JP2011045872A - Method and apparatus of cod concentration simulation in biological aerobic treatment of ammoniacal liquor - Google Patents

Method and apparatus of cod concentration simulation in biological aerobic treatment of ammoniacal liquor Download PDF

Info

Publication number
JP2011045872A
JP2011045872A JP2010166202A JP2010166202A JP2011045872A JP 2011045872 A JP2011045872 A JP 2011045872A JP 2010166202 A JP2010166202 A JP 2010166202A JP 2010166202 A JP2010166202 A JP 2010166202A JP 2011045872 A JP2011045872 A JP 2011045872A
Authority
JP
Japan
Prior art keywords
concentration
cod
cod concentration
component
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010166202A
Other languages
Japanese (ja)
Other versions
JP5449072B2 (en
Inventor
Fumitaka Kato
文隆 加藤
Toshiro Kato
敏朗 加藤
Takashi Ajino
俊 味埜
Hiroyasu Sato
弘泰 佐藤
Hitoshi Shoji
仁 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
University of Tokyo NUC
Original Assignee
Nippon Steel Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, University of Tokyo NUC filed Critical Nippon Steel Corp
Priority to JP2010166202A priority Critical patent/JP5449072B2/en
Publication of JP2011045872A publication Critical patent/JP2011045872A/en
Application granted granted Critical
Publication of JP5449072B2 publication Critical patent/JP5449072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of COD simulation capable of estimating a COD concentration in treated water after biological aerobic treatment of ammoniacal liquor generated in a coke production process and an apparatus thereof. <P>SOLUTION: The method includes: an analysis step for measuring to analyze each known component concentration and soluble COD concentration contained in the ammoniacal liquor; a known component COD fraction step for determining the COD concentration of each known component from the analyzed value of each known component concentration; a step for determining a hardly decomposable COD concentration beforehand; a step for determining an unknown component COD concentration contained in the ammoniacal liquor; a step for setting the type and the concentration of microorganisms, and growth yield, saturation constant and maximum specific growth rate to be a stoichiometry parameter; a step for measuring the dissolved oxygen concentration; a step for calculating each known component COD concentration and unknown component COD concentration remaining in treated water from information obtained from each step by predetermined calculation; and a treated water COD concentration calculation step for calculating a remaining soluble COD concentration by adding the hardly decomposable COD concentration to each calculated remaining known component COD concentration and unknown component COD concentration. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コークス製造工程で発生する安水の処理に関し、より具体的には、生物学的好気処理プロセスにおけるCOD濃度シミュレーション方法及び装置に関する。   TECHNICAL FIELD The present invention relates to a treatment of aqueous water generated in a coke production process, and more specifically to a COD concentration simulation method and apparatus in a biological aerobic treatment process.

近年の閉鎖性水域におけるCOD総量規制は強化傾向にあり、下水道、産業排水、工場排水での対策が急務である。CODの総量規制値を遵守するためには、その原因物質を特定し、どこまで処理すれば基準を満たせるかを予測することが必要である。これまで下水道分野では、活性汚泥法等の生物学的処理プロセスによる下水の処理方法が取られてきた。その運転管理は主に管理者の経験に基づいて行われていることが多く、安定した処理水質を得ることは困難であった。例えば、流入水質が変動した場合に、変更すべき操作条件、操作量は下水処理場ごとに異なっていた。   In recent years, restrictions on total COD in closed water areas have been on the rise, and countermeasures for sewage, industrial wastewater, and factory wastewater are urgently needed. In order to comply with the COD total amount regulation value, it is necessary to identify the causative substance and to predict how far the standard can be satisfied. Until now, in the sewerage field, sewage treatment methods have been taken by biological treatment processes such as activated sludge process. The operation management is often performed mainly based on the experience of the manager, and it is difficult to obtain a stable treated water quality. For example, when the influent water quality fluctuates, the operation conditions and operation amount to be changed differ for each sewage treatment plant.

そこで、管理者の経験に依存しない水質予測及び運転支援ツールとして、IWA(国際水協会)の提唱する活性汚泥モデル(Activated Sludge Model;ASM)が提案されている。活性汚泥モデルは、大きく次の手順から構成されている。
(1)流入水のCOD濃度を、溶解性不活性有機物、易分解性有機物、浮遊不活性有機物、遅分解性有機物等の性質によって分画し、それぞれCOD濃度ベースの変数と設定する。
(2)従属栄養生物の増殖や自己分解等のプロセスごとに、変数間の化学量論及びプロセスの反応速度式を設定する。
(3)化学量論係数及び反応速度定数のパラメーターを、酸素呼吸速度試験又は水質の実測データからのキャリブレーションにより決定する。
(4)シミュレーションを実行し、生物処理槽、処理水のCOD濃度等が算出される。
この活性汚泥モデルは管理ツールとして提案されており、活性汚泥モデルを用いた下水処理管理システムが提案されている。(例えば、特許文献1)
Therefore, an activated sludge model (ASM) proposed by IWA (International Water Association) has been proposed as a water quality prediction and operation support tool that does not depend on the experience of the manager. The activated sludge model is mainly composed of the following procedures.
(1) The COD concentration of influent water is fractionated according to the properties of soluble inert organic substances, readily decomposable organic substances, floating inert organic substances, slow decomposable organic substances, etc., and each is set as a COD concentration-based variable.
(2) For each process such as heterotrophic growth and autolysis, a stoichiometry between variables and a reaction rate equation for the process are set.
(3) The parameters of the stoichiometric coefficient and the reaction rate constant are determined by an oxygen respiration rate test or calibration from measured data of water quality.
(4) A simulation is executed to calculate the biological treatment tank, the COD concentration of the treated water, and the like.
This activated sludge model has been proposed as a management tool, and a sewage treatment management system using the activated sludge model has been proposed. (For example, Patent Document 1)

一方、コークス製造工程で発生する安水は、下水と同様に生物学的処理プロセスによる処理が行われている。しかし、安水は下水と成分が異なるため、この安水処理プロセスの生分解性を有する化合物成分濃度を活性汚泥モデル適用により予測するCODシミュレーション方法について、活性汚泥モデルが適用された事例はない。   On the other hand, the low water generated in the coke production process is treated by a biological treatment process in the same manner as sewage. However, since the composition of the aqueduct is different from that of the sewage, there is no case where the activated sludge model is applied to the COD simulation method for predicting the biodegradability compound component concentration of this aquatic treatment process by applying the activated sludge model.

特開2003−300093公報JP 2003-300093 A

建設省都市局下水道部・厚生省生活衛生局水道環境部監修、日本、社団法人日本下水道協会、下水試験方法、1997年8月25日Supervised by Ministry of Construction, Urban Bureau, Sewerage Department, Ministry of Health and Welfare, Public Health Department, Environment Department, Japan, Japan Sewerage Association, Sewerage Test Method, August 25, 1997 味埜俊、活性汚泥モデル、日本、株式会社環境新聞社、2005年1月31日Shun Miso, activated sludge model, Japan, Environmental Newspaper Co., Ltd., January 31, 2005 J.S.Cech、J.Chudoba and P.Grau、Determination of Kinetic Constants of ActivatedSludge Microorganisms、Water Science and Technology、Vol.17、pp.259−272、1984J. et al. S. Cech, J. et al. Chudoba and P.M. Grau, Determination of Kinetic Constants of Activated Sludge Microorganisms, Water Science and Technology, Vol. 17, pp. 259-272, 1984

生物学的好気処理における水質シミュレーション方法として活性汚泥モデルが一般的であるが、このモデルを安水に適用し、処理水の化学的酸素要求量(COD)濃度のシミュレーションを行った事例はない。この理由として、活性汚泥モデルでは、下水のようにCOD主要成分が特定不可能な複数成分から構成されているため、大きく「易分解性」や「難分解性」のCOD濃度に分類され、それによって生物学的好気処理するときの流入廃水と処理水のCOD濃度のみを予測している。一方、安水のようにCOD主要成分が特定可能な原因成分から構成されている廃水では、廃水中の成分ごとに生分解性が異なるため、「易分解性」や「難分解性」のような大きい分類では、生物学的好気処理するときの流入廃水と処理水のCOD濃度が十分に予測できないためである。   An activated sludge model is generally used as a method for simulating water quality in biological aerobic treatment. However, there is no case where this model was applied to low water and chemical oxygen demand (COD) concentration of treated water was simulated. . The reason for this is that the activated sludge model is composed of multiple components that cannot be identified as COD main components, such as sewage, and is therefore classified into “easily degradable” and “hardly degradable” COD concentrations. Predicts only the COD concentration of influent wastewater and treated water during biological aerobic treatment. On the other hand, in wastewater composed of causative components that can identify COD main components such as low water, biodegradability is different for each component in the wastewater, so “easily degradable” and “hardly degradable” This is because the COD concentration of influent wastewater and treated water during biological aerobic treatment cannot be sufficiently predicted in a large classification.

本発明者らの先願である、生物学的好気処理における水質シミュレーション方法(特願2008−292519)では、上記廃水中の特定可能な原因成分それぞれの濃度について、生物学的好気処理による処理水中の各成分濃度についてシミュレーション可能ではあるが、処理水中COD濃度の予測はされていない。   In the water quality simulation method in biological aerobic treatment (Japanese Patent Application No. 2008-292519), which is the prior application of the present inventors, the concentration of each of the identifiable causal components in the wastewater is determined by biological aerobic treatment. Although it is possible to simulate the concentration of each component in the treated water, the COD concentration in the treated water is not predicted.

また、安水の生物学的好気処理では、流入する安水の含有成分濃度、組成などが変動すること、及び、微生物濃度が変動することが、処理水の水質予測を困難にさせている。   In addition, in biological aerobic treatment of aquatic water, fluctuations in the concentration and composition of inflowing aquatic water, and fluctuations in microbial concentration make it difficult to predict the quality of the treated water. .

本発明では、コークス製造工程で発生する安水を、生物反応槽内で生物学的好気処理するプロセスにおいて、安水中の既知成分及び未知成分の処理水中成分COD濃度を予測する新たな活性汚泥モデルを構築し、生物学的好気処理後の処理水中COD濃度を予測可能なCODシミュレーション方法及び装置を提供することを目的とする。   In the present invention, a new activated sludge that predicts the COD concentration of known and unknown treated water components in the aquatic water in the process of biological aerobic treatment of the aqueous water generated in the coke production process in the biological reaction tank. An object of the present invention is to provide a COD simulation method and apparatus capable of building a model and predicting the COD concentration in treated water after biological aerobic treatment.

本発明者らは、安水のようにCODが化学分析等によって成分が特定可能な複数の成分から構成されている安水を対象に、安水中の成分ごと生分解性が異なることに着目し、安水中の溶解性COD濃度を特定可能な成分(既知成分)COD濃度と、未知成分COD濃度と、難分解性COD濃度とに分画し、さらに既知成分を各成分に分画することにより、既知成分及び未知成分の生物学的好気処理をシミュレーションし、処理水中COD濃度を既知成分COD濃度と、未知成分COD濃度と、難分解性COD濃度との総和によって求めることにより、安水中CODの主な原因成分となるフェノール、チオ硫酸、チオシアンを含む安水を生物反応槽内で生物学的好気処理するプロセスにおけるCOD濃度シミュレーションが可能であることを見出した。   The present inventors have focused on the fact that biodegradability differs for each component of the aquatic water, targeting the aquatic water that is composed of a plurality of components whose components can be specified by chemical analysis or the like, such as the aquatic water. By fractionating the soluble COD concentration in the aquatic water (known component) COD concentration, unknown component COD concentration and persistent COD concentration, and further dividing the known component into each component The simulated aerobic treatment of known and unknown components and determining the COD concentration in the treated water by the sum of the known component COD concentration, the unknown component COD concentration, and the persistent COD concentration COD concentration simulation in the process of biological aerobic treatment in the biological reaction tank of ammonia, containing phenol, thiosulfuric acid and thiocyan, which are the main causative components of It was.

