冷媒
回路の動作について説明する。 暖房運転時は、第1.第3の開閉弁8,10が開き、第
2.第4.第5の開閉弁9,11,15が閉じており蓄
熱槽6内の熱交換器5に上述した従来のものと同様に、
冷媒液が凝縮器2から入り、相変化温度0〜30℃間に
ある蓄熱材7を加熱してM熱する。そして、熱交換器5
を出た冷媒液は、第1の減圧装置3によって絞られて減
圧され、蒸発器4で蒸発して圧縮機1に戻る。 上記蒸発器4に霜が付着して除霜運転に入ると、第2.
第4.第5の開閉弁9,11,15が開き、第1.第3
の開閉弁8,10が閉じ、冷媒は、第1図に破線矢印で
示すように流れ、圧縮機1から出た高温、高圧の冷媒ガ
スは、一部が第3の冷媒回路16に入り、第3の減圧装
置3b1第5の開閉弁15を通り、蒸発器4に入り、残
りが凝縮器2に送られ、ここで放熱して暖房が行われる
。そして、第3の減圧装置3bの絞り量により、凝縮器
出口2の冷媒が常に液になるように、第3の冷媒回路1
6に流れる冷媒ガス量を制御していることにより、第2
の減圧装置3aの入口側は常に液となり、第2の減圧装
置3aの絞り量の変化に対し蒸発器4に入る冷媒の圧力
が急激に変化することなく、ここでの絞り量の制御が容
易となり、最適な冷媒圧力で蒸発器4に送ることが可能
になる。 上述のように第3の冷媒回路16を通った冷媒と、第2
の減圧装置3aを出た冷媒とが再び蒸発器4の入口側で
合流して気液2相の状態で蒸発器4に送られ、ここで放
熱することにより、全体が凝縮して冷媒液となり、この
放熱によって蒸発器4に付着していた霜が融かされ除霜
が行われる。蒸発N4を出た冷媒液は、上述した従来の
ものと同様に、第1の減圧装置3、蓄熱槽6内の熱交換
器5を通り、第4の開閉弁11を経て圧縮8!1に戻り
除霜完了まで上記のサイクルを繰り返す。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a refrigerant circuit diagram of a pump device according to an embodiment of the present invention. In FIG. 1, 1 is a compressor, 2 is a condenser, and 3 and 3a are expansion valves or capillary tubes. first and second pressure reducing devices, 4 an evaporator, 5 a heat exchanger for heat storage and heat absorption built in a heat storage tank 6 together with a heat storage material 7 having a phase change temperature between 0 and 30°C; 11 is the first to fourth on-off valve, 12 is the first refrigerant circuit, and 13 is the second
The refrigerant circuit 14 is a defrosting refrigerant circuit, and the first refrigerant circuit 12 and the second refrigerant circuit 13 are connected in parallel between the outlet side of the condenser 2 and the outlet side of the evaporator 4. The above configuration is similar to the conventional one shown in FIG. 16 is a third pressure reducing device 3b such as an expansion valve or a capillary tube.
and a fifth on-off valve 15 in this order, and both ends thereof are connected to the inlet side of the IS device 2 and the outlet side of the second pressure reducing device 3a. Next, the operation of the refrigerant circuit of the tort pump device configured as described above will be explained. During heating operation, 1. The third on-off valves 8 and 10 open, and the second. 4th. The fifth on-off valves 9, 11, and 15 are closed, and the heat exchanger 5 in the heat storage tank 6 is similar to the conventional one described above.
The refrigerant liquid enters from the condenser 2 and heats the heat storage material 7 whose phase change temperature is between 0 and 30°C to generate M heat. And heat exchanger 5
The refrigerant liquid that has exited is throttled and depressurized by the first pressure reducing device 3, evaporated by the evaporator 4, and returned to the compressor 1. When frost adheres to the evaporator 4 and the defrosting operation begins, the second.
4th. The fifth on-off valve 9, 11, 15 opens, and the first. Third
The on-off valves 8 and 10 are closed, and the refrigerant flows as shown by the dashed arrow in FIG. It passes through the third pressure reducing device 3b1 and the fifth on-off valve 15, enters the evaporator 4, and the remainder is sent to the condenser 2, where heat is radiated and heating is performed. Then, the third refrigerant circuit 1 is controlled so that the refrigerant at the condenser outlet 2 always becomes liquid by the throttling amount of the third pressure reducing device 3b.
By controlling the amount of refrigerant gas flowing into the second
The inlet side of the second pressure reducing device 3a is always liquid, and the pressure of the refrigerant entering the evaporator 4 does not change suddenly in response to changes in the throttling amount of the second pressure reducing device 3a, making it easy to control the throttling amount here. This makes it possible to send the refrigerant to the evaporator 4 at an optimal pressure. As mentioned above, the refrigerant that has passed through the third refrigerant circuit 16 and the second
The refrigerant that has exited the pressure reducing device 3a joins again at the inlet side of the evaporator 4 and is sent to the evaporator 4 in a two-phase gas-liquid state, where heat is radiated and the entire refrigerant condenses to become liquid refrigerant. The frost adhering to the evaporator 4 is melted by this heat radiation, and defrosting is performed. The refrigerant liquid that has left the evaporated N4 passes through the first pressure reducing device 3, the heat exchanger 5 in the heat storage tank 6, the fourth on-off valve 11, and is compressed 8!1, as in the conventional system described above. Repeat the above cycle until return defrosting is complete.

