JPH01221670A - Automatic chemical analyzing device - Google Patents

Automatic chemical analyzing device

Info

Publication number
JPH01221670A
JPH01221670A JP4786788A JP4786788A JPH01221670A JP H01221670 A JPH01221670 A JP H01221670A JP 4786788 A JP4786788 A JP 4786788A JP 4786788 A JP4786788 A JP 4786788A JP H01221670 A JPH01221670 A JP H01221670A
Authority
JP
Japan
Prior art keywords
container
calibration
reaction
automatic chemical
calibration solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4786788A
Other languages
Japanese (ja)
Other versions
JPH0690210B2 (en
Inventor
Toshio Takiguchi
瀧口 登志夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63047867A priority Critical patent/JPH0690210B2/en
Publication of JPH01221670A publication Critical patent/JPH01221670A/en
Publication of JPH0690210B2 publication Critical patent/JPH0690210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To eliminate the need for a reaction container for calibrating liquid and use of unnecessary reaction container, and to improve the processing speed by providing a calibrating liquid container which supplies the calibrating liquid to a movement path opposite the position of an electrolyte measuring electrode. CONSTITUTION:Reaction containers 2 arranged in a thermostatic chamber 1 are conveyed in order and a colorimetric system takes a colorimetric analysis at a prescribed position. The reaction liquid in a reaction container 2 which is carried to right below the electrolyte measuring electrode 8, on the other hand, is analyzed electrolytically by this electrode. Then the electrode 8 changes its direction to the adjacent calibrating liquid container 14 to take an electrolyte analysis of calibrating liquid similarly. In this case, the calibrating liquid container 14 and reaction container 2 are provided individually, so the reaction container 2 can be used only for reaction liquid. Consequently, the processing speed is improved as compared with a case wherein the reaction container is used for the calibrating liquid.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、生体から採取されたサンプルを比色分析又は
電解質分析を行う自動化学分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an automatic chemical analyzer that performs colorimetric analysis or electrolyte analysis on samples collected from living organisms.

(従来の技術) 生体例えば人体から採取した血清等をサンプル(試料)
として用い、これに所望の試薬を反応させた反応液内の
特定成分の濃度又は電解質量を比色法又は電極法によっ
て測定して診断に供するようにした自動化学分析装置が
知られている。第7図はこのような分析装置の構成例を
示すもので、例えば円形の恒温槽1内には反応容器2が
多数浸漬されて一定サイクルで順次矢印方向に搬送され
るようになっている。恒温槽1の周囲には各々前記反応
容器2にサンプルを分注するためのサンプル分注ノズル
3.試薬を分注するための試薬分注ノズル4.サンプル
と試薬との反′応液を撹拌するための撹拌子5.洗浄乾
燥を行うための洗浄乾燥ノズル6が設けられている。ま
た所定位置には光源7aと検出器7bを含む測光系7が
設けられ、反応容器2に分注されたサンプルと試薬との
反応液内の特定成分の濃度が光学的に測定されて比色分
析されるようになっている。
(Prior art) A sample of a living body, such as serum collected from a human body.
An automatic chemical analyzer is known that is used for diagnosis by measuring the concentration of a specific component or the amount of electrolyte in a reaction solution by reacting a desired reagent with the reaction solution using a colorimetric method or an electrode method. FIG. 7 shows an example of the configuration of such an analyzer, in which, for example, a large number of reaction vessels 2 are immersed in a circular constant temperature bath 1 and are transported in a fixed cycle in the direction of the arrow. Around the constant temperature chamber 1, there are sample dispensing nozzles 3 for dispensing samples into the reaction vessels 2, respectively. Reagent dispensing nozzle for dispensing reagents4. Stirring bar for stirring the reaction solution of sample and reagent 5. A washing/drying nozzle 6 for washing and drying is provided. Further, a photometric system 7 including a light source 7a and a detector 7b is provided at a predetermined position, and the concentration of a specific component in the reaction solution of the sample and reagent dispensed into the reaction container 2 is measured colorimetrically. It is meant to be analyzed.