本発明は、具体的には、以下の[1]〜[10]である。
[1]コークス製造工程で発生する安水を、微生物を使用した生物反応槽にて生物学的好気処理するプロセスにおけるCOD濃度シミュレーション方法であって、
前記生物反応槽へ流入する前記安水に含まれる、フェノール、チオ硫酸、チオシアンの各既知成分濃度及び溶解性COD濃度を測定分析する分析工程と、
前記各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記各既知成分濃度の分析値をCOD濃度に換算することにより、前記各既知成分濃度に対応する各既知成分のCOD濃度を決定する既知成分COD分画工程と、
事前に、前記生物反応槽にて生物学的好気処理した安水の処理水に含まれる残存する前記フェノール、チオ硫酸、チオシアンの各既知成分濃度及び残存する溶解性COD濃度を測定分析し、前記残存する各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記残存する各既知成分濃度に対応する残存する各既知成分のCOD濃度を決定し、前記残存する溶解性COD濃度から前記残存する各既知成分のCOD濃度の合計値を差し引くことにより、事前に難分解性COD濃度を決定する難分解性COD分画工程と、
前記分析工程で得られた溶解性COD濃度から前記既知成分COD分画工程で得られた各既知成分のCOD濃度の合計値及び前記難分解性COD分画工程で得られた難分解性COD濃度を差し引くことにより、前記生物反応槽へ流入する安水に含まれる未知成分COD濃度を決定する未知成分分画工程と、
前記フェノール、チオ硫酸、チオシアン及び未知成分CODを分解する微生物の種類及び濃度、並びに、化学量論パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する増殖収率、反応速度式パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する飽和定数、最大比増殖速度を設定するパラメーター設定工程と、
前記生物反応槽の溶存酸素濃度を測定する溶存酸素濃度測定工程と、
前記既知成分COD濃度、前記未知成分COD濃度、前記難分解性COD濃度、前記増殖収率、前記飽和定数、前記最大比増殖速度、前記微生物の種類、濃度、及び前記測定した溶存酸素濃度を用いて、演算式(1)の計算により、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する計算工程と、
当該算出された残存する各既知成分COD濃度及び残存する未知成分COD濃度に、難分解性COD濃度を加算することにより、処理水における残存する溶解性COD濃度を算出する処理水COD濃度算出工程
を有することを特徴とする安水の生物学的好気処理におけるCOD濃度シミュレーション方法。
Specifically, the present invention includes the following [1] to [10].
[1] A COD concentration simulation method in a process of biologically aerobically treating aqueous water generated in a coke production process in a biological reaction tank using microorganisms,
An analysis step for measuring and analyzing the concentration of each known component and soluble COD concentration of phenol, thiosulfuric acid, and thiocyan contained in the aqueous solution flowing into the biological reaction tank;
Based on the correlation between each known component concentration and the COD concentration of COD Cr , COD Mn, or COD theoretical value, the analysis value of each known component concentration is converted into a COD concentration, thereby obtaining each known component concentration. A known component COD fractionation step for determining the COD concentration of each known component corresponding to
In advance, each of the remaining components of phenol, thiosulfuric acid, and thiocyan remaining in the treated water of the aerobic biologically aerobically treated in the biological reaction tank is measured and analyzed, and the remaining soluble COD concentration is measured and analyzed. Based on the correlation between each remaining known component concentration and the COD concentration of COD Cr , COD Mn or COD theoretical value, the COD concentration of each remaining known component corresponding to each remaining known component concentration is determined. A subtractive COD fractionation step for determining the subtractable COD concentration in advance by subtracting the total value of the COD concentrations of the remaining known components from the residual soluble COD concentration;
From the soluble COD concentration obtained in the analysis step, the total value of the COD concentration of each known component obtained in the known component COD fractionation step and the hardly decomposable COD concentration obtained in the hardly decomposable COD fractionation step Subtracting the unknown component fractionation step for determining the unknown component COD concentration contained in the water that flows into the biological reaction tank,
The types and concentrations of microorganisms that decompose phenol, thiosulfuric acid, thiocyanate, and unknown component COD, and the growth yield and reaction rate parameters for the phenol, thiosulfuric acid, thiocyanate, and unknown component COD that are stoichiometric parameters. A parameter setting step for setting a saturation constant and a maximum specific growth rate for the phenol, thiosulfuric acid, thiocyan and unknown component COD;
A dissolved oxygen concentration measuring step for measuring a dissolved oxygen concentration in the biological reaction tank;
Using the known component COD concentration, the unknown component COD concentration, the persistent COD concentration, the growth yield, the saturation constant, the maximum specific growth rate, the type and concentration of the microorganism, and the measured dissolved oxygen concentration Thus, by calculating the calculation formula (1), the remaining known component COD concentration and the remaining unknown component COD concentration in the treated water of the safe water after the biological aerobic treatment in the biological reaction tank are simulated. A calculation process to calculate
A treated water COD concentration calculation step of calculating the remaining soluble COD concentration in the treated water by adding the hardly decomposable COD concentration to the calculated remaining known component COD concentration and remaining unknown component COD concentration. A COD concentration simulation method in a biological aerobic treatment of an aqueous water characterized by comprising:

Figure 2011045872
Figure 2011045872

但し、Ci:各既知成分COD濃度及び未知成分COD濃度
i:各既知成分COD及び未知成分CODの種類を表す通し番号
ij:化学量論パラメーター
j:各プロセスを表す通し番号
ρj:反応速度式(反応速度式パラメーターを含む速度式)
Where C i is the concentration of each known component COD and the unknown component COD i is a serial number representing the type of each known component COD and unknown component COD P ij is a stoichiometric parameter j is a serial number representing each process ρ j is a reaction rate equation (Rate equation including reaction rate equation parameters)

[2]前記パラメーター設定工程は、
(ア)前記流入する安水、及び、安水の処理水において、事前に時系列的に別途採取した溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、及び、未知成分COD濃度と、溶存酸素濃度を用い、キャリブレーションによって決定する方法、
(イ)溶存酸素計を用いて連続的に溶存酸素濃度を計測するバッチ試験装置を使用し、前記生物反応槽中の微生物及び前記安水中の対象成分を用いて、酸素消費速度試験の酸素消費速度データ、及び溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、未知成分COD濃度の時系列データから決定する方法
のいずれかの方法を用いて、パラメーターを設定することを特徴とする、[1]に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。
[2] The parameter setting step includes:
(A) In the inflowing water and treated water, the soluble COD concentration, the phenol concentration, the thiosulfuric acid concentration, the thiocyanate concentration, the hardly decomposable COD concentration separately collected in time series in advance, and A method of determining by calibration using unknown component COD concentration and dissolved oxygen concentration,
(B) Using a batch test device that continuously measures the dissolved oxygen concentration using a dissolved oxygen meter, using the microorganisms in the biological reaction tank and the target components in the aqueous solution, oxygen consumption in the oxygen consumption rate test Set parameters using any of the methods determined from the time series data of rate data and soluble COD concentration, phenol concentration, thiosulfate concentration, thiocyan concentration, persistent COD concentration, unknown component COD concentration The method for simulating COD concentration in the biological aerobic treatment of safe water according to [1].

[3]前記難分解性COD分画工程において、前記生物反応槽にて生物学的好気処理した安水の処理水に替えて、前記生物反応槽内の微生物と前記安水とを反応させたバッチ試験後の処理水を用いて、事前に前記難分解性COD濃度を決定することを特徴とする、[1]又は[2]に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。 [3] In the hardly decomposable COD fractionation step, the microorganism in the biological reaction tank is reacted with the aqueous solution in place of the treated water of biological aerobic treatment in the biological reaction tank. The COD concentration in the biological aerobic treatment of an aqueous water according to [1] or [2], wherein the persistent COD concentration is determined in advance using the treated water after the batch test. Simulation method.

[4]前記フェノールを前記未知成分COD濃度に含め、前記既知成分をチオ硫酸、チオシアンとして、前記各工程を実施することを特徴とする、[1]〜[3]のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。 [4] The method according to any one of [1] to [3], wherein the steps are performed by including the phenol in the concentration of the unknown component COD and using the known component as thiosulfuric acid or thiocyan. COD concentration simulation method in biological aerobic treatment of Japanese aquatic water.

[5]前記流入する安水の水量と、前記既知成分COD濃度と、前記未知成分COD濃度と、前記難分解性COD成分濃度の経時データ、及び、前記生物学的反応槽の容積を用いて、前記計算工程において演算式(1)の計算と併せて物質収支を計算することにより、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する、[1]〜[4]のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。 [5] Using the amount of the inflowing water, the known component COD concentration, the unknown component COD concentration, the time-dependent data of the persistent COD component concentration, and the volume of the biological reaction tank In the calculation step, by calculating the mass balance in conjunction with the calculation of the calculation formula (1), each remaining remaining in the treated water of the low water after the biological aerobic treatment in the biological reaction tank The COD concentration simulation method in the biological aerobic treatment of safe water according to any one of [1] to [4], wherein the component COD concentration and the remaining unknown component COD concentration are calculated by simulation.

