JPH01218692A - Operation control method in activated sludge method - Google Patents

Operation control method in activated sludge method

Info

Publication number
JPH01218692A
JPH01218692A JP63042168A JP4216888A JPH01218692A JP H01218692 A JPH01218692 A JP H01218692A JP 63042168 A JP63042168 A JP 63042168A JP 4216888 A JP4216888 A JP 4216888A JP H01218692 A JPH01218692 A JP H01218692A
Authority
JP
Japan
Prior art keywords
sludge
tank
raw water
amount
guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042168A
Other languages
Japanese (ja)
Inventor
Tomonori Kato
友則 加藤
Koji Tsukada
塚田 鋼二
Susumu Matsumura
進 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP63042168A priority Critical patent/JPH01218692A/en
Publication of JPH01218692A publication Critical patent/JPH01218692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To control an operating condition on the basis of the concn. and activity of sludge, by calculating the concn. and activity of sludge in an aeration tank on the basis of an estimated model using the measured value from a sensor. CONSTITUTION:The ammoniacal liquor generated in a coke oven is stored in an ammoniacal liquor tank and subsequently guided to an ammonical liquor still to be distilled therein and ammonia is removed to a COG main pipe while the residual water is introduced into a raw water tank while the pH thereof is adjusted by sulfuric acid. Raw water is guided to an activated sludge neutralizing tank to be subjected to neutralizing treatment along with slaked lime. Further, said raw water is sent to an aeration tank and a precipitation tank while sludge is separated into the section returned to the aeration tank and the other section discharged out of the system. The supernatant liquid is guided to a flocculation/sedimentation/neutralization tank to separate a precipitate. In this process, the inflow amount, COD, NH3, SCN, pH, DO and temp. of raw water are inputted to be processed and controlled online.

Description

【発明の詳細な説明】 「発明の目的」 〈産業上の利用分野) この発明は、活性汚泥法を利用する排水処理方法におけ
る操業管理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention <Industrial Application Field> The present invention relates to an operational management method in a wastewater treatment method using an activated sludge method.

(従来の方法) 従来の活性汚泥法による都市の生活排水もしくは工場の
雑排水等の処理設備においては、活性汚泥中和槽、曝気
槽、沈澱槽を経て次いで消石灰、塩化鉄、高分子凝集剤
を添加せしめ有機物等を沈澱物として除去し、更に砂、
活性炭塔を経て河川に放流されるが、活性汚泥法による
最も重要なのは曝気槽後の沈澱槽の上澄液中のCOD量
が、規制値内に入っているか否かの監視でありこの数値
がノルマルな状態で推移する場合はよいが、これが増大
する傾向にある場合には、処理設備に導入される原水の
量、分析値、又は曝気槽におけるpH等を測定し、従来
の異状時の各種対策を参考として、早急な操業条件の変
更策がとられ、その後の沈澱槽の上澄液のCOD量を測
定し、効果の確認を行うのが一般的な操業方法である。
(Conventional method) In the conventional activated sludge method, urban domestic wastewater or industrial wastewater is processed through an activated sludge neutralization tank, aeration tank, and settling tank, followed by slaked lime, iron chloride, and a polymer flocculant. is added to remove organic substances as precipitates, and then sand,
The activated sludge method is discharged into the river via an activated carbon tower, but the most important thing in the activated sludge method is to monitor whether the amount of COD in the supernatant liquid in the settling tank after the aeration tank is within regulatory limits. It is fine if the situation is normal, but if it tends to increase, measure the amount of raw water introduced into the treatment equipment, the analysis value, the pH in the aeration tank, etc., and take various measures when abnormalities occur. The general operating method is to take measures to immediately change operating conditions based on the countermeasures, and then measure the amount of COD in the supernatant liquid in the settling tank to confirm the effectiveness.