ざらに恒温槽1の周囲の所定位置(直上位置)には電解
質分析を行うためのイオン選択電極(以下単に電極と称
する)8が設けられ、直下の反応容器2から反応液及び
校正液を交互に吸引して電極法によって測定が行われる
ようになっている。
Ion-selective electrodes (hereinafter simply referred to as electrodes) 8 for electrolyte analysis are provided at predetermined positions around (directly above) the thermostatic chamber 1, and a reaction solution and a calibration solution are alternately supplied from the reaction container 2 directly below. Measurement is performed using the electrode method by suctioning the

第8図は特に電解質分析を行うための電極測定系を示す
もので、電極8直下の恒温槽1にはサンプルを含んだ反
応液が満たされた反応容器2aと校正液が満たされた反
応容器2bがペアとして各サイクルごとに間欠的に搬送
される。先ず電極8は直下に搬送されてきた反応容器2
a内に下降してサクションポンプ9によって反応液を吸
引して後再上昇して測定を行い、続いて次に直下に搬送
されてきた反応容器2b内の校正液を同様にして測定を
行い、以下法のペアの反応容器に対しても同様に反応液
と校正液を交互に測定する動作を繰返し行うようになっ
ている。このように測定ごとに電極の校正を行うことに
より、連続して測定を行う場合の測定誤差を防止できる
。なおベアの反応容器のうち反応液が満たされている反
応容器2aは比色分析のためにも共通に用いられる。ま
た第9図は電極測定系の他の例を示すもので、恒温槽1
に電解質分析に用いるベアの反応容器2a。
Figure 8 shows an electrode measurement system especially for electrolyte analysis, in which a constant temperature bath 1 directly below the electrode 8 includes a reaction vessel 2a filled with a reaction solution containing a sample and a reaction vessel filled with a calibration solution. 2b are transported intermittently as a pair each cycle. First, the electrode 8 is placed directly under the reaction container 2.
After descending into the chamber a and suctioning the reaction liquid by the suction pump 9, it rises again and performs a measurement.Subsequently, the calibration liquid in the reaction container 2b, which has been conveyed directly below, is similarly measured. Similarly, the operation of alternately measuring the reaction solution and the calibration solution is repeated for the reaction vessels of the following pairs of methods. By calibrating the electrodes for each measurement in this way, measurement errors can be prevented when measurements are performed continuously. Incidentally, among the bare reaction vessels, the reaction vessel 2a filled with the reaction liquid is also commonly used for colorimetric analysis. Figure 9 shows another example of the electrode measurement system.
A bare reaction vessel 2a used for electrolyte analysis.

2bの他に比色分析に用いる反応容器2Gを別に設は計
3個を一組として搬送するようにしたものである。
In addition to 2b, a reaction vessel 2G used for colorimetric analysis is separately designed so that a total of three reaction vessels 2G are transported as a set.

いずれにせよ比色分析機能及び電解質分析機能を備えた
自動化学分析装置においては、各サイクルで少なくとも
2個の反応容器を一組として用いる必要がある。
In any case, in an automatic chemical analyzer equipped with a colorimetric analysis function and an electrolyte analysis function, it is necessary to use at least two reaction vessels as a set in each cycle.

(発明が解決しようとする課題) ところで従来の自動化学分析装置では、電解質分析に用
いる校正液を満たすための反応容器を必要とするので、
処理速度が低下するという問題がある。すなわち比色分
析のためには各サイクルで1個の反応容器があればよい
が、電解質分析のために比色分析では必要としない校正
液用の反応容器を余分に必要とするのでこの分処理速度
が低下することになる。
(Problems to be Solved by the Invention) However, conventional automatic chemical analyzers require a reaction container to fill the calibration solution used for electrolyte analysis.
There is a problem that processing speed decreases. In other words, for colorimetric analysis, one reaction vessel is required for each cycle, but for electrolyte analysis, an extra reaction vessel for the calibration solution, which is not required for colorimetric analysis, is required, so it is necessary to process this separately. The speed will be reduced.

本発明は以上のような問題に対処してなされたもので、
処理速度を向上することができる自動化学分析装置を提
供することを目的とするものである。
The present invention has been made in response to the above-mentioned problems.
The object of the present invention is to provide an automatic chemical analyzer that can improve processing speed.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明は、電極の位置に対応
する移動経路に校正液を専用に供給する校正液容器を設
けるようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a calibration solution container for exclusively supplying a calibration solution on a movement path corresponding to the position of the electrode. It is.