[6]コークス製造工程で発生する安水を、微生物を使用した生物反応槽にて生物学的好気処理するプロセスにおけるCOD濃度シミュレーション装置であって、
前記生物反応槽へ流入する前記安水に含まれる、フェノール、チオ硫酸、チオシアンの各既知成分濃度及び溶解性COD濃度を測定分析する分析手段と、
前記各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記各既知成分濃度の分析値をCOD濃度に換算することにより、前記各既知成分濃度に対応する各既知成分のCOD濃度を決定する既知成分COD分画手段と、
事前に、前記生物反応槽にて生物学的好気処理した安水の処理水に含まれる残存する前記フェノール、チオ硫酸、チオシアンの各既知成分濃度及び残存する溶解性COD濃度を測定分析し、前記残存する各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記残存する各既知成分濃度に対応する残存する各既知成分のCOD濃度を決定し、前記残存する溶解性COD濃度から前記残存する各既知成分のCOD濃度の合計値を差し引くことにより、事前に難分解性COD濃度を決定する難分解性COD分画手段と、
前記分析手段で得られた溶解性COD濃度から前記既知成分COD分画手段で得られた各既知成分のCOD濃度の合計値及び前記難分解性COD分画手段で得られた難分解性COD濃度を差し引くことにより、前記生物反応槽へ流入する安水に含まれる未知成分COD濃度を決定する未知成分分画手段と、
前記フェノール、チオ硫酸、チオシアン及び未知成分CODを分解する微生物の種類及び濃度、並びに、化学量論パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する増殖収率、反応速度式パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する飽和定数、最大比増殖速度を設定するパラメーター設定手段と、
前記生物反応槽の溶存酸素濃度を測定する溶存酸素濃度測定手段と、
前記既知成分COD濃度、前記未知成分COD濃度、前記難分解性COD濃度、前記増殖収率、前記飽和定数、前記最大比増殖速度、前記微生物の種類、濃度、及び前記測定した溶存酸素濃度を用いて、演算式(1)の計算により、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する計算手段と、
当該算出された残存する各既知成分COD濃度及び残存する未知成分COD濃度に、難分解性COD濃度を加算することにより、処理水における残存する溶解性COD濃度を算出する処理水COD濃度算出手段
を有することを特徴とする安水の生物学的好気処理におけるCOD濃度シミュレーション装置。
[6] A COD concentration simulation device in a process of biologically aerobic treatment of aqueous water generated in a coke production process in a biological reaction tank using microorganisms,
Analytical means for measuring and analyzing the concentration of each known component and soluble COD concentration of phenol, thiosulfuric acid, and thiocyan contained in the aqueous solution flowing into the biological reaction tank;
Based on the correlation between each known component concentration and the COD concentration of COD Cr , COD Mn, or COD theoretical value, the analysis value of each known component concentration is converted into a COD concentration, thereby obtaining each known component concentration. A known component COD fractionation means for determining the COD concentration of each known component corresponding to
In advance, each of the remaining components of phenol, thiosulfuric acid, and thiocyan remaining in the treated water of the aerobic biologically aerobically treated in the biological reaction tank is measured and analyzed, and the remaining soluble COD concentration is measured and analyzed. Based on the correlation between each remaining known component concentration and the COD concentration of COD Cr , COD Mn or COD theoretical value, the COD concentration of each remaining known component corresponding to each remaining known component concentration is determined. And subtractable COD fractionating means for determining the persistent COD concentration in advance by subtracting the total COD concentration of each remaining known component from the remaining soluble COD concentration,
The total COD concentration of each known component obtained by the known component COD fractionation means from the soluble COD concentration obtained by the analysis means, and the hardly decomposable COD concentration obtained by the hardly decomposable COD fractionation means Subtracting the unknown component fractionation means for determining the unknown component COD concentration contained in the water that flows into the biological reaction tank,
The types and concentrations of microorganisms that decompose phenol, thiosulfuric acid, thiocyanate, and unknown component COD, and the growth yield and reaction rate parameters for the phenol, thiosulfuric acid, thiocyanate, and unknown component COD that are stoichiometric parameters. Parameter setting means for setting a saturation constant for the phenol, thiosulfuric acid, thiocyan and unknown component COD, and a maximum specific growth rate;
A dissolved oxygen concentration measuring means for measuring a dissolved oxygen concentration in the biological reaction tank;
Using the known component COD concentration, the unknown component COD concentration, the persistent COD concentration, the growth yield, the saturation constant, the maximum specific growth rate, the type and concentration of the microorganism, and the measured dissolved oxygen concentration Thus, by calculating the calculation formula (1), the remaining known component COD concentration and the remaining unknown component COD concentration in the treated water of the safe water after the biological aerobic treatment in the biological reaction tank are simulated. Calculating means for calculating
A treated water COD concentration calculating means for calculating the remaining soluble COD concentration in the treated water by adding the hardly decomposable COD concentration to the calculated remaining known component COD concentration and remaining unknown component COD concentration. A COD concentration simulation apparatus for biological aerobic treatment of aquatic water characterized by comprising:

Figure 2011045872
Figure 2011045872

但し、Ci:各既知成分COD濃度及び未知成分COD濃度
i:各既知成分COD及び未知成分CODの種類を表す通し番号
ij:化学量論パラメーター
j:各プロセスを表す通し番号
ρj:反応速度式(反応速度式パラメーターを含む速度式)
Where C i is the concentration of each known component COD and the unknown component COD i is a serial number representing the type of each known component COD and unknown component COD P ij is a stoichiometric parameter j is a serial number representing each process ρ j is a reaction rate equation (Rate equation including reaction rate equation parameters)

[7]前記パラメーター設定手段は、
(ア)前記流入する安水、及び、安水の処理水において、事前に時系列的に別途採取した溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、及び、未知成分COD濃度と、溶存酸素濃度を用い、キャリブレーションによって決定する装置、
(イ)溶存酸素計を用いて連続的に溶存酸素濃度を計測するバッチ試験装置を使用し、前記生物反応槽中の微生物及び前記安水中の対象成分を用いて、酸素消費速度試験の酸素消費速度データ、及び溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、未知成分COD濃度の時系列データから決定する装置
のいずれかの装置を用いて、パラメーターを設定することを特徴とする、[6]に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。
[7] The parameter setting means includes:
(A) In the inflowing water and treated water, the soluble COD concentration, the phenol concentration, the thiosulfuric acid concentration, the thiocyanate concentration, the hardly decomposable COD concentration separately collected in time series in advance, and An apparatus that uses unknown component COD concentration and dissolved oxygen concentration to determine by calibration,
(B) Using a batch test device that continuously measures the dissolved oxygen concentration using a dissolved oxygen meter, using the microorganisms in the biological reaction tank and the target components in the aqueous solution, oxygen consumption in the oxygen consumption rate test Set parameters using any one of the devices determined from the time series data of rate data and soluble COD concentration, phenol concentration, thiosulfate concentration, thiocyan concentration, persistent COD concentration, unknown component COD concentration The COD concentration simulation apparatus in the biological aerobic treatment of safe water according to [6].

[8]前記難分解性COD分画手段において、前記生物反応槽にて生物学的好気処理した安水の処理水に替えて、前記生物反応槽内の微生物と前記安水とを反応させたバッチ試験後の処理水を用いて、事前に前記難分解性COD濃度を決定することを特徴とする、[6]又は[7]に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。 [8] In the hardly decomposable COD fractionating means, the microorganisms in the biological reaction tank are reacted with the low water instead of the treated water of biological aerobic treatment in the biological reaction tank. The COD concentration in the biological aerobic treatment of an aqueous solution according to [6] or [7], wherein the persistent COD concentration is determined in advance using the treated water after the batch test. Simulation device.

[9]前記フェノールを前記未知成分COD濃度に含め、前記既知成分をチオ硫酸、チオシアンとして、前記各手段を実施することを特徴とする、[6]〜[8]のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。 [9] The method according to any one of [6] to [8], wherein the above means are implemented by including the phenol in the concentration of the unknown component COD and using the known component as thiosulfuric acid or thiocyan. COD concentration simulation device in biological aerobic treatment of Japanese aquatic water.

[10]前記流入する安水の水量と、前記既知成分COD濃度と、前記未知成分COD濃度と、前記難分解性COD成分濃度の経時データ、及び、前記生物学的反応槽の容積を用いて、前記計算手段において演算式(1)の計算と併せて物質収支を計算することにより、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する、[6]〜[9]のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。 [10] Using time-lapse data of the inflowing aqueous solution, the known component COD concentration, the unknown component COD concentration, the persistent COD component concentration, and the volume of the biological reaction tank The calculation means calculates the material balance in combination with the calculation of the arithmetic expression (1), whereby each remaining known in the treated water of the aqueous solution after the biological aerobic treatment in the biological reaction tank is performed. The COD concentration simulation apparatus for biological aerobic treatment of safe water according to any one of [6] to [9], wherein the component COD concentration and the remaining unknown component COD concentration are calculated by simulation.

本発明の奏する効果は以下のとおりである。
コークス製造工程で発生する安水を生物反応槽で処理する際に、生物反応槽に流入する安水中の既知成分濃度と、溶解性COD濃度とを測定し、溶解性COD濃度から既知成分COD濃度及び難分解性COD濃度を差し引くことにより、未知成分COD濃度を求め、活性汚泥モデルを適用することにより、安水を生物学的好気処理した後の処理水COD濃度を予測することができる。すなわち、流入する安水中のフェノール濃度、チオ硫酸濃度、チオシアン濃度、及び、溶解性COD濃度を測定することにより、生物学的好気処理後の処理水のCOD濃度を予測することができる。
The effects produced by the present invention are as follows.
When the aqueous water generated in the coke production process is processed in the biological reaction tank, the known component concentration and the soluble COD concentration in the aqueous solution flowing into the biological reaction tank are measured, and the known component COD concentration is determined from the soluble COD concentration. By subtracting the persistent COD concentration and the unknown component COD concentration, and applying the activated sludge model, the treated water COD concentration after the aerobic treatment of the aquatic water can be predicted. That is, the COD concentration of treated water after biological aerobic treatment can be predicted by measuring the phenol concentration, thiosulfuric acid concentration, thiocyanate concentration, and soluble COD concentration in the inflowing water.

また、本発明によれば、流入する安水の含有成分濃度、組成などが変動したとしても、溶解性COD濃度と、既知成分COD濃度と、難分解性COD濃度とを分析し、シミュレーションに入力することにより計算可能である。また、微生物濃度の計算を行うため、微生物濃度の変動を含めた計算が可能である。   In addition, according to the present invention, even if the contained component concentration and composition of the inflowing water are changed, the soluble COD concentration, the known component COD concentration, and the hardly decomposable COD concentration are analyzed and input to the simulation. Can be calculated. Further, since the microbial concentration is calculated, it is possible to calculate including the variation of the microbial concentration.

本発明に係るCOD分画を示す概念図である。It is a conceptual diagram which shows the COD fraction based on this invention. 本発明に係る、安水の生物学的処理プロセスの水質シミュレーション方法を示す構成図である。It is a block diagram which shows the water quality simulation method of the biological treatment process of an aqueous water based on this invention. フェノール濃度とCODMnの相関関係を示す図である。It is a figure which shows the correlation of a phenol concentration and COD Mn . 酸素消費速度試験装置の構成図である。It is a block diagram of an oxygen consumption rate test apparatus. 本発明に係る実施例1におけるシミュレーション結果を示す図である。It is a figure which shows the simulation result in Example 1 which concerns on this invention. 本発明に係る実施例2における未知成分COD濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of unknown component COD density | concentration in Example 2 which concerns on this invention. 本発明に係る実施例2におけるシミュレーション結果を示す図である。It is a figure which shows the simulation result in Example 2 which concerns on this invention. 本発明に係る実施例3におけるシミュレーション結果を示す図である。It is a figure which shows the simulation result in Example 3 which concerns on this invention. 本発明に係る実施例4における、安水の生物学的処理プロセスの水質シミュレーション方法を示す構成図である。It is a block diagram which shows the water quality simulation method of the biological treatment process of an aqueous water in Example 4 which concerns on this invention. 本発明に係る実施例4におけるシミュレーション結果を示す図である。It is a figure which shows the simulation result in Example 4 which concerns on this invention.

図1は、本発明における安水COD分画を示した図である。CODは水に溶解しない固形性CODと、溶解性CODに分けられる。これは、例えばろ紙を用いて分離を行うことにより、ろ紙に残ったものを固形性COD、ろ液を溶解性CODとして得られる。本発明は、生分解と関係が深い溶解性CODの生分解を対象としたシミュレーション方法である。固形性CODはほとんど生分解されず、最終的には沈降分離によって除去されるため、本発明では対象外とする。   FIG. 1 is a diagram showing the low-water COD fraction in the present invention. COD is divided into solid COD that is not soluble in water and soluble COD. For example, by performing separation using filter paper, for example, what remains on the filter paper is obtained as solid COD, and the filtrate is obtained as soluble COD. The present invention is a simulation method for biodegradation of soluble COD that is closely related to biodegradation. Since solid COD is hardly biodegraded and is finally removed by sedimentation separation, it is excluded from the present invention.