(発明が解決しようとする課題) 活性汚泥法による排水処理は排水中に存在する水中の溶
存酸素を大量に消費する有機物を本質的には薬物を用い
ることなく、水中の汚泥菌を有効に活用して、これらを
除去し、処理済みの水を河川もしくは海水中に還元する
ものであるから、反応には大気中の酸素もしくは活発な
細菌活動が必要なことから、長時間の曝気処理や沈澱形
成に大きな貯槽を必要とするところから、−旦、汚泥菌
の順調な生育が妨げられた場合には、通常の状態に復旧
せしめるには1〜2ケ月を要することがあり、公害対策
上大きな問題となっている。
(Problems to be Solved by the Invention) Wastewater treatment using the activated sludge method effectively utilizes sludge bacteria in water without using any drugs to remove organic matter that consumes large amounts of dissolved oxygen present in wastewater. The process involves removing these and returning the treated water to rivers or seawater, so the reaction requires atmospheric oxygen or active bacterial activity, so long aeration treatments and sedimentation are not required. Due to the fact that a large storage tank is required for formation, once the smooth growth of sludge bacteria is disrupted, it may take one to two months to restore normal conditions, which is a major problem in terms of pollution control. This has become a problem.

本発明はこのような現状に61ミ創案されたものであり
、連続的に入手し得るセンサーからの測定値を用い、予
測推定モデルにより安定な操業続行するための指針を得
、これに基づき操業条件を制御する方法を提供すること
を目的とする。
The present invention was created in response to the current situation, and uses measurement values from continuously available sensors to obtain guidelines for continuing stable operations using a predictive estimation model, and based on this, The purpose is to provide a way to control conditions.

「発明の構成」 (課題を解決する手段) 前述の目的を達成するために本発明者等は、連続的に入
手し得るセンサーからの測定値を用いた予測推定モデル
式から、曝気槽における汚泥濃度を算出し、該汚泥濃度
から汚泥の活性度を計算し、汚泥処理設備に流入する原
水の量、汚泥の量、余剰汚泥抜出量の何れかもしくはこ
れらを組合せて制御することを特徴とする活性汚泥法に
おける操業管理方法を鞍に提案する。
"Structure of the Invention" (Means for Solving the Problems) In order to achieve the above-mentioned purpose, the present inventors have developed a method for predicting and estimating sludge in an aeration tank using a predictive estimation model formula using measurements from continuously available sensors. The sludge concentration is calculated, the activity of the sludge is calculated from the sludge concentration, and the amount of raw water flowing into the sludge treatment equipment, the amount of sludge, the amount of excess sludge extracted, or a combination thereof is controlled. We propose an operational management method for the activated sludge method.

(作用) 製鉄所におけるコークス炉において発生ずる安水は、通
常は系内の雑水等と共に先ず安水タンクに貯留され、次
いでポンプにより安水スチルに導かれ、ここで蒸溜され
アンモニアは000本管にもどされ、残水は硫酸等によ
りpl+を調整し原水タンクに導入される。この原水は
排水処理設備の最初の工程である活性汚泥中和槽に導び
かれ、消石灰もしくは燐酸等と共に中和処理される(こ
の工程を欠く場合もある)。次いで、曝気槽に移される
が、ここでは酸素の供給と液の攪拌が行われる。
(Function) Ammonium water generated in a coke oven at a steelworks is usually first stored in an ammonium tank along with miscellaneous water in the system, and then guided by a pump to an ammonium still, where it is distilled to produce 1,000 bottles of ammonia. The remaining water is returned to the pipe, and the PL+ is adjusted using sulfuric acid, etc., and then introduced into the raw water tank. This raw water is led to the activated sludge neutralization tank, which is the first step in the wastewater treatment facility, and is neutralized with slaked lime or phosphoric acid (this step may be omitted in some cases). The liquid is then transferred to an aeration tank, where oxygen is supplied and the liquid is stirred.

次いで沈澱槽に送られ、有機物は分解されて菌体を形成
し凝集汚泥となって沈降する。ここで生じた汚泥は、曝
気槽に返送されるものと系外に排出されるものとに区分
される。ここで上澄液は次工程の凝集沈澱中和槽に導び
かれ、消石灰、塩化鉄、高分子凝集剤が添加され、フロ
ックを形成せしめられ、沈澱物と分けられて最後には砂
もしくは活性炭吸着塔を経て河川に放流されるが、本発
明で問題としているのは原水タンクから沈澱槽のあとの
上澄液を得る工程までである(第3図参照)。
The sludge is then sent to a settling tank, where the organic matter is decomposed to form microbial cells, which become flocculated sludge and settle. The sludge produced here is divided into sludge that is returned to the aeration tank and sludge that is discharged outside the system. Here, the supernatant liquid is led to the coagulation-sedimentation neutralization tank in the next step, where slaked lime, iron chloride, and a polymer flocculant are added to form flocs, separated from the sediment, and finally sand or activated carbon. The water is discharged into the river via an adsorption tower, but the problem in the present invention is from the raw water tank to the step of obtaining the supernatant after the settling tank (see Figure 3).