また他の本発明は、校正液の濃度が常に一定である性質
を利用して校正液を繰返し測定することにより、この結
果を基に許容値を参照して測定系の良否の判断を行うよ
うにしたものである。
Another aspect of the present invention is to repeatedly measure the calibration solution by taking advantage of the property that the concentration of the calibration solution is always constant, and to judge the quality of the measurement system by referring to the tolerance value based on the results. This is what I did.

(作 用) 電解質分析に用いる校正液は反応容器とは別個に設けら
れた校正液容器に専用に供給されるので、校正液用の反
応容器は不要となる。従って余分な反応容器を用いるこ
となく電解質分析を行うことができるので、処理速度を
向上することができる。
(Function) Since the calibration solution used for electrolyte analysis is exclusively supplied to a calibration solution container provided separately from the reaction container, a reaction container for the calibration solution is not required. Therefore, electrolyte analysis can be performed without using an extra reaction vessel, so processing speed can be improved.

また校正液をサンプル液とみなして連続して電極に供給
して実際の測定サイクルに従って繰返し測定を行うこと
により、この測定結果に基づいて校正液供給系以降の測
定系の動作の良否の判断を容易に行うことができる。従
って分析不良が発生した場合の不良発生源の把握が容易
となり、効率的な対策を講することができる。
In addition, by treating the calibration solution as a sample solution and continuously supplying it to the electrodes and performing repeated measurements according to the actual measurement cycle, it is possible to judge the quality of the operation of the measurement system after the calibration solution supply system based on the measurement results. It can be done easily. Therefore, when an analysis failure occurs, it becomes easy to understand the source of the failure, and efficient countermeasures can be taken.

(実施例) 以下図面を参照して本発明実施例を説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の自動化学分析装置の実施例を示すシス
テム図で、恒温槽1は恒温水供給源10からジヨイント
11を介して恒温水が供給され反応容器2を一定温度に
恒温している。恒温槽1の周囲の所定位置には比色分析
を行うための比色測定系12が設けられ、サンプル分注
ノズル、試薬分注ノズル、撹拌子、測光系、洗浄乾燥系
(いずれも詳細は図示せず)等から構成されている。ま
た他の所定位置には電解質分析を行うための電極測定系
13が設けられ、電極8、この電極8直下の恒温槽1内
の反応容器2の搬送経路の途中位置に浸漬された校正液
容器14等から構成されている。電極8にはサクション
ポンプ9が接続され、サクションポンプ9には大気オー
プンボックス15が接続されている。また前記校正液容
器14には供給流路16を介して供給ポンプ17、によ
って校正液源18から校正液が供給されると共に、校“
正液容器14からは排出流路19を介して排出ポンプ2
0によって校正液が排出される。
FIG. 1 is a system diagram showing an embodiment of the automatic chemical analyzer of the present invention, in which a constant temperature bath 1 is supplied with constant temperature water from a constant temperature water supply source 10 via a joint 11, and keeps a reaction vessel 2 at a constant temperature. There is. A colorimetric measurement system 12 for performing colorimetric analysis is installed at a predetermined position around the thermostatic chamber 1, and includes a sample dispensing nozzle, a reagent dispensing nozzle, a stirring bar, a photometric system, and a washing/drying system (details for each are provided below). (not shown), etc. Further, an electrode measurement system 13 for performing electrolyte analysis is provided at another predetermined position, and an electrode 8 and a calibration liquid container immersed in the middle of the transport path of the reaction container 2 in the constant temperature bath 1 directly below the electrode 8. It is composed of 14 mag. A suction pump 9 is connected to the electrode 8, and an atmospheric open box 15 is connected to the suction pump 9. Further, a calibration solution is supplied to the calibration solution container 14 from a calibration solution source 18 by a supply pump 17 via a supply channel 16, and
A discharge pump 2 is connected from the positive liquid container 14 via a discharge channel 19.
0 drains the calibration fluid.