溶解性CODは、生分解性COD及び生分解性がほとんど無い難分解性CODに分けられる。これは、後述するが、例えば安水を生物反応槽にて生物学的好気処理を実施した処理水、又は、安水と生物反応槽内微生物を反応させるバッチ試験後の処理水において、処理後の溶解性COD濃度及び既知成分濃度を分析し、処理水溶解性COD濃度から処理水既知成分COD濃度を差し引くことにより得られる。難分解性COD濃度は、流入する安水において、変動が少なく、濃度としても小さい。そのため、多少の変動があっても問題なく溶解性CODの予測が可能である。   Soluble COD is divided into biodegradable COD and persistent biodegradable COD with little biodegradability. As will be described later, for example, treated water treated with an aerobic biological aerobic treatment in a biological reaction tank, or treated water after a batch test in which the aqueous water reacts with microorganisms in the biological reaction tank. It is obtained by analyzing the later soluble COD concentration and the known component concentration, and subtracting the treated water known component COD concentration from the treated water soluble COD concentration. The hardly decomposable COD concentration has little fluctuation and low concentration in the inflowing water. Therefore, it is possible to predict the soluble COD without any problems even if there are some fluctuations.

さらに、生分解性CODは、フェノール、チオ硫酸、チオシアンの既知成分COD及びそれ以外の生分解性のあるCODである未知成分CODに分けられる。通常、安水では、フェノール、チオ硫酸、チオシアンの既知成分で生分解性CODの6〜8割程度を占め、未知成分CODは全体の2〜4割程度である。よって、既知成分のシミュレーションでもある程度の精度が得られるが、未知成分のシミュレーションと併せることによって更なる精度向上が可能となる。安水における未知成分CODは生分解しやすく、工場ごとに未知成分の組成がほとんど変わらないことから、ひと括りに未知成分CODと置き、その挙動を把握することが可能である。さらに、既知成分のうち生分解しやすいフェノールを未知成分CODに含めて計算することも可能である。   Furthermore, biodegradable COD is divided into known components COD of phenol, thiosulfuric acid and thiocyan, and other unknown components COD which are other biodegradable CODs. In general, in aquatic water, known components such as phenol, thiosulfuric acid and thiocyan account for about 60 to 80% of biodegradable COD, and unknown component COD accounts for about 20 to 40% of the total. Therefore, a certain degree of accuracy can be obtained even in the simulation of the known component, but the accuracy can be further improved by combining with the simulation of the unknown component. The unknown component COD in the water is easily biodegradable, and the composition of the unknown component hardly changes from factory to factory. Therefore, it is possible to put the unknown component COD together and grasp its behavior. Furthermore, it is also possible to calculate by including phenol that is easily biodegraded among the known components in the unknown component COD.

図2は、本発明による安水のCOD濃度シミュレーション方法のフローを例示した図である。また、図中の各「工程」は各「手段」に替えることができ、安水のシミュレーション装置を例示した図でもある。   FIG. 2 is a diagram exemplifying a flow of the method for simulating the COD concentration of safe water according to the present invention. In addition, each “process” in the figure can be replaced with each “means”, and is also a diagram illustrating a simulation apparatus for water safety.

また、図2の処理水とは、連続処理の場合は生物学的好気処理後の処理水、バッチ処理の場合は所定時間経過後の槽内水をいう。   Further, the treated water in FIG. 2 refers to treated water after biological aerobic treatment in the case of continuous treatment, and in-tank water after a predetermined time in the case of batch treatment.

また、生物学的好気処理とは、基質と微生物が存在し、ばっ気装置を有する反応槽において、ばっ気を行うことにより溶存酸素を供給しながら、混合・撹拌を行い、基質と微生物を接触・反応させることにより、基質を分解処理する方法をいう。   In addition, biological aerobic treatment means that a substrate and microorganisms exist, and in a reaction vessel having an aeration apparatus, mixing and stirring are performed while supplying dissolved oxygen by aeration, and the substrate and microorganisms are removed. A method of decomposing a substrate by contacting and reacting.

図2に示すように、本発明によるCOD濃度シミュレーション方法1は、生物学的好気処理プロセスに流入する安水を分析する分析工程2と、流入する安水のフェノール、チオ硫酸、チオシアンの既知成分濃度とCOD濃度との相関関係3を用いて既知成分COD濃度5に換算する既知成分COD換算分画工程4と、安水を生物反応槽にて生物学的好気処理を実施した処理水、又は、安水と生物反応槽内微生物を反応させるバッチ試験後の処理水において、処理水に残存する溶解性COD濃度及び既知成分濃度を分析し、溶解性COD濃度から既知成分COD濃度を差し引くことにより難分解性COD濃度6を決定する難分解性COD分画工程7と、分析工程2で得られた流入する安水の溶解性COD濃度8から既知成分COD濃度5及び難分解性COD濃度6を差し引くことにより流入する安水の未知成分COD濃度9を決定する未知成分COD分画工程10と、化学量論パラメーター(増殖収率)及び反応速度式パラメーター(飽和定数及び最大比増殖速度)、並びにフェノール、チオ硫酸、チオシアン及び未知成分CODを分解する微生物の種類及び濃度のパラメーターを設定するパラメーター設定工程11と、生物反応槽の溶存酸素濃度を測定する溶存酸素濃度測定工程12、パラメーター及び溶存酸素濃度及び流入する安水の既知成分COD濃度5及び流入する安水の未知成分COD濃度9を用いて、前述の演算式(1)の計算により、安水を生物学的好気処理した処理水の予測既知成分COD濃度13及び処理水の予測未知成分COD濃度14をシミュレーションして算出する計算工程15と、算出された処理水の予測既知成分COD濃度13及び予測未知成分COD濃度14に、難分解性COD濃度6を加算することにより、処理水の予測COD濃度17を算出する処理水予測COD濃度算出工程16を備えている。   As shown in FIG. 2, the COD concentration simulation method 1 according to the present invention includes an analysis step 2 for analyzing the aquatic water flowing into the biological aerobic treatment process, and known inflowing phenol, thiosulfuric acid, and thiocyanate. A known component COD conversion fractionation step 4 for converting to a known component COD concentration 5 using the correlation 3 between the component concentration and the COD concentration, and treated water in which the aquatic water is subjected to biological aerobic treatment in a biological reaction tank Or, analyze the soluble COD concentration and the known component concentration remaining in the treated water, and subtract the known component COD concentration from the soluble COD concentration in the treated water after the batch test in which the aqueous water and the microorganisms in the biological reaction tank are reacted. Refractory COD concentration step 7 to determine the hard-to-decompose COD concentration 6, and the known component COD concentration 5 and difficult from the soluble COD concentration 8 of the inflowing water obtained in the analysis step 2 An unknown component COD fractionation step 10 for determining the unknown component COD concentration 9 of the inflowing water by subtracting the desolvable COD concentration 6 and the stoichiometric parameters (growth yield) and reaction rate parameters (saturation constant and maximum) Specific growth rate), and parameter setting step 11 for setting parameters of the type and concentration of microorganisms that decompose phenol, thiosulfuric acid, thiocyanate and unknown component COD, and a dissolved oxygen concentration measuring step for measuring the dissolved oxygen concentration in the biological reaction tank 12. Using the parameters and dissolved oxygen concentration, the known component COD concentration 5 of the inflowing safe water and the unknown component COD concentration 9 of the inflowing safe water, biological water is Simulation of predicted known component COD concentration 13 and treated unknown predicted component COD concentration 14 of aerobic treated water The predicted COD concentration 17 of the treated water is calculated by adding the hardly decomposable COD concentration 6 to the calculated calculation process 15 and the predicted known component COD concentration 13 and predicted unknown component COD concentration 14 of the calculated treated water. A treated water predicted COD concentration calculation step 16 is provided.

後述するが、上記パラメーター設定では、事前に別途溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、未知成分COD濃度、難分解性COD濃度、溶存酸素濃度の時系列データがあることが望ましい。一方、シミュレーションに用いるフェノール濃度、チオ硫酸濃度、チオシアン濃度、未知成分COD濃度、難分解性COD濃度、溶存酸素濃度は時系列データである必要はなく、求める時間断面のデータでもよい。例えば、現在より10日後までのシミュレーションを行う場合には、現在のフェノール濃度、チオ硫酸濃度、チオシアン濃度、未知成分COD濃度、難分解性COD濃度が10日間一定であると仮定して入力することも可能である。   As will be described later, in the above parameter setting, it is desirable to have time-series data of soluble COD concentration, phenol concentration, thiosulfuric acid concentration, thiocyanate concentration, unknown component COD concentration, persistent COD concentration, and dissolved oxygen concentration in advance. . On the other hand, the phenol concentration, thiosulfuric acid concentration, thiocyan concentration, unknown component COD concentration, persistent COD concentration, and dissolved oxygen concentration used for the simulation need not be time-series data, and may be data of a required time section. For example, when a simulation is performed up to 10 days after the present time, it is assumed that the current phenol concentration, thiosulfate concentration, thiocyan concentration, unknown component COD concentration, and persistent COD concentration are assumed to be constant for 10 days. Is also possible.

また、求める時間断面は、生物反応槽の滞留時間を考慮して、その時間前のデータを用いることが望ましい。例えば、現在の処理水におけるフェノール濃度、チオ硫酸濃度、チオシアン濃度、未知成分COD濃度、難分解性COD濃度を求める際に、滞留時間10時間の生物反応槽であれば、10時間前の流入する安水のデータを用いることが望ましい。   In addition, it is desirable that the time section to be obtained uses data before that time in consideration of the residence time of the biological reaction tank. For example, when determining the phenol concentration, thiosulfuric acid concentration, thiocyan concentration, unknown component COD concentration and persistent COD concentration in the current treated water, if the biological reaction tank has a residence time of 10 hours, it will flow in 10 hours before. It is desirable to use low water data.

分析工程2では、流入する安水のCOD濃度、フェノール、チオ硫酸、チオシアン濃度の既知成分濃度を分析する方法について指定されないが、毎回同じ分析方法を用いることが望ましい。例えば、COD濃度についてはJIS K0102 100℃過マンガン酸における過マンガン酸カリウムによる酸素消費量(CODMn)、又は、二クロム酸カリウムによる酸素消費量(CODCr)、フェノール濃度についてはJIS K0102吸光光度法、チオ硫酸、チオシアン濃度についてはイオンクロマト分析、MLSS濃度については前記した非特許文献1等により分析できる。各分析方法には、分析方法の違いによる分析値の誤差を防ぐため、本発明において一貫して同じ方法を用いることが望ましい。 In the analysis step 2, the method of analyzing the known component concentrations of the inflowing aqueduct COD, phenol, thiosulfuric acid, and thiocyanate is not specified, but it is desirable to use the same analysis method every time. For example, for COD concentration, oxygen consumption (COD Mn ) by potassium permanganate in JIS K0102 100 ° C. permanganate, or oxygen consumption (COD Cr ) by potassium dichromate, and JIS K0102 absorbance for phenol concentration Methods, thiosulfuric acid, and thiocyanate concentrations can be analyzed by ion chromatography analysis, and MLSS concentrations can be analyzed by Non-Patent Document 1 described above. For each analysis method, it is desirable to consistently use the same method in the present invention in order to prevent an error in the analysis value due to a difference in the analysis method.

相関関係3は、既知成分濃度とCOD濃度から得られるものである。例として、図3にフェノール濃度、チオ硫酸、チオシアンと、CODMn濃度との実測値に基づく相関関係を示す。その結果、フェノール、チオ硫酸、チオシアン1mgあたりの酸素消費量は、それぞれ2.1mg、0.48mg、1.0mgであった。また、相関関係を求める際には、分析工程においてCOD濃度を測定した方法と同じCODCr又はCODMnのいずれの分析方法を用いることが望ましく、分析方法は一貫して同じ方法を用いる。 Correlation 3 is obtained from the known component concentration and the COD concentration. As an example, FIG. 3 shows a correlation based on measured values of phenol concentration, thiosulfuric acid, thiocyan and COD Mn concentration. As a result, the oxygen consumption per 1 mg of phenol, thiosulfuric acid, and thiocyan was 2.1 mg, 0.48 mg, and 1.0 mg, respectively. Further, when determining the correlation, it is desirable to use any of the analytical methods of the same COD Cr or COD Mn and method of measuring the COD concentration in the analysis step, analysis method using the same method consistently.