この活性汚泥処理工程において、オンラインでデジタル
で計算機に入れられるものに、原水の流入量、原水中の
COD、、NH3、SCN、並びにpH、D○、温度が
あり、曝気槽においてはこの他にMLSSを測定するこ
とができる。沈澱槽後の上澄液については、原水中の分
析、測定の全てと同一項目の測定値が得られる。
In this activated sludge treatment process, the things that can be entered into the online digital calculator include the amount of raw water inflow, COD in the raw water, NH3, SCN, as well as pH, D○, and temperature. MLSS can be measured. Regarding the supernatant liquid after the settling tank, the same measurement values as those for the analysis and measurement of the raw water can be obtained.

次に本発明の特徴とする予測推定モデルの弐について述
べるが、これらの式により計算した結果と実測値が一致
するように処理設備に応じた係数を使用することが好ま
しい。
Next, the second predictive estimation model, which is a feature of the present invention, will be described. It is preferable to use coefficients depending on the processing equipment so that the results calculated using these formulas match the actual measured values.

本発明の予測推定モデルの基本式は次のものから成立し
ている。
The basic formula of the predictive estimation model of the present invention is established as follows.

MLSS=f  (C,F、S、  μ、t) 〔式中
MLSS:汚泥濃度、C:濃度、F:流量、S。
MLSS=f (C, F, S, μ, t) [In the formula, MLSS: sludge concentration, C: concentration, F: flow rate, S.

流入、流出SS、μ:増殖速度、t:時間、V:槽の容
積〕このM L S S ’114度を、kg/m3で
表示しから求めることができる。(t、:?%泥負負荷
kg/kg・日)、a:汚泥転換率、b:自己酸化率、
R:汚泥の返送比〕 本発明においてはMLSSはCOD菌、SCN菌、NO
x菌、の3種の菌群の合計を仮定して計算するから、C
0D−Load =f(C,F、MLSS。
Inflow, outflow SS, μ: growth rate, t: time, V: volume of tank] This M L S S '114 degree can be determined by expressing it in kg/m3. (t,:?% sludge negative load kg/kg/day), a: sludge conversion rate, b: self-oxidation rate,
R: sludge return ratio] In the present invention, MLSS contains COD bacteria, SCN bacteria, NO
Since the calculation is performed assuming the total of three bacterial groups, C
0D-Load = f(C, F, MLSS.

■)として表わすことができる。5CN−Load。■) It can be expressed as: 5CN-Load.

NH3−Load % も同様にf(C,F、MLSS
、V)として計算することができる。
Similarly, NH3-Load % is f(C, F, MLSS
, V).