電源8は端部にノズル8aを有し図示しない駆動機構に
より上下動及び揺動可能に構成されている。これによっ
て電極8は直下の校正液容器14から校正液を吸引する
と共に、直下に搬送されてきた反応容器2から反応液を
吸引して、校正液と反応液を交互に測定できるようにな
っている。電極8の出力はプリアンプ21を介してA/
D変換器22に送られ、ざらに後段の演算処理部(図示
せず)に送られる。
The power source 8 has a nozzle 8a at its end and is configured to be movable up and down and swingable by a drive mechanism (not shown). As a result, the electrode 8 can suck the calibration solution from the calibration solution container 14 directly below it, as well as the reaction solution from the reaction container 2 transported directly below, and can alternately measure the calibration solution and the reaction solution. There is. The output of the electrode 8 is sent to A/A via the preamplifier 21.
The signal is sent to the D converter 22, and then roughly sent to a subsequent arithmetic processing section (not shown).

第2図は電極測定系13付近の構成を示すもので、恒温
槽1には予めサンプルと試薬とが分注されて成る反応液
が満たされた反応容器2が一定のサイクルで順次搬送さ
れてくる。電極8は直下に搬送された反応容器2に対し
て上下動を行うことによりノズル8aで反応液を吸引し
て測定を行い、次に校正液容器14の方向に揺動して向
きを変えることにより同様に上下動を行って校正液を吸
引して測定を行う。以下各サイクルごとに新たに搬送さ
れてくる反応容器2と校正液容器14に対して同様な処
理を行う。また反応容器2は比色測定系による比色分析
にも共通に用いられ、所定位置において測光系によって
比色測定が行われる。
Figure 2 shows the configuration of the vicinity of the electrode measurement system 13, in which a reaction vessel 2 filled with a reaction solution in which samples and reagents have been dispensed in advance is transported to a constant temperature bath 1 in a fixed cycle. come. The electrode 8 moves up and down with respect to the reaction container 2 conveyed directly below, sucks the reaction liquid with the nozzle 8a and performs measurement, and then swings in the direction of the calibration liquid container 14 to change its direction. Perform the same up-and-down movement to aspirate the calibration solution and perform measurements. Thereafter, similar processing is performed on the reaction container 2 and calibration liquid container 14 that are newly transported in each cycle. The reaction container 2 is also commonly used for colorimetric analysis using a colorimetric system, and colorimetric measurements are performed at a predetermined position using a photometric system.

校正液容器14は第3図に示すように例えばポット状か
ら成り、その上部から供給流路16を介して校正液が供
給されると共に、その下部から排出流路19を介して校
正液が排出されるように構成される。これによって容器
14内に残っている校正液を容易に排出することができ
、校正液の交換時等に前に用いられた校正液が残らない
のでそのF3響を防止することができる。またジヨイン
ト部23を介して各流路16,19を接続する場合ジヨ
イント部23を恒温水の水位よりも高く配置させるよう
にする。これによってジヨイント部23でリークが発生
した場合恒温水が校正液に混入することを防止できるの
で、校正液の濃度が簿められて測定誤差が生じることは
なくなる。
As shown in FIG. 3, the calibration liquid container 14 has a pot shape, for example, and the calibration liquid is supplied from the upper part through the supply channel 16, and the calibration liquid is discharged from the lower part through the discharge channel 19. configured so that As a result, the calibration solution remaining in the container 14 can be easily discharged, and the previously used calibration solution does not remain when replacing the calibration solution, so that the F3 effect can be prevented. Further, when connecting the flow paths 16 and 19 via the joint section 23, the joint section 23 is arranged higher than the water level of the constant temperature water. As a result, if a leak occurs in the joint portion 23, it is possible to prevent constant temperature water from being mixed into the calibration solution, so that the concentration of the calibration solution will not be recorded and measurement errors will not occur.