このように、既知成分濃度と、COD濃度との相関関係を求める際には、CODCrを用いなくても、CODMnの分析結果を用いることができるので、CODCrのように危険かつ有害性のある薬品を用いた分析を行わなくてもよいという利点がある。 Thus, the known component concentrations, when determining the correlation between the COD concentration without using a COD Cr, it is possible to use the analysis results of the COD Mn, dangerous and harmful as COD Cr There is an advantage that it is not necessary to perform analysis using certain chemicals.

また、この他にも、各成分濃度とCOD濃度の相関関係を簡易に得る方法として、成分の理論的酸素消費量を化学反応式から算出する方法もある。例えば、フェノール、チオ硫酸、チオシアン1mgあたりの理論的酸素消費量は、以下の化学反応式(1)〜(3);
65OH + 7O2 → 6CO2 + 3H2O ・・・(1)
23 2- + 2O2 + H2O → 2SO4 2- + 2H+ ・・・(2)
SCN- + 2O2 + 2H2O → SO4 2- + NH4 + + CO2 ・・・(3)
を用いて、それぞれ、2.38mg、0.57mg、1.1mgと算出される。
In addition, as a method for easily obtaining the correlation between the concentration of each component and the COD concentration, there is a method of calculating the theoretical oxygen consumption of the component from the chemical reaction equation. For example, the theoretical oxygen consumption per mg of phenol, thiosulfuric acid and thiocyan is the following chemical reaction formulas (1) to (3);
C 6 H 5 OH + 7O 2 → 6CO 2 + 3H 2 O (1)
S 2 O 3 2− + 2O 2 + H 2 O → 2SO 4 2− + 2H + (2)
SCN + 2O 2 + 2H 2 O → SO 4 2− + NH 4 + + CO 2 (3)
Are calculated as 2.38 mg, 0.57 mg, and 1.1 mg, respectively.

ここで、図3の酸素消費量と、理論的酸素消費量とが異なるのは、CODMnによる分析では理論的に完全に酸化させる酸化力がないため、低く見積もられるためである。 Here, the reason why the oxygen consumption in FIG. 3 is different from the theoretical oxygen consumption is that the analysis by COD Mn does not have an oxidative power that can be theoretically completely oxidized, and is estimated to be low.

既知成分COD換算分画工程4では、上記相関関係3を用いて、分析工程2で得られた既知成分濃度を既知成分COD濃度5に換算するものである。   In the known component COD conversion fractionation step 4, the known component concentration obtained in the analysis step 2 is converted into the known component COD concentration 5 using the correlation 3.

また、チオ硫酸、チオシアンのような硫黄化合物は、ここで硫黄換算してシミュレーションを行うことも可能である。これにより、チオ硫酸、チオシアンを硫黄成分として分けて考えることにより、CODとしてカウントされない硫酸イオン成分等が算出可能となる。これにより、硫黄の物質収支を追跡することが可能となり、硫黄成分の挙動が把握できる。但し、硫黄換算することにより硫黄の物質収支を取る場合であっても、酸素の物質収支は取れているので、シミュレーションに影響することはない。また、硫黄化合物を分解する微生物は、一般的には硫黄酸化細菌と考えられており、それらは有機物を分解する従属栄養細菌と異なり、互いに作用を及ぼしあうことがないと考えられる。そのため、硫黄化合物をその他の成分と分けて考えることにより、精度が高まる。その場合、チオ硫酸、チオシアン1mgの硫黄換算値は、前記化学反応式(1)〜(3)より、それぞれ0.57mg、0.55mgと算出される。   In addition, sulfur compounds such as thiosulfuric acid and thiocyan can be simulated in terms of sulfur here. Thus, by separately considering thiosulfuric acid and thiocyan as sulfur components, it is possible to calculate sulfate ion components that are not counted as COD. Thereby, it becomes possible to trace the mass balance of sulfur, and the behavior of the sulfur component can be grasped. However, even if the sulfur material balance is obtained by converting to sulfur, the oxygen material balance is obtained, so that the simulation is not affected. In addition, microorganisms that decompose sulfur compounds are generally considered to be sulfur-oxidizing bacteria, and unlike heterotrophic bacteria that decompose organic matter, they are considered not to interact with each other. Therefore, the accuracy increases by considering the sulfur compound separately from the other components. In that case, the sulfur conversion values of 1 mg of thiosulfuric acid and thiocyan are calculated as 0.57 mg and 0.55 mg from the chemical reaction formulas (1) to (3), respectively.

難分解性COD分画工程7では、安水を生物反応槽にて生物学的好気処理を実施した処理水、又は、安水と生物反応槽内微生物を反応させるバッチ試験後の処理水において、処理後の溶解性COD濃度及び既知成分濃度を分析し、処理水溶解性COD濃度から処理水の既知成分COD濃度を差し引くことにより難分解性COD濃度6を決定する。ここでは所定時間の生物処理によって分解されない、すなわちシミュレーションの前後で変化しない難分解性CODを定量することが目的である。上記生物学的好気処理及びバッチ試験では、溶解性CODが経時的にほとんど減少しない状態まで処理することが望ましい。減少しない状態の判断基準はシミュレーションの精度に関連し、例えば、シミュレーション予測の精度を±5%以内に設定する場合、バッチ試験において、シミュレーションで対象とする生物反応槽の滞留時間が経過しても、バッチ試験の溶解性COD濃度の減少が元の溶解性COD濃度の5%以内となる状態が考えられる。シミュレーション予測の精度を事前に決定していない場合は、例えば、JIS K0102 生物化学的酸素消費量(BOD)の分析方法を用いて、5日間の分解処理を行うことで、減少しない状態と判断することができる。また、生物学的好気処理では通常、生分解性CODが十分分解される処理時間を採用しているが、場合によっては分解時間が不足していることもあるため、安定的に処理しているときのデータを取得する必要があるが、データ取得が困難な場合はバッチ試験により確認することが望ましい。   In the hardly decomposable COD fractionation step 7, in the treated water that has been subjected to biological aerobic treatment in the biological reaction tank, or in the treated water after the batch test in which the aqueous water and microorganisms in the biological reaction tank are reacted. The soluble COD concentration after treatment and the known component concentration are analyzed, and the hardly decomposable COD concentration 6 is determined by subtracting the known component COD concentration of the treated water from the treated water soluble COD concentration. The purpose here is to quantify persistent COD that is not decomposed by biological treatment for a predetermined time, that is, does not change before and after the simulation. In the above-described biological aerobic treatment and batch test, it is desirable to perform the treatment until the soluble COD hardly decreases with time. The criterion for not decreasing is related to the accuracy of the simulation. For example, when the accuracy of the simulation prediction is set within ± 5%, even in the batch test, even if the residence time of the biological reaction tank targeted by the simulation elapses A state where the decrease in the soluble COD concentration in the batch test is within 5% of the original soluble COD concentration is conceivable. When the accuracy of simulation prediction is not determined in advance, for example, it is determined that the state does not decrease by performing a 5-day decomposition process using a JIS K0102 biochemical oxygen consumption (BOD) analysis method. be able to. In addition, a biological aerobic treatment usually employs a treatment time in which biodegradable COD is sufficiently decomposed, but in some cases, the decomposition time may be insufficient. However, if it is difficult to obtain data, it is desirable to confirm it by a batch test.

未知成分COD分画工程10では、分析工程2で得られた流入する安水溶解性COD濃度8から流入する安水の既知成分COD濃度5及び難分解性COD濃度6を差し引くことにより流入する安水の未知成分COD濃度9を決定する。未知成分は、安水ではフェノール、チオ硫酸、チオシアン以外のCOD成分であり、生分解性を有する有機物、無機物のことを指す。   In the unknown component COD fractionation step 10, the inflow by adding the known component COD concentration 5 and the hardly decomposable COD concentration 6 of the inflowing aqueous water from the inflowing water-soluble soluble COD concentration 8 obtained in the analysis step 2. Determine the unknown component COD concentration of 9 in water. An unknown component is a COD component other than phenol, thiosulfuric acid, and thiocyan in an aqueous solution, and indicates an organic or inorganic substance having biodegradability.

また、この未知成分COD濃度を求める際に、分析方法の誤差などによって、流入する安水の既知成分COD濃度5と難分解性COD濃度6の和が溶解性COD濃度を超えてしまう可能性があるが、この場合、未知成分COD濃度が無視できる程度に低いと考え、未知成分COD濃度をゼロとして計算してもよい。   Further, when determining the unknown component COD concentration, there is a possibility that the sum of the known component COD concentration 5 and the hardly decomposable COD concentration 6 of the inflowing water exceeds the soluble COD concentration due to errors in the analysis method. In this case, the unknown component COD concentration may be considered to be negligibly low, and the unknown component COD concentration may be calculated as zero.

また、既知成分であるフェノールを未知成分に含めて簡易にシミュレーションを行ってもよい。これによりフェノール濃度を分析する必要がなく、分析工程2で流入する安水の溶解性COD濃度8、チオ硫酸、チオシアン濃度のみの分析でシミュレーションが可能となる。但し、未知成分分解におけるパラメーターがフェノール濃度の変動により影響を受ける可能性があるため、シミュレーションにあたっては、後述のキャリブレーションの頻度を多くする等、慎重にパラメーター設定を行う必要がある。   Moreover, you may simulate simply by including the phenol which is a known component in an unknown component. As a result, it is not necessary to analyze the phenol concentration, and a simulation can be performed by analyzing only the solubility COD concentration 8 of hydrated water flowing in analysis step 2, thiosulfuric acid, and thiocyanate concentration. However, since parameters in the unknown component decomposition may be affected by fluctuations in the phenol concentration, it is necessary to carefully set parameters in the simulation, such as increasing the frequency of calibration described later.

また、未知成分COD濃度の時系列変化から、未知成分を複数成分に分画し、シミュレーションを実施してもよい。例えば、バッチ試験等における未知成分COD濃度の時系列変化において、反応初期の未知成分COD濃度分解速度と、それ以降の分解速度が大きく異なる場合には、未知成分COD濃度を2成分に分画し、未知成分a及び未知成分bなどとしてシミュレーションを行う。   Further, the unknown component may be divided into a plurality of components from the time-series change of the unknown component COD concentration, and a simulation may be performed. For example, when the unknown component COD concentration decomposition rate in the initial stage of the reaction in the time series change of the unknown component COD concentration in a batch test or the like is greatly different from the subsequent decomposition rate, the unknown component COD concentration is divided into two components. The simulation is performed as an unknown component a and an unknown component b.

パラメーター設定工程11では、フェノール、チオ硫酸、チオシアン及び未知成分CODを分解する微生物の種類及び濃度、並びに、化学量論パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する増殖収率、反応速度式パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する飽和定数、最大比増殖速度を設定する。設定方法については、大きく分けて(A)実験を行って、ある条件での実験データを解析する方法と、(B)文献値を拾う方法が挙げられ、前者によりパラメーター設定を行う方法が望ましい。   In the parameter setting step 11, the type and concentration of microorganisms that decompose phenol, thiosulfuric acid, thiocyan and unknown component COD, and the growth yield and reaction for the stoichiometric parameters phenol, thiosulfuric acid, thiocyan and unknown component COD. Saturation constants and maximum specific growth rates for the phenol, thiosulfuric acid, thiocyan and unknown component COD, which are kinetic parameters, are set. The setting method can be broadly divided into (A) a method in which an experiment is performed and experimental data under a certain condition is analyzed, and (B) a method in which document values are picked up. The former method in which parameter setting is performed is preferable.