次にm3/Hの安水処理量をf 、 g/m3の安水C
OD濃度をCcoD、とするとCOD汚泥負荷L CO
Dはと表示することができるから、汚泥濃度は5a−2
4°a COD ’ r、 COD       24
°a scy ′L 5cst(μcoo 十b C0
D) (1+R)    t(μSCN + b 5C
N) (1+R)このSaにおける溶存酸素消費速度(
ppm/H) r R(A、B、C;係数)  (dt
:時間変化、dRo  :溶存酸素変化、dL:負荷変
化)で表わせるがこれは、Acon ・1/24 ・L
coo + ASCN ・1/24 ・LSCN+A 
N H3・1/24・LNH3+ 5a(Bcon+ 
BSCM + BNI−13)+C・1/24・LNo
zに相当する。この計算したrRがどの範囲にあるのが
最適であるかは処理する排水中の化学的組成、単位時間
当りの処理量、菌群の種類により異なるが本発明の実施
例のような安水を含む排水の処理装置であって、しかも
NH3の完全分解を期待しない主としてCODの除去に
ある場合には30≦rR≦60の範囲にあることが好ま
しく、30以下ではCODの分解が不充分であり、一方
60を超える場合にはNH,まで酸化されてN O2に
変換されて汚泥菌の活性が損なわれる。rRの調節は原
水タンクから曝気槽に流入する原水の量、汚泥の量、余
剰汚泥抜出量の何れかもしくはこれらを組合せて調節す
ることにより制御することができる。
Next, the ammonium water treatment amount in m3/H is f, and the ammonium water C in g/m3 is
If OD concentration is CcoD, COD sludge load L CO
D can be expressed as , so the sludge concentration is 5a-2
4°a COD' r, COD 24
°a scy 'L 5cst(μcoo 10b C0
D) (1+R) t(μSCN + b 5C
N) (1+R) Dissolved oxygen consumption rate in this Sa (
ppm/H) r R (A, B, C; coefficient) (dt
: Time change, dRo : Dissolved oxygen change, dL : Load change), which is Acon ・1/24 ・L
coo + ASCN ・1/24 ・LSCN+A
N H3・1/24・LNH3+ 5a (Bcon+
BSCM + BNI-13) + C・1/24・LNo.
Corresponds to z. The optimal range for this calculated rR varies depending on the chemical composition of the wastewater to be treated, the amount of treatment per unit time, and the type of bacterial group. In cases where the treatment equipment is for wastewater containing NH3 and the main purpose is to remove COD without expecting complete decomposition of NH3, it is preferable that rR be in the range of 30≦r≦60; below 30, the decomposition of COD is insufficient. On the other hand, if it exceeds 60, it will be oxidized to NH, and converted to NO2, impairing the activity of sludge bacteria. The rR can be controlled by adjusting any one or a combination of the amount of raw water flowing into the aeration tank from the raw water tank, the amount of sludge, and the amount of excess sludge extracted.

次に各成分の除去効率は下式により求めることができる
Next, the removal efficiency of each component can be determined by the following formula.

(KCOD  :COD除去速度定数〕であるから以下
同様にSCN、、NH3について求める。
(KCOD: COD removal rate constant), so SCN, NH3 will be calculated in the same manner below.

■ の計算から各成分の除去効率が所定の目的値を達成して
いるか否かの確認を行う。もし規定値を充足していない
時には、Saの濃度を制御して管理値内に入るような処
置を講する必要がある。この濃度の具体的な制御方法と
しては、原水の流入量の増減、汚泥量の増減、余剰汚泥
抜出量の何れかもしくばこれらを組合せて制御手段があ
り、その他にpH並びに温度による調整を行うことを加
味することもできる。CODの分解が主なもので、N 
H3の酸化まで行う必要のない活性汚泥法においてはη
COD≧0.90、ηSCN≧0.95、η9.+3≦
0.05、前後が管理限界である。次項の実施例はこの
例を示すものである。
(2) From the calculation, it is confirmed whether the removal efficiency of each component has achieved a predetermined target value. If the specified value is not met, it is necessary to take measures to control the Sa concentration so that it falls within the control value. Specific methods for controlling this concentration include increasing or decreasing the inflow of raw water, increasing or decreasing the amount of sludge, or controlling the amount of excess sludge removed, or by combining these methods.Other methods include adjusting by pH and temperature. You can also take that into consideration. The main thing is decomposition of COD, and N
In the activated sludge method, which does not require oxidation of H3, η
COD≧0.90, ηSCN≧0.95, η9. +3≦
The control limit is around 0.05. The example in the next section illustrates this example.

(実施例) 1、操業が順調で管理上の条件を変更する必要がなかっ
た例 a)原水の組成 COD : 5000rtg/f!、、SCN : 1
00mg#!、NH3:1000■/l、 b)  原水の流入m : 30 m3/ Hc)  
Sa:5000mg/j2(予測推定モデルの基本式よ
り求めた) d)rR:40(上に同じ) e) 上澄液の分析実測値:SCN  3■/ρこの実
施例では溶存酸素消費速度rHば40であり、本発明の
前述した30〜6oの管理限界内に入っているので、特
に操業条件の変更は行なわなかった。
(Example) 1. Example where operation was smooth and there was no need to change management conditions a) Composition of raw water COD: 5000rtg/f! ,,SCN: 1
00mg#! , NH3: 1000■/l, b) Raw water inflow m: 30 m3/Hc)
Sa: 5000mg/j2 (obtained from the basic formula of the prediction estimation model) d) rR: 40 (same as above) e) Actual measurement value of supernatant analysis: SCN 3■/ρ In this example, dissolved oxygen consumption rate rH Since the temperature was 40 degrees and within the control limit of 30 to 6 degrees mentioned above in the present invention, no particular changes were made to the operating conditions.