校正液容器14に接続する供給流路16としては第4図
に示すように恒温水に浸漬される部分16aの内容積が
、容器14に対する校正液の1回の供給母よりも大きく
なるように構成する。これによれば浸漬されている流路
部分16aの作用により、校正液容器14内に供給され
た校正液の4温時間を短縮することができるので、処理
速度の向上に寄与することができる。この場合流路部分
16aは支持体24に巻付けることによって安定に配置
することができ、また第5図のように流路部分16aを
円形状となして恒温槽1の内壁に固定するようにしても
よい。
As shown in FIG. 4, the supply channel 16 connected to the calibration liquid container 14 is designed so that the internal volume of the portion 16a immersed in constant temperature water is larger than the volume of the calibration liquid supplied to the container 14 once. Configure. According to this, due to the action of the immersed flow path portion 16a, the time required for heating the calibration liquid supplied into the calibration liquid container 14 can be shortened, thereby contributing to an improvement in processing speed. In this case, the flow path portion 16a can be stably arranged by wrapping it around the support 24, and the flow path portion 16a can be formed into a circular shape and fixed to the inner wall of the thermostatic chamber 1 as shown in FIG. You can.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

恒温槽1に配置されて分析すべきサンプルの分注及び試
薬の分注が行われて成る反応液を保持している反応容器
2は一定のサイクルで順次光に搬送され、所定位置で反
応液は比色測定系により比色分析が行われる。一方電極
8の直下に搬送された反応容器2の反応液はこの電極8
による電極測定系によって電解質分析が行われる。続い
て電極8は隣接している校正液容器14に向きを変え同
様にして校正液の電解質分析を行う。以後新たな反応容
器2が搬送されるごとに、反応液と校正液の電解質分析
が交互に行われる。この場合校正液を満たしている容器
は反応容器とは別個に設けられ、校正液を専用に供給す
る校正液容器14が用いられる。
A reaction container 2, which is placed in a constant temperature bath 1 and holds a reaction solution in which samples to be analyzed and reagents are dispensed, is sequentially transported by light in a constant cycle, and the reaction solution is placed at a predetermined position. Colorimetric analysis is performed using a colorimetric measurement system. On the other hand, the reaction liquid in the reaction container 2 transported directly below the electrode 8 is
Electrolyte analysis is performed using an electrode measurement system. Subsequently, the electrode 8 is turned to the adjacent calibration solution container 14, and the electrolyte analysis of the calibration solution is performed in the same manner. Thereafter, each time a new reaction container 2 is transported, electrolyte analysis of the reaction solution and the calibration solution is performed alternately. In this case, the container filled with the calibration solution is provided separately from the reaction container, and a calibration solution container 14 for exclusively supplying the calibration solution is used.

この結果、恒温槽1に用意された反応容器2を分析すべ
き反応液のためだけに用いることができる。よって従来
において電解質分析の校正液用として用いられた反応容
器は反応液用として用いることができる。従って例えば
ペアで電解質分析に用いられていた2個の反応容器は共
に反応液用として利用できるので処理速度を2倍に向上
することができる。また3個を一組として用いられてい
た場合にも同様に処理速度を向上することができる。
As a result, the reaction container 2 provided in the constant temperature bath 1 can be used only for the reaction liquid to be analyzed. Therefore, a reaction vessel conventionally used for a calibration solution for electrolyte analysis can be used for a reaction solution. Therefore, for example, two reaction vessels that have been used in pairs for electrolyte analysis can both be used for reaction liquid, thereby doubling the processing speed. Further, even when three pieces are used as a set, the processing speed can be similarly improved.

このようにして電解質分析に用いられる校正液は常に濃
度一定のものが校正液容器14に供給されている。この
ためこの校正液の性質を利用することにより、測定結果
に分析不良が発生した場合この不良発生源の位置的な把
握を容易に行うことが可能となり、少なくとも校正液の
供給系に原因があるか又は供給系以降の測定系に原因が
あるかが把握できる。従って修理を行う場合に効率的な
対策を講じることができる。
In this way, the calibration solution used for electrolyte analysis is always supplied to the calibration solution container 14 with a constant concentration. Therefore, by utilizing the properties of this calibration solution, if an analysis defect occurs in the measurement results, it is possible to easily determine the location of the source of the defect, and at least it is possible to identify the cause in the calibration solution supply system. It can be determined whether the cause is in the measurement system after the supply system. Therefore, efficient measures can be taken when performing repairs.

具体的には、先ず構成液を電極に連続的に供給すること
により校正液を反応液とみなして実際の測定サイクルに
従って繰返し測定を行う。例えば校正液を連続して20
回の測定を行い、SD。
Specifically, first, the constituent liquids are continuously supplied to the electrodes, and the calibration liquid is treated as a reaction liquid, and measurements are performed repeatedly according to the actual measurement cycle. For example, apply the calibration solution continuously for 20
Measurements were taken twice and the SD.