上記(A)の方法について以下に述べる。この方法は、(ア)流入する安水、及び、安水の処理水において、シミュレーションを実施する前に、時系列的に別途採取したサンプルを用いて、溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、及び、未知成分COD濃度と、生物反応槽における溶存酸素濃度をそれぞれ分析・測定し、後述する演算式(2)などを用いることにより、シミュレーションにおけるパラメーターを、キャリブレーションによって決定する方法、(イ)溶存酸素計を用いて連続的に溶存酸素濃度を計測するバッチ試験装置を使用し、生物反応槽中の微生物と、流入する安水、又は、安水中の成分をバッチ容器内で反応させる酸素消費速度試験において、酸素消費速度データ、及び溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、未知成分COD濃度の時系列データを採取し、後述する演算式(3)〜(6)などを用いることにより、シミュレーションにおけるパラメーターを決定する方法のうち(ア)又は(イ)のいずれかの方法を用いて、事前にパラメーターを設定する。但し、上記難分解性COD濃度は、事前に難分解性COD分画工程7から決定してもよいが、(ア)の処理水中溶解性COD濃度、又は、(イ)のバッチ試験終了時の溶解性COD濃度も、操作としては同じことを実施するため、これにより決定してもよい。また、未知成分の決定については、未知成分COD分画工程10により求める。   The method (A) will be described below. This method is based on (a) inflowing aqueous and treated water, using samples collected separately in time series prior to the simulation, using soluble COD concentration, phenol concentration, thiosulfuric acid. Analyzing and measuring the concentration, thiocyanate concentration, persistent COD concentration, unknown component COD concentration, and dissolved oxygen concentration in the biological reaction tank, respectively, and using the calculation formula (2) described later, the parameters in the simulation are , A method of determining by calibration, (a) using a batch test device that continuously measures dissolved oxygen concentration using a dissolved oxygen meter, microorganisms in a biological reaction tank, and inflowing or falling water In the oxygen consumption rate test in which the components of the above are reacted in a batch container, oxygen consumption rate data, and soluble COD concentration, phenol concentration, A method for determining the parameters in the simulation by collecting time series data of the concentration of osulfate, thiocyanate, persistent COD, and unknown component COD, and using arithmetic expressions (3) to (6) described later. Set the parameters in advance using either method (a) or (b). However, the above-mentioned hardly decomposable COD concentration may be determined in advance from the hardly decomposable COD fractionation step 7, but (a) the soluble COD concentration in treated water or (b) at the end of the batch test. The soluble COD concentration may also be determined by this to perform the same operation. The unknown component is determined by the unknown component COD fractionation step 10.

上記(ア)の時系列実測値データについて、具体的なデータ取得方法は指定しないが、濃度変化がわかるような時系列データを採取する。例えば、1週間の処理水水質をシミュレーションするのであれば、その間の3点以上、例えば、2日、4日、6日経過時のデータを取得することが望ましい。また、時系列実測値データは安定したものが望ましく、例えば上記の場合、流入する安水の含有成分濃度、組成などが1週間の間で大きく変動しているデータは望ましくない。変動の大きさの基準は、例えば、シミュレーション予測の精度を±5%以内に設定する場合、シミュレーション生物処理時間(滞留時間)の時間間隔で流入する安水の含有成分濃度の変動幅が5%以内であるものを用いることができる。   For the time series measured value data of (a) above, a specific data acquisition method is not specified, but time series data is collected so that the density change can be understood. For example, if the quality of treated water for one week is simulated, it is desirable to acquire data at the time when three or more points in between, for example, 2, 4, and 6 days have passed. In addition, it is desirable that the time-series measured value data is stable. For example, in the case described above, data in which the concentration and composition of the inflowing water-containing components greatly fluctuate during one week is not desirable. For example, when the accuracy of the simulation prediction is set within ± 5%, the fluctuation range of the concentration of components of the cold water flowing in at the time interval of the simulation biological treatment time (residence time) is 5%. Can be used.

上記(ア)のキャリブレーションによって決定する方法は、特に指定しないが、例えば、市販のASMシミュレーションソフトAQUASIMによって、時系列実測値、計算値及び時系列実測値の標準偏差から、下記演算式(2):   The method of determining by the calibration in (a) is not particularly specified. For example, the commercially available ASM simulation software AQUASIM is used to calculate the time series measured value, the calculated value, and the standard deviation of the time series measured value from the following equation (2 ):

Figure 2011045872
Figure 2011045872

{式中、χ2(p)は、対象とするモデルパラメーターpのχ2の値であり、ymeas,mは、m番目の時系列データの実測値(成分濃度または酸素消費速度)であり、ym(p)は、モデルパラメーターpの値を仮定したときの、m番目の時系列データの計算値(成分濃度または酸素消費速度)であり、σmeas,mは、m番目の時系列データの実測値の標準偏差又は実測値全体の標準偏差であり、そしてnは、データポイントの数である。}
によりχ2の値を求め、χ2の値が最小となったときのパラメーターの値を用いる方法がある。パラメーターの値を求める方法は特に指定しないが、シンプレックス法、モンテカルロ法、遺伝的アルゴリズム等の数値解析手法によるものが望ましい。
{Where χ 2 (p) is the value of χ 2 of the target model parameter p, and y meas, m is the actual measurement value (component concentration or oxygen consumption rate) of the m-th time series data , Y m (p) is the calculated value (component concentration or oxygen consumption rate) of the m th time series data assuming the value of the model parameter p, and σ meas, m is the m th time series The standard deviation of the measured value of the data or the standard deviation of the entire measured value, and n is the number of data points. }
Obtains the value of the chi 2 by, there is a method of using a value of the parameter when the value of the chi 2 is minimized. The method for obtaining the parameter value is not specified, but a numerical analysis method such as a simplex method, a Monte Carlo method, or a genetic algorithm is preferable.

上記(イ)の酸素消費速度試験の酸素消費速度データからパラメーターを決定する方法は、図4の試験装置を用いる。図4で、酸素消費速度試験装置21に、生物学的処理プロセスで用いる微生物汚泥22、アンモニア性窒素が硝酸性窒素に硝化する際の酸素消費を抑制するため硝化阻害剤23を添加し、撹拌装置24で酸素消費速度試験装置21の液を混合する。栄養塩の不足による微生物の活性の低下を防ぐため、栄養塩25を添加してもよい。次に、酸素消費速度試験装置21に対象とする成分26を添加し、溶存酸素濃度計27によって溶存酸素濃度の経時変化を測定する。溶存酸素濃度の記録はデータ記録装置28で行ってもよい。測定中は溶存酸素濃度を一定以上に制御するため、制御値を下回ったときに空気供給装置29で空気を供給してもよい。pHを一定に制御するため、pH計30でpHを測定し、酸・アルカリ供給装置31で酸又はアルカリを供給し、制御してもよい。酸素消費速度試験装置21の温度を制御するため、ヒーター32を備えた恒温水槽33を用いてもよい。   The method for determining parameters from the oxygen consumption rate data in the oxygen consumption rate test (a) above uses the test apparatus of FIG. In FIG. 4, the microbial sludge 22 used in the biological treatment process and the nitrification inhibitor 23 are added to the oxygen consumption rate test apparatus 21 in order to suppress oxygen consumption when ammoniacal nitrogen is nitrified to nitrate nitrogen. The liquid of the oxygen consumption rate test apparatus 21 is mixed by the apparatus 24. Nutrient salt 25 may be added to prevent a decrease in the activity of microorganisms due to lack of nutrient salt. Next, the target component 26 is added to the oxygen consumption rate test apparatus 21, and the change over time in the dissolved oxygen concentration is measured by the dissolved oxygen concentration meter 27. Recording of the dissolved oxygen concentration may be performed by the data recording device 28. In order to control the dissolved oxygen concentration to a certain level or higher during the measurement, air may be supplied by the air supply device 29 when it falls below the control value. In order to control the pH to be constant, the pH may be measured by the pH meter 30, and the acid or alkali may be supplied by the acid / alkali supply device 31 for control. In order to control the temperature of the oxygen consumption rate test apparatus 21, a constant temperature water tank 33 provided with a heater 32 may be used.

対象とする成分(以下、成分Aと表記する)を添加して得られた溶存酸素濃度及び酸素消費速度の経時変化からパラメーターを決定する方法は特に限定されないが、例えば増殖収率については、成分AのCOD換算濃度と、酸素消費量から、下記演算式(3):   The method for determining parameters from the change over time in dissolved oxygen concentration and oxygen consumption rate obtained by adding the target component (hereinafter referred to as component A) is not particularly limited. From the COD equivalent concentration of A and the oxygen consumption, the following equation (3):

Figure 2011045872
Figure 2011045872

{式中、YAは、成分Aを分解する微生物の増殖収率であり、SA,CODは、成分AのCOD換算濃度であり、そしてO2measは、酸素消費量の実測値である。}
によって求めることができる。
{ Where Y A is the growth yield of microorganisms that degrade component A, S A, COD is the COD equivalent concentration of component A, and O 2meas is the actual measured value of oxygen consumption. }
Can be obtained.

増殖収率をより厳密に求める方法には、内生呼吸による酸素消費速度を事前に求め、上記酸素消費量の実測値から内生呼吸による酸素消費速度を差し引くことにより、増殖に使われた酸素消費速度を求めることができる。   The method of obtaining the growth yield more precisely is to obtain the oxygen consumption rate by endogenous breathing in advance and subtract the oxygen consumption rate by endogenous breathing from the measured value of the above oxygen consumption to obtain the oxygen used for growth. The consumption speed can be obtained.

最大比増殖速度、飽和定数の値を決定する方法については特に限定されないが、例えば、前記した非特許文献2にある方法を用いて求めることができる。すなわち、この方法は、酸素消費速度試験で用いる微生物汚泥を1時間、ばっ気した後に、微生物汚泥を様々な希釈率で安水と混合し、酸素消費速度を測定する方法である。測定中は溶存酸素濃度を一定に保つように、ばっ気による制御を行う。次に、測定された酸素消費速度を汚泥濃度で除すことにより比酸素消費速度を求め、比酸素消費速度から内生呼吸による酸素消費速度を引いたもの(比基質酸化速度)を求める。比内生呼吸速度とは、成分Aを添加しないときの内生呼吸による酸素消費速度であり、その求め方は、酸素消費速度試験において、成分Aを添加せずに行ったときの酸素消費速度から求められる。このとき、比増殖速度と比基質酸化速度の間には、下記演算式(4):   The method for determining the value of the maximum specific growth rate and the saturation constant is not particularly limited. For example, it can be obtained using the method described in Non-Patent Document 2 described above. In other words, this method is a method in which the microbial sludge used in the oxygen consumption rate test is aerated for 1 hour, and then the microbial sludge is mixed with low water at various dilution rates to measure the oxygen consumption rate. During measurement, control with aeration is performed to keep the dissolved oxygen concentration constant. Next, the specific oxygen consumption rate is obtained by dividing the measured oxygen consumption rate by the sludge concentration, and the specific oxygen consumption rate minus the oxygen consumption rate by endogenous respiration (specific substrate oxidation rate) is obtained. The specific endogenous respiration rate is the oxygen consumption rate due to endogenous respiration when component A is not added, and is obtained from the oxygen consumption rate when component A is not added in the oxygen consumption rate test. Desired. At this time, between the specific growth rate and the specific substrate oxidation rate, the following equation (4):

Figure 2011045872
Figure 2011045872

{式中、μAは、成分Aを分解する微生物の比増殖速度であり、そしてroxは、比基質酸化速度である。}
に示す関係が成り立つ。
{Wherein μ A is the specific growth rate of the microorganism that degrades component A and r ox is the specific substrate oxidation rate. }
The relationship shown in is established.