2、上澄液の分析値が規制値限度に達し操業条件を本発
明方法により変更せしめた例 a)原水の組成 COD : 7000■/β、SCN:100呵/j2
゜NH3:1000■/!、 b) 原水の流入量: 40 m3/ Hc)  Sa
 : 10000mg/A  (実施例1に準する)d
)rR:20        (上回)e)上澄液の分
析実測値:SCN  30ppmこの実施例の場合は、
rRが管理限界の下限の30を切っており、CODの分
解も不充分なため、原水の流入量を減少せしめる操業の
変更を行なった(実験のために故意にscN?1度を高
くしだ例)。
2. An example where the analytical value of the supernatant liquid reached the regulation value limit and the operating conditions were changed by the method of the present invention a) Composition of raw water COD: 7000■/β, SCN: 100㎵/j2
゜NH3:1000■/! , b) Raw water inflow: 40 m3/Hc) Sa
: 10000mg/A (according to Example 1)d
) rR: 20 (above) e) Supernatant analysis actual value: SCN 30 ppm In this example,
rR was below the lower control limit of 30, and COD decomposition was insufficient, so we changed the operation to reduce the amount of raw water flowing in (scN was intentionally raised by 1 degree for the purpose of the experiment). example).

第1図は」二澄液の分析値が限界値に接近したことによ
り流入量の制御を行なったこの実施例の前後26時間に
おりる原水の取り入れ量を記録したものである。
FIG. 1 shows the amount of raw water taken in for 26 hours before and after this example, in which the amount of inflow was controlled because the analysis value of the clear solution approached the limit value.

第2図は前図における原水の流入量の規制に伴ない略6
時間後に上澄液(処理水)中のSCN量が正常の含有量
に復帰したことを示す同じく前後26時間のSCN量の
変動を示すものである。
Figure 2 shows approximately 6 liters of water due to the regulation of the amount of raw water inflow shown in the previous figure.
This shows that the SCN amount in the supernatant liquid (treated water) returned to the normal content after a period of time, and also shows the fluctuation in the SCN amount before and after 26 hours.

「発明の効果」 以上詳細に説明したように、本発明方法により活性汚泥
法の操業管理を行う場合には、常時汚泥の濃度の測定が
できその値から汚泥の活性度の予測ができそれに基づき
原水の最適な流入量の制御ができるから、操業状態が悪
化する前に適格な操業管理を行うことができ、汚泥菌の
活性を最大限に活用することにより完璧な有機物の分解
ができることになる。
"Effects of the Invention" As explained in detail above, when operating the activated sludge method using the method of the present invention, the concentration of sludge can be constantly measured and the activity of sludge can be predicted from that value. Since it is possible to control the optimal flow of raw water, appropriate operational management can be carried out before operational conditions deteriorate, and by making the most of the activity of sludge bacteria, complete decomposition of organic matter can be achieved. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による活性汚泥法の操業管理の実施例を示
すもので、第1図は処理設備への原水の流入量の制御状
態を示し、第2図は前図における操業状況の変更に伴な
う処理水中のSCN量の変動を示すものである。第3図
は本発明の利用される活性汚泥法の要部のフローを示す
ものである。 特許出願人  日本鋼管株式会社 発   明   者    加  藤  友  別間 
             塚  1) 鋼  二同 
           松  村      進1ご1
ピ゛11
The drawings show an example of the operational management of the activated sludge method according to the present invention. Fig. 1 shows the control status of the amount of raw water flowing into the treatment equipment, and Fig. 2 shows the control status of the amount of raw water flowing into the treatment equipment, and Fig. 2 shows the control status of the amount of raw water flowing into the treatment equipment. This shows the fluctuation in the amount of SCN in the treated water. FIG. 3 shows the flow of the main part of the activated sludge method used in the present invention. Patent applicant Nippon Kokan Co., Ltd. Inventor Tomo Kato Betsuma
Tsuka 1) Hagane Nidou
Susumu Matsumura1go1
P11