CD等の統計値を得ることにより測定結果の再現性を確
認する。これによって得られた測定結果が予めユーザに
より設定された許容値の範囲内であれば、供給系に不良
原因はないとみなすことができる。即ち、校正液の繰返
し測定による結果が許容値範囲内であるということは、
電極8以前の供給系に問題がないということを意味して
いるので、分析不良が発生した場合はこの原因は測定系
にあるとの判断を行うことができる。前記校正液の測定
結果が許容値範囲外にあった場合には、原因が供給系と
測定系のどちら側にあるかは不明なので、先に供給系の
校正液に何らかの問題があるか否かを確認することが必
要となる。
Confirm the reproducibility of the measurement results by obtaining statistical values such as CD. If the measurement result obtained by this is within the range of allowable values set in advance by the user, it can be considered that there is no cause of the defect in the supply system. In other words, if the results of repeated measurements of the calibration solution are within the allowable range,
This means that there is no problem with the supply system before the electrode 8, so if an analysis failure occurs, it can be determined that the cause lies in the measurement system. If the measurement result of the calibration solution is outside the allowable value range, it is unclear whether the cause is in the supply system or the measurement system, so first check whether there is any problem with the calibration solution in the supply system. It is necessary to check.

測定系に原因があると判断した場合には、この測定系を
構成している各ステップの動作の良否を順次チエツクし
ていけばよいことになる。これによって分析不良に対処
して修理を行う場合、不良発生源の位置的な把握を短時
間で行えるので効率的な対策を講じることができる 第6図は以上のような不良対策を行う場合のステップを
示すもので、大別して校正液の測定を繰返し行うステッ
プAと、この測定結果に暴き予め設定された許容値を参
照して測定系の良否の判断を行うステップBとに分ける
ことができる。許容値はユーザによって任意に設定する
ことができる。
If it is determined that the cause is in the measurement system, it is sufficient to sequentially check the operation quality of each step that makes up the measurement system. As a result, when dealing with analysis defects and performing repairs, the location of the source of the defect can be grasped in a short time, allowing efficient countermeasures to be taken. The steps can be roughly divided into Step A, which repeatedly measures the calibration solution, and Step B, which reveals the measurement results and refers to preset tolerance values to judge the quality of the measurement system. . The allowable value can be set arbitrarily by the user.

このような不良対策のステップは、予めサービスマンが
メンテナンスを行う際のプログラムとして装置に組込ん
でおきこのプログラムを起動することにより自動的に校
正液の測定を行わせ、この測定結果を装置に読取らせる
ことにより自動的に測定系の良否の判断を行わせること
が可能となる。
These steps to take measures against defects are implemented in advance by a service engineer who installs the program into the device as a maintenance program, and when the program is started, the calibration fluid is automatically measured, and the measurement results are sent to the device. By reading it, it becomes possible to automatically judge whether the measurement system is good or bad.

[発明の効果] 以上述べたように本発明によれば、電解質分析に必要な
校正液を専用に供給する校正液容器を設けるようにした
ので、反応容器を反応液用にのみ利用できるため処理速
度を向上することができる。
[Effects of the Invention] As described above, according to the present invention, since a calibration solution container is provided exclusively for supplying the calibration solution necessary for electrolyte analysis, the reaction container can be used only for the reaction solution, so that processing can be performed easily. Speed can be improved.