一方、比増殖速度μAと最大比増殖速度μA,maxとの間には、下記演算式(5): On the other hand, between the specific growth rate mu A and the maximum specific growth rate mu A, max, the following arithmetic expression (5):

Figure 2011045872
Figure 2011045872

{式中、μA,maxは、成分Aを分解する微生物の最大比増殖速度であり、KAは、成分A濃度のCOD換算値に対する飽和定数であり、SA,CODは、成分AのCOD換算濃度であり、SO2は、溶存酸素濃度であり、そしてKO2は、溶存酸素濃度に対する飽和定数である。}
に示すミカエリス−メンテン式が成り立つ。
{Wherein, mu A, max is the maximum specific growth rate of the microorganisms decompose the component A, K A is the saturation constant for COD conversion value of component A concentration, S A, COD is the component A It is the COD equivalent concentration, S O2 is the dissolved oxygen concentration, and K O2 is the saturation constant for the dissolved oxygen concentration. }
The Michaelis-Menten equation is established.

ここで、酸素消費速度試験では溶存酸素濃度を高濃度に維持するため、SO2/(KO2+SO2)の値はほぼ1とみなせる。したがって、比増殖速度は成分濃度のみの関数とみなせる。以上より、演算式(4)で得られた比増殖速度μAの値と成分濃度とのプロットが得られ、そのプロットに演算式(5)の式をフィッティングすることにより、微生物の比最大増殖速度及び成分Aに対する飽和定数が求まる。 Here, in the oxygen consumption rate test, since the dissolved oxygen concentration is maintained at a high concentration, the value of S O2 / (K O2 + S O2 ) can be regarded as approximately 1. Therefore, the specific growth rate can be regarded as a function of only the component concentration. From the above, a plot of the value of specific growth rate μ A obtained by the calculation formula (4) and the component concentration is obtained, and by fitting the formula of the calculation formula (5) to the plot, the specific maximum growth of microorganisms The rate and saturation constant for component A are determined.

フェノール、チオ硫酸、チオシアン及び未知成分を分解する微生物の種類および濃度を決定する方法については、特に限定されないが、種類については、基本的に一成分に対し一種類の微生物がその分解に対応することが望ましい。さらに、実験データや文献をもとに、複数成分を1種類の微生物が分解することもあるため、実際の現象に即した計算予測や計算予測精度の向上のためには複数成分1種類の微生物が対応するよう設定してもよい。但し、一成分を複数種類の微生物が分解することもあり得るが、それらは同じような分解作用を示すことが多く、また、微生物の種類を増やすことにより計算量が増加するため、一成分に対し一種類の微生物を対応させることが望ましい。本発明では、フェノール、未知成分については従属栄養細菌がその分解に対応するものとするが、未知成分のうち成分特定及び定量が容易なものがあれば、それに対応する種類の微生物を設定してもよい。微生物の濃度については、化合物成分有機物成分及び無機物成分を用いた酸素消費速度が、下記演算式(6):   The method for determining the type and concentration of microorganisms that decompose phenol, thiosulfuric acid, thiocyanate, and unknown components is not particularly limited, but basically one type of microorganism corresponds to the decomposition for one component. It is desirable. In addition, since one type of microorganism may decompose multiple components based on experimental data and literature, a single component of multiple components can be used to improve calculation prediction and calculation prediction accuracy based on actual phenomena. May be set to correspond. However, multiple types of microorganisms may decompose one component, but they often exhibit the same degradation action, and the amount of calculation increases by increasing the number of microorganisms. It is desirable to correspond to one type of microorganism. In the present invention, the heterotrophic bacteria cope with the degradation of phenol and unknown components. However, if there are components of unknown components that can be easily identified and quantified, a corresponding type of microorganism is set. Also good. Regarding the concentration of the microorganism, the oxygen consumption rate using the organic component and the inorganic component of the compound component is expressed by the following equation (6):

Figure 2011045872
Figure 2011045872

{式中、OURは、酸素消費速度であり、そしてXAは、成分Aを分解する微生物の濃度のCOD値であり、そしてYA、SA、KO2、及びSO2は、演算式(3)〜(5)に定義したものである。}
で表されることが多く、この式を用いる方法がある。
{Where OUR is the rate of oxygen consumption, and X A is the COD value of the concentration of the microorganism that degrades component A, and Y A , S A , K O2 , and S O2 are arithmetic expressions ( 3) to (5). }
There is a method using this formula.

すなわち、演算式(6)で、最大比増殖速度、成分Aに対する飽和定数は、前記の方法で決定され、酸素消費速度試験では溶存酸素濃度を高濃度に維持するため、SO2/(KO2+SO2)の値はほぼ1とみなせる。このことから、酸素消費速度は成分Aを分解する微生物の濃度のみの関数として表される。したがって、成分A濃度分析値を演算式(6)に代入して求めたOUR計算値と、酸素消費速度試験で得られるOUR実測値をフィッティングすることにより、XAを決定することができる。 That is, in Equation (6), the maximum specific growth rate and the saturation constant for component A are determined by the above-described method. In the oxygen consumption rate test, the dissolved oxygen concentration is maintained at a high concentration, so that S O2 / (K O2 The value of + S O2 ) can be regarded as almost 1. From this, the oxygen consumption rate is expressed only as a function of the concentration of microorganisms that decompose component A. Therefore, X A can be determined by fitting the OUR calculated value obtained by substituting the component A concentration analysis value into the arithmetic expression (6) and the OUR actual measurement value obtained in the oxygen consumption rate test.

上記(B)の文献値を拾う方法については、例えば、前記した非特許文献3に典型的なパラメーター値が記述されており、好気条件下での従属栄養生物の収率は0.63とされている。この値をパラメーター値として設定してもよいが、対象とする安水性状等によって値が異なる可能性があるため、なるべく上記(A)の方法により設定するほうが望ましい。また、安水の含有成分濃度、組成などの違いによるパラメーター値の変動に対しては、所望のシミュレーション精度が得られない場合に再設定を行うことが望ましい。例えば、シミュレーション予測の精度を5%以内に設定した場合は、実績値とシミュレーション値との誤差が5%以上になった際に、再設定を行う。   With respect to the method of picking up the literature value of (B) above, for example, typical parameter values are described in Non-Patent Literature 3 described above, and the yield of heterotrophic organisms under aerobic conditions is 0.63. Has been. Although this value may be set as a parameter value, the value may be different depending on the water-resistance condition of interest, and therefore it is desirable to set it by the method (A) as much as possible. In addition, it is desirable to reset the parameter value due to differences in the concentration and composition of the aqueous solution when the desired simulation accuracy cannot be obtained. For example, when the accuracy of simulation prediction is set within 5%, resetting is performed when the error between the actual value and the simulation value becomes 5% or more.

溶存酸素濃度12は、生物学的処理プロセスに溶存酸素濃度計を設置し、生物反応槽の溶存酸素濃度を測定した値を用いる方法、又は、パラメーター設定工程11で溶存酸素濃度をパラメーターとして扱い、キャリブレーションにより決定した値を用いる方法のいずれでもよい。但し、生物反応槽の溶存酸素濃度を測定した値を用いる方法では、時系列データを採取し、シミュレーションの入力値として用いることが望ましい。時系列データの採取が困難な場合は、計算を行う時間断面の溶存酸素濃度を用いる。例えば、現在より10日後までのシミュレーションを行う場合には、現在の溶存酸素濃度が10日間一定であると仮定して入力する。   The dissolved oxygen concentration 12 is a method of using a value obtained by measuring a dissolved oxygen concentration in a biological reaction tank by installing a dissolved oxygen concentration meter in a biological treatment process, or treating the dissolved oxygen concentration as a parameter in the parameter setting step 11; Any method using values determined by calibration may be used. However, in the method using the value obtained by measuring the dissolved oxygen concentration in the biological reaction tank, it is desirable to collect time series data and use it as an input value for simulation. If it is difficult to collect time-series data, use the dissolved oxygen concentration in the time cross section to calculate. For example, when a simulation is performed up to 10 days after the present time, it is input assuming that the current dissolved oxygen concentration is constant for 10 days.

計算工程15は、流入する安水の既知成分COD濃度5と、流入する安水の未知成分COD濃度9と、溶存酸素濃度と、パラメーターを用いて、処理水の予測既知成分COD濃度13と、予測未知成分COD濃度14を求める。計算には、IWA活性汚泥モデルをベースとした前述の演算式(1)を用いる。但し、難分解性COD濃度は生分解性の無いCODであるため、計算工程には含めない。シミュレーションでは生物反応槽内の反応時間におけるCOD濃度が求まるため、ある滞留時間経過後のCOD濃度が処理水COD濃度と一致する。   The calculation step 15 uses the parameters of the known component COD concentration 5 of the inflowing water and the unknown component COD concentration 9 of the inflowing water, the dissolved oxygen concentration, and the predicted known component COD concentration 13 of the treated water, The predicted unknown component COD concentration 14 is obtained. For the calculation, the above-described arithmetic expression (1) based on the IWA activated sludge model is used. However, since the hardly degradable COD concentration is a non-biodegradable COD, it is not included in the calculation process. In the simulation, the COD concentration in the reaction time in the biological reaction tank is obtained, and therefore the COD concentration after a certain residence time coincides with the treated water COD concentration.

さらに、計算工程15では、pH、アルカリ度、アンモニア濃度等の影響を含めたシミュレーションを行ってもよい。その計算方法の指定はしないが、例えば、Ciに水素イオン濃度、溶存二酸化炭素濃度、アンモニア濃度等を追加し、Pijに水素イオン濃度、溶存二酸化炭素濃度、アンモニア濃度等の化学量論パラメーターを追加し、ρjに反応速度式を追加して、計算を行ってもよい。また、生物学的処理において生物自身の自己分解が与える影響を加味することによって予測精度を上げるため、化学量論パラメーターに浮遊不活性有機物に変換される割合、反応速度パラメーターに好気条件下における生物の比内生呼吸速度を設定してもよいが、通常は影響が少ないので、設定しなくてもよい。 Further, in the calculation step 15, a simulation including the influence of pH, alkalinity, ammonia concentration and the like may be performed. Although the calculation method is not specified, for example, hydrogen ion concentration, dissolved carbon dioxide concentration, ammonia concentration, etc. are added to C i, and stoichiometric parameters such as hydrogen ion concentration, dissolved carbon dioxide concentration, ammonia concentration, etc. are added to P ij , And the reaction rate equation may be added to ρ j for the calculation. In addition, in order to improve the prediction accuracy by taking into account the effects of organisms' self-degradation in biological treatment, the ratio of conversion to floating inert organic substances in the stoichiometric parameters and the reaction rate parameters under aerobic conditions. Although the specific endogenous respiratory rate of the organism may be set, it is not necessary to set it because the influence is usually small.

また、流入する安水の変動については、流量、濃度が考えられる。これらの変動をシミュレーションするには、流量、濃度の経時データを元に、例えば演算式(7)により計算することによって、処理水の濃度を求めることが可能である。   In addition, the flow rate and concentration can be considered for fluctuations in the inflowing water. In order to simulate these fluctuations, it is possible to obtain the concentration of the treated water by calculating, for example, using the arithmetic expression (7) based on the flow rate and concentration data over time.