【発明の効果】【Effect of the invention】

以上説明したように、この発明によれば、除霜運転時に
、第3の減圧装置および第5の開閉弁を有する第3の冷
媒装置で、凝縮器に入る冷媒量を制御することにより、
第2の減圧装置に入る冷媒が常に液になるようにしたの
で、除霜運転中の回路の安定性の向上および除霜時間の
短縮化ができるという効果がある。
As explained above, according to the present invention, during defrosting operation, by controlling the amount of refrigerant entering the condenser with the third refrigerant device having the third pressure reducing device and the fifth on-off valve,
Since the refrigerant entering the second pressure reducing device is always in liquid form, the stability of the circuit during defrosting operation can be improved and the defrosting time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例にするヒートポツプ装置の
冷媒回路構成図、第2図は従来例のヒートポンプ装置の
冷媒回路構成図である。 1・・・圧縮機、2・・・凝縮器、3,3a、3b  
・第11・・第1〜第4の開閉弁、12,13  ・第
1゜第2の冷媒回路、14・除霜用冷媒回路、15・・
・第5の開閉弁、16・・第3の冷媒回路。 なお、図中同一符号は同−又は相当部分を示す。 代理人  大 岩 増 雄(外2名) 第1図 第2図
FIG. 1 is a block diagram of a refrigerant circuit of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a block diagram of a refrigerant circuit of a conventional heat pump device. 1... Compressor, 2... Condenser, 3, 3a, 3b
- 11th... 1st to 4th on-off valves, 12, 13 - 1st - 2nd refrigerant circuit, 14 - Defrosting refrigerant circuit, 15...
- Fifth on-off valve, 16... third refrigerant circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機と凝縮器と第1の減圧装置と蒸発器とを環
状に接続して構成される冷凍サイクルを有し、この冷凍
サイクルは上記凝縮器の出口側と蒸発器の出口側との間
に、第1の開閉弁、蓄熱材とともに蓄熱槽に内蔵させた
熱交換器、上記第1の減圧装置および蒸発器をこの順で
備えた第1の冷媒回路と、第2の開閉弁と第2の減圧装
置を備えた第2の冷媒回路とを並列に接続し、第1を第
2の冷媒回路が蒸発器の出口側で合流した部分を第3の
開閉弁を介して圧縮機の吸入側に接続し、さらに第1の
開閉弁と蓄熱槽内の熱交換器との間を第4の開閉弁を介
して圧縮機の吸入側に接続した除霜用冷媒回路とを有し
ているヒートポンプ装置において、上記凝縮器の入口側
を上記第2の冷媒回路の第2の減圧装置の出口側に第3
の減圧装置および第5の開閉弁を介して接続した第3の
冷媒回路を具備させたことを特徴とするヒートポンプ装
置。
(1) It has a refrigeration cycle configured by connecting a compressor, a condenser, a first pressure reducing device, and an evaporator in a ring, and this refrigeration cycle has an outlet side of the condenser and an outlet side of the evaporator. In between, a first refrigerant circuit comprising a first on-off valve, a heat exchanger built into a heat storage tank together with a heat storage material, the first pressure reducing device and an evaporator in this order, and a second on-off valve. and a second refrigerant circuit equipped with a second pressure reducing device are connected in parallel, and the part where the first and second refrigerant circuits meet at the outlet side of the evaporator is connected to the compressor through a third on-off valve. The defrosting refrigerant circuit is connected to the suction side of the compressor, and further connected to the suction side of the compressor between the first on-off valve and the heat exchanger in the heat storage tank via a fourth on-off valve. In the heat pump device, the inlet side of the condenser is connected to the outlet side of the second pressure reducing device of the second refrigerant circuit, and a third
A heat pump device comprising a pressure reducing device and a third refrigerant circuit connected via a fifth on-off valve.
JP4672588A 1988-02-29 1988-02-29 Heat pump system Pending JPH01222173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4672588A JPH01222173A (en) 1988-02-29 1988-02-29 Heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4672588A JPH01222173A (en) 1988-02-29 1988-02-29 Heat pump system

Publications (1)

Publication Number Publication Date
JPH01222173A true JPH01222173A (en) 1989-09-05

Family

ID=12755319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4672588A Pending JPH01222173A (en) 1988-02-29 1988-02-29 Heat pump system

Country Status (1)

Country Link
JP (1) JPH01222173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429974A (en) * 2011-02-11 2013-12-04 Frigesco有限公司 Flash defrost system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429974A (en) * 2011-02-11 2013-12-04 Frigesco有限公司 Flash defrost system

Similar Documents

Publication Publication Date Title
JP2522919B2 (en) Air conditioner
JPH04254156A (en) Heat pump type hot water supply device
JPH0432669A (en) Heat pump system controlling method therefor
JP2667741B2 (en) Air conditioner
JP2518451Y2 (en) Heat pump water heater
JPH01222173A (en) Heat pump system
JP2004061023A (en) Heat pump device
JPH09119725A (en) Binary refrigerator
JP2007017093A (en) Refrigerating device
JPH035680A (en) Air conditioner
JP2001091063A (en) Air conditioner
JPH05106943A (en) Heat pump
KR102312664B1 (en) Apparatus for providing cold water and ice with function to detach ice
JPH0611204A (en) Heat pump type air conditioner
JP2004218855A (en) Vapor compression type refrigerating machine
JPH0730978B2 (en) Heat pump device
JPH0354375Y2 (en)
JPH04177064A (en) Absorption refrigerator
JPH0730977B2 (en) Heat pump device
JPH03164668A (en) Heat pump device
JPS6015084Y2 (en) Refrigeration equipment
JPH0573989B2 (en)
JPS63273770A (en) Heat pump device
JPH08285390A (en) Freezing device for container
JPH04222360A (en) Heat pump type air conditioner