Claims (1)

【特許請求の範囲】[Claims]  連続的に入手し得るセンサーからの測定値を用いた予
測推定モデル式から、曝気槽における汚泥濃度を算出し
、該汚泥濃度から汚泥の活性度を計算し、汚泥処理設備
に流入する原水の量、汚泥の量、余剰汚泥抜出量の何れ
かもしくはこれらを組合せて制御することを特徴とする
活性汚泥法における操業管理方法。
The sludge concentration in the aeration tank is calculated from a predictive estimation model formula using measured values from continuously available sensors, and the sludge activity is calculated from the sludge concentration, and the amount of raw water flowing into the sludge treatment equipment is calculated. An operational management method in an activated sludge method, characterized by controlling the amount of sludge, the amount of excess sludge extracted, or a combination thereof.
JP63042168A 1988-02-26 1988-02-26 Operation control method in activated sludge method Pending JPH01218692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042168A JPH01218692A (en) 1988-02-26 1988-02-26 Operation control method in activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042168A JPH01218692A (en) 1988-02-26 1988-02-26 Operation control method in activated sludge method

Publications (1)

Publication Number Publication Date
JPH01218692A true JPH01218692A (en) 1989-08-31

Family

ID=12628440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042168A Pending JPH01218692A (en) 1988-02-26 1988-02-26 Operation control method in activated sludge method

Country Status (1)

Country Link
JP (1) JPH01218692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232515A (en) * 1990-05-21 1992-08-20 Elsag Internatl Bv Method for estimating ph titration curve for adjusting adaptivity
JP2011045872A (en) * 2009-07-31 2011-03-10 Nippon Steel Corp Method and apparatus of cod concentration simulation in biological aerobic treatment of ammoniacal liquor
JP2011177607A (en) * 2010-02-26 2011-09-15 Toray Ind Inc Oil-containing waste water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232515A (en) * 1990-05-21 1992-08-20 Elsag Internatl Bv Method for estimating ph titration curve for adjusting adaptivity
JP2011045872A (en) * 2009-07-31 2011-03-10 Nippon Steel Corp Method and apparatus of cod concentration simulation in biological aerobic treatment of ammoniacal liquor
JP2011177607A (en) * 2010-02-26 2011-09-15 Toray Ind Inc Oil-containing waste water treatment method

Similar Documents

Publication Publication Date Title
JP4334317B2 (en) Sewage treatment system
WO1989010898A1 (en) Method of sewage treatment
FR2779140B1 (en) METHOD FOR CONTROLLING AERATION IN A BIOLOGICAL WASTEWATER TREATMENT PLANT
Adams Jr et al. Nitrification design approach for high strength ammonia wastewaters
Awolusi et al. Artificial intelligence for the evaluation of operational parameters influencing nitrification and nitrifiers in an activated sludge process
Ødegaard et al. Chemical wastewater treatment—value for money
KR100633831B1 (en) Computing process apparatus for information on water quality
US20050112740A1 (en) Waste metals recycling-methods, processed and systems for the recycle of metals into coagulants
JP3886069B2 (en) Treatment of return water for sewage sludge intensive treatment
JPH01218692A (en) Operation control method in activated sludge method
van Kempen et al. SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality
JP6866055B2 (en) Water treatment equipment and water treatment method
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
JP2001029961A (en) Method and apparatus for monitoring and controlling water treatment
Fiter et al. Enhancing biological nitrogen removal in a small wastewater treatment plant by regulating the air supply
JPS61249597A (en) Method for controlling methanol injection in biological denitrification process
JP7494668B2 (en) Method and apparatus for predicting treated water quality at a sewage treatment plant
JPH0938682A (en) Biological water treatment
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
JPH08323394A (en) Method for diagnosing intermittent aeration type activated sludge tank
JP2001009497A (en) Biological water treatment and equipment therefor
JP2618164B2 (en) Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds
JPS5980399A (en) Controlling means for biological denitrifying apparatus