また校正液を測定することにより測定系の良否を判断す
るようにしたので、装置のメンテナンスを行う場合効率
的な対策を講じることができる。
Furthermore, since the quality of the measurement system is judged by measuring the calibration liquid, efficient measures can be taken when maintaining the apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自動化学分析装置の実施例を示すシス
テム図、第2図は本実施例装置の主要部を示す構成図、
第3図乃至第5図は本実施例装置に用いられる校正液容
器の恒温水内への配置状態を示す配置図、第6図は本発
明の原理を適用した他の発明の自動化学分析装置の機能
を説明するブロック図、第7図は従来例の概略平面図、
第8図及び第9図は従来例の主要部を示す構成図である
。 1・・・恒温槽、   2・・・反応容器、8・・・電
極(イオン選択電極)、 12・・・比色測定系、13・・・電極測定系、14・
・・校正液容器、16.16a・・・供給流路、23・
・・ジヨイント部。 第2図 第3図 第6図 第7図
FIG. 1 is a system diagram showing an embodiment of the automatic chemical analyzer of the present invention, and FIG. 2 is a configuration diagram showing the main parts of the device of this embodiment.
Figures 3 to 5 are layout diagrams showing how the calibration solution container used in the device of this embodiment is placed in constant temperature water, and Figure 6 is an automatic chemical analyzer of another invention to which the principles of the present invention are applied. 7 is a schematic plan view of the conventional example,
FIGS. 8 and 9 are configuration diagrams showing the main parts of the conventional example. DESCRIPTION OF SYMBOLS 1... Constant temperature bath, 2... Reaction container, 8... Electrode (ion selective electrode), 12... Colorimetric measurement system, 13... Electrode measurement system, 14...
... Calibration liquid container, 16.16a ... Supply channel, 23.
・・Joint part. Figure 2 Figure 3 Figure 6 Figure 7

Claims (8)

【特許請求の範囲】[Claims] (1)反応液を保持している反応容器を一定のサイクル
で間欠移動させ、移動経路に設けた電解質測定電極によ
って交互に反応液及び校正液内の電解質量を測定する自
動化学分析装置において、前記電極の位置に対応する移
動経路に校正液を専用に供給する校正液容器を設けたこ
とを特徴とする自動化学分析装置。
(1) In an automatic chemical analyzer that moves a reaction container holding a reaction solution intermittently in a fixed cycle and alternately measures the amount of electrolyte in the reaction solution and the calibration solution using an electrolyte measurement electrode provided in the movement path, An automatic chemical analyzer characterized in that a calibration solution container for exclusively supplying a calibration solution is provided on a moving path corresponding to the position of the electrode.
(2)校正液容器が恒温水に浸漬された請求項1記載の
自動化学分析装置。
(2) The automatic chemical analyzer according to claim 1, wherein the calibration liquid container is immersed in constant temperature water.
(3)校正液を校正液容器の上部から供給すると共に下
部から排出する請求項2記載の自動化学分析装置。
(3) The automatic chemical analyzer according to claim 2, wherein the calibration solution is supplied from the top of the calibration solution container and discharged from the bottom.
(4)校正液容器にジョイント部を介して供給流路が接
続され、前記ジョイント部が恒温水の外部に配置された
請求項2記載の自動化学分析装置。
(4) The automatic chemical analyzer according to claim 2, wherein the supply flow path is connected to the calibration liquid container via a joint part, and the joint part is arranged outside the constant temperature water.
(5)恒温水に浸漬された部分の内容積が校正液の1回
の供給量より大きな供給流路が校正液容器に接続された
請求項2記載の自動化学分析装置。
(5) The automatic chemical analyzer according to claim 2, wherein the supply channel is connected to the calibration liquid container, and the inner volume of the portion immersed in the constant temperature water is larger than the amount of the calibration liquid supplied at one time.
(6)供給流路の恒温水に浸漬された部分が恒温水内に
固定された請求項5記載の自動化学分析装置。
(6) The automatic chemical analyzer according to claim 5, wherein the portion of the supply channel immersed in the constant temperature water is fixed in the constant temperature water.
(7)校正液のみを連続して電極に供給し実際の測定サ
イクルに従って繰返し校正液の測定を行う測定手段と、
この測定手段の結果に基づいて前記校正液供給系以降の
測定系の動作の良否を判断する判断手段とを備えたこと
を特徴とする自動化学分析装置。
(7) a measuring means that continuously supplies only the calibration solution to the electrode and repeatedly measures the calibration solution according to the actual measurement cycle;
An automatic chemical analysis apparatus characterized by comprising: judgment means for judging whether the operation of the measurement system after the calibration liquid supply system is good or bad based on the result of the measurement means.
(8)判断手段が予め設定された許容値を参照して良否
の判断を行う請求項7記載の自動化学分析装置。
(8) The automatic chemical analyzer according to claim 7, wherein the determining means determines pass/fail by referring to a preset tolerance value.
JP63047867A 1988-02-29 1988-02-29 Automatic chemical analyzer Expired - Lifetime JPH0690210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047867A JPH0690210B2 (en) 1988-02-29 1988-02-29 Automatic chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047867A JPH0690210B2 (en) 1988-02-29 1988-02-29 Automatic chemical analyzer

Publications (2)

Publication Number Publication Date
JPH01221670A true JPH01221670A (en) 1989-09-05
JPH0690210B2 JPH0690210B2 (en) 1994-11-14

Family

ID=12787324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047867A Expired - Lifetime JPH0690210B2 (en) 1988-02-29 1988-02-29 Automatic chemical analyzer

Country Status (1)

Country Link
JP (1) JPH0690210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187373A (en) * 2016-04-05 2017-10-12 東芝メディカルシステムズ株式会社 Automatic analyzer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075488A (en) * 1973-10-27 1975-06-20
JPS5439193A (en) * 1977-09-02 1979-03-26 Hitachi Ltd Analyzer
JPS5443794A (en) * 1977-09-14 1979-04-06 Hitachi Ltd Automatic analyzing method and apparatus
JPS54130993A (en) * 1978-03-31 1979-10-11 Hitachi Ltd Ion concentration analysis
JPS5657949A (en) * 1979-10-18 1981-05-20 Olympus Optical Co Ltd Ion concentration measuring apparatus
JPS5830651A (en) * 1981-08-19 1983-02-23 Oriental Yeast Co Ltd Analyzer for organism component
JPS6073359A (en) * 1983-09-30 1985-04-25 Toshiba Corp Automatic chemical analytical apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075488A (en) * 1973-10-27 1975-06-20
JPS5439193A (en) * 1977-09-02 1979-03-26 Hitachi Ltd Analyzer
JPS5443794A (en) * 1977-09-14 1979-04-06 Hitachi Ltd Automatic analyzing method and apparatus
JPS54130993A (en) * 1978-03-31 1979-10-11 Hitachi Ltd Ion concentration analysis
JPS5657949A (en) * 1979-10-18 1981-05-20 Olympus Optical Co Ltd Ion concentration measuring apparatus
JPS5830651A (en) * 1981-08-19 1983-02-23 Oriental Yeast Co Ltd Analyzer for organism component
JPS6073359A (en) * 1983-09-30 1985-04-25 Toshiba Corp Automatic chemical analytical apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187373A (en) * 2016-04-05 2017-10-12 東芝メディカルシステムズ株式会社 Automatic analyzer

Also Published As

Publication number Publication date
JPH0690210B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US3881872A (en) Automatic analyzing device
US8721966B2 (en) Chemical analyzer, method for dispensing and dilution cup
EP2612154B1 (en) Pressure monitoring of whole blood aspirations to determine completeness of whole blood mixing
US20070215467A1 (en) Automatic analyzer
KR20010076249A (en) Failure detection in automated clinical analyzers
EP1894017A2 (en) Method for ascertaining interferents in small liquid samples in an automated clinical analyzer
CN110869769B (en) Test suite, test method and dispensing device
JP6126387B2 (en) Electrolyte analyzer with double tube structure sample suction nozzle
JP2783449B2 (en) Analyzer line control system
WO2011090173A1 (en) Automatic analyzer
US4036590A (en) Method and apparatus for the automatic analysis of the concentration of an individual component of a fluid in a metal-depositing bath having several components
JP2007047038A (en) Liquid dispensing apparatus
JP2867670B2 (en) Automatic chemical analysis method and apparatus
JPS62294959A (en) Measurement of ion activity
JPH01221670A (en) Automatic chemical analyzing device
JP3168633B2 (en) Prozone determination method and analysis method in antigen-antibody reaction
JP4082815B2 (en) Sample processing equipment
JPH0815265A (en) Automatic chemical analysis apparatus
CN106489076A (en) Automatic analysing apparatus
JPH03181862A (en) Automatic analyser
JPH03108652A (en) Method of automatically supplying calibration solution in electrolyte analyzer
JP2020201159A (en) Automatic analyzer
JPH03140844A (en) Multi-item analysis of minute sample
CN117517692A (en) Sample analyzer and method for detecting sample analyzer
JPS6394149A (en) System for measuring concentration of electrolyte

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 14