Figure 2011045872
Figure 2011045872

但し、Ci:各既知成分COD濃度及び未知成分COD濃度
i:各既知成分COD及び未知成分CODの種類を表す通し番号
ij:化学量論パラメーター
j:各プロセスを表す通し番号
ρj:反応速度式(反応速度式パラメーターを含む速度式)
Q:安水の水量
in:流入する安水を表す表記
out:流出する安水を表す表記
V:生物学的反応槽の容積
Where C i is the concentration of each known component COD and the unknown component COD i is a serial number representing the type of each known component COD and unknown component COD P ij is a stoichiometric parameter j is a serial number representing each process ρ j is a reaction rate equation (Rate equation including reaction rate equation parameters)
Q: Aqueous water amount in: Notation representing inflowing aqueous out out: Notation representing outflowing aqueduct V: Volume of biological reaction tank

この演算式によれば、連続的に変化する安水の流量、濃度の経時データを入力することにより、生物反応槽での流入、流出によるCOD濃度変化を求めることが可能である。   According to this arithmetic expression, COD concentration change due to inflow and outflow in the biological reaction tank can be obtained by inputting time-lapse data of the flow rate and concentration of continuously changing water.

処理水のCOD濃度算出工程16では、処理水の予測既知成分COD濃度13と、処理水の予測未知成分COD濃度14と、難分解性COD濃度6を合計することにより、処理水の予測COD濃度17を算出する。   In the treated water COD concentration calculation step 16, the estimated known component COD concentration 13 of treated water, the predicted unknown component COD concentration 14 of treated water, and the persistent COD concentration 6 are summed up to calculate the predicted COD concentration of treated water. 17 is calculated.

実施例1:実安水を対象としたバッチ試験のシミュレーション(フェノールを既知成分として扱う)
以下、安水を対象としたバッチ試験のシミュレーション方法について、特に、フェノールを既知成分として扱った場合の説明をする。バッチ試験は1Lの反応容器に、人工海水及び実安水及び活性汚泥を添加し、MLSS濃度は500mg/L程度で24時間行った。この試験時間については、事前にバッチ試験により検討し、溶解性CODに変化が見られなくなる時間を確認した上で、処理するのに十分な時間を設定した。測定は、溶存酸素濃度計により溶存酸素濃度を測定し、pH計によりpHを測定した。また、溶存酸素濃度は3.25mg/L、pHは7.5に制御した。
Example 1: Simulation of a batch test for real water (Phenol is treated as a known component)
Hereinafter, the simulation method of the batch test for safety water will be described, particularly when phenol is handled as a known component. In the batch test, artificial seawater, actual water and activated sludge were added to a 1 L reaction vessel, and the MLSS concentration was about 500 mg / L for 24 hours. About this test time, after examining by the batch test beforehand and confirming the time when a change is not seen in soluble COD, time sufficient for processing was set. In the measurement, the dissolved oxygen concentration was measured with a dissolved oxygen concentration meter, and the pH was measured with a pH meter. The dissolved oxygen concentration was controlled to 3.25 mg / L and the pH to 7.5.

分析工程2は、生物学的処理プロセスに流入する排水中の溶解性COD濃度及び既知成分濃度を分析する工程であるが、ここでは上記のバッチ試験装置中のフェノール、チオ硫酸、チオシアンの初期成分濃度であり、フェノール濃度についてはJIS K0102吸光光度法、チオ硫酸、チオシアン濃度についてはイオンクロマト分析、MLSS濃度については非特許文献1の遠心分離法により確認を行った。   The analysis step 2 is a step of analyzing the soluble COD concentration and the known component concentration in the wastewater flowing into the biological treatment process. Here, the initial components of phenol, thiosulfuric acid, and thiocyan in the batch test apparatus described above are analyzed. The phenol concentration was confirmed by JIS K0102 absorptiometry, the thiosulfate and thiocyan concentrations were confirmed by ion chromatography analysis, and the MLSS concentration was confirmed by the centrifugation method described in Non-Patent Document 1.

得られた分析データをもとに、流入する安水の既知成分COD換算工程4では、上記フェノール、チオ硫酸、チオシアンとCODMnとの関係式をもとに流入する安水の既知成分COD濃度5を決定した。難分解性COD分画工程7では、難分解性COD濃度6を、バッチ試験24時間経過後の処理水溶解性COD濃度から処理水既知成分COD濃度を差し引くことにより決定した。未知成分COD分画工程10では、流入する安水の未知成分COD濃度9を、流入する安水の溶解性COD濃度8から流入する安水の既知成分COD濃度5及び難分解性COD濃度6を差し引くことにより決定した。 Based on the obtained analysis data, in the known component COD conversion step 4 of the inflowing water, the known component COD concentration of the inflowing water based on the relational expression of phenol, thiosulfuric acid, thiocyan and COD Mn. 5 was determined. In the hardly decomposable COD fractionation step 7, the hardly decomposable COD concentration 6 was determined by subtracting the treated water known component COD concentration from the treated water soluble COD concentration after 24 hours of the batch test. In the unknown component COD fractionation step 10, the unknown component COD concentration 9 of the inflowing water is changed to the known component COD concentration 5 and the hardly decomposable COD concentration 6 of the inflowing aqueous solution from the soluble COD concentration 8 of the inflowing water. Determined by subtracting.

パラメーター設定工程11では、増殖収率、最大比増殖速度、飽和定数、及び後述する計算工程15で用いる従属栄養細菌濃度、チオ硫酸分解細菌濃度、及び、チオシアン分解細菌濃度を設定した。設定方法は、酸素消費速度試験の酸素消費速度データから決定する方法については、キャリブレーションによる方法を行った。キャリブレーションには市販のASMシミュレーションソフトAQUASIMを用いた。具体的には、実測値、計算値及び実測値の標準偏差から、演算式(2)に示されるχ2の値を求め、χ2の値が最小となったときのパラメーターの値を算出した。実測値については、事前に行った成分ごとのバッチ試験から、フェノール濃度、チオ硫酸濃度、チオシアン濃度の経時変化を得た。流入する安水の難分解性COD濃度及び未知成分COD濃度は本実施例のバッチ試験結果から求めた。計算値は、後述する計算工程15の方法により求めた。溶存酸素濃度は、バッチ試験の制御値3.25mg/Lを用いた。 In the parameter setting step 11, the growth yield, the maximum specific growth rate, the saturation constant, and the heterotrophic bacterium concentration, thiosulfate-decomposing bacterium concentration, and thiocyanate-decomposing bacterium concentration used in the calculation step 15 described later were set. As a setting method, a method based on calibration was performed as a method of determining from the oxygen consumption rate data of the oxygen consumption rate test. A commercially available ASM simulation software AQUASIM was used for calibration. Specifically, the value of χ 2 shown in the calculation formula (2) is obtained from the measured value, the calculated value, and the standard deviation of the measured value, and the parameter value when the value of χ 2 is minimized is calculated. . With respect to the actual measurement values, changes over time in phenol concentration, thiosulfate concentration, and thiocyan concentration were obtained from batch tests for each component performed in advance. The insoluble decomposable COD concentration and unknown component COD concentration of the inflowing water were determined from the batch test results of this example. The calculated value was obtained by the method of calculation step 15 described later. As the dissolved oxygen concentration, a control value of 3.25 mg / L in the batch test was used.

計算工程15は、流入する安水の既知成分COD濃度5、溶存酸素濃度及びパラメーターを用いて、バッチ試験のフェノール、チオ硫酸、チオシアン濃度の既知成分COD濃度、及び、未知成分COD濃度の経時変化のシミュレーションを行い、処理水の溶解性COD濃度の計算精度を確認した。計算方法は、前記演算式(1)を用いた。表1は、計算に用いた各成分濃度Ci及び化学量論パラメーター、反応速度パラメーターを示す。表2は、プロセスρjにおける化学量論の関係を表しており、例えば、プロセスρ1の従属栄養細菌の増殖では、従属栄養細菌(XH)に対してP11=−1/YPheの割合でフェノール濃度が増加し、P41=1−1/YPheの割合でSO2が増加することを表す。表3は、計算に用いる反応速度式を示す。例えば、プロセスρ1のフェノール分解細菌の増殖では、フェノール濃度の増加速度は演算式(8)のように表される。 The calculation step 15 uses the known component COD concentration 5 of the inflowing water, the dissolved oxygen concentration, and the parameters to change the phenol component, the thiosulfuric acid, the known component COD concentration of the thiocyanate concentration, and the unknown component COD concentration with time. The calculation accuracy of the soluble COD concentration of the treated water was confirmed. As the calculation method, the arithmetic expression (1) was used. Table 1 shows each component concentration C i used in the calculation, the stoichiometric parameter, and the reaction rate parameter. Table 2 shows the stoichiometric relationship in process ρ j , for example, in the growth of heterotrophic bacteria in process ρ 1 , P 11 = −1 / Y Phe versus heterotrophic bacteria (X H ). This indicates that the phenol concentration increases in proportion and S O2 increases in the proportion of P 41 = 1−1 / Y Phe . Table 3 shows the reaction rate equation used for the calculation. For example, in the growth of phenol-degrading bacteria in process ρ 1, the rate of increase in phenol concentration is expressed as in equation (8).

Figure 2011045872
Figure 2011045872

{式中、SPheは、フェノール濃度であり、tは、時間であり、SO2は、溶存酸素濃度であり、KO2は、溶存酸素濃度に対する飽和定数であり、KPheは、フェノール濃度に対する飽和定数であり、XPheは、フェノール分解細菌濃度であり、そしてμPheとYPheは、表1〜3中で定義したものである。}
で表される。
{ Wherein S Phe is the phenol concentration, t is the time, S O2 is the dissolved oxygen concentration, K O2 is the saturation constant for the dissolved oxygen concentration, and K Phe is the phenol concentration. Saturation constant, X Phe is the concentration of phenol-degrading bacteria, and μ Phe and Y Phe are those defined in Tables 1-3. }
It is represented by

Figure 2011045872
Figure 2011045872

Figure 2011045872
Figure 2011045872

Figure 2011045872
Figure 2011045872

また、チオ硫酸、チオシアンについては、硫黄当量で計算を行った。また、1種類の硫黄酸化細菌がこれらの2成分を分解することも考えられるが、ここではチオ硫酸、チオシアンに対して、それぞれの成分に対して分解する微生物を設定した。   Moreover, about thiosulfuric acid and thiocyan, it calculated by the sulfur equivalent. In addition, it is conceivable that one kind of sulfur-oxidizing bacterium can degrade these two components, but here, microorganisms that decompose each component are set for thiosulfate and thiocyan.

上記のシミュレーションの結果を図5に示す。図5は、本実施例の溶解性COD濃度の経時変化及びシミュレーション結果を示す。以上述べたように、本実施例によれば、安水の生物学的好気処理において、フェノール、チオ硫酸、チオシアンの既知成分COD濃度5、及び、難分解性COD濃度6、及び、未知成分COD濃度9に分画し、活性汚泥モデルを適用することにより、処理水のCOD濃度を予測できる。   The result of the simulation is shown in FIG. FIG. 5 shows the change over time in the soluble COD concentration and the simulation results of this example. As described above, according to the present example, in the biological aerobic treatment of the aqueous water, the known component COD concentration 5 of phenol, thiosulfuric acid, and thiocyan, the persistent COD concentration 6 and the unknown component By fractionating to a COD concentration of 9 and applying an activated sludge model, the COD concentration of the treated water can be predicted.

実施例2:実安水を対象としたバッチ試験のシミュレーション(フェノールを未知成分として扱う)
以下、実施例1においてフェノールを未知成分として扱うと設定したときのシミュレーション方法について説明する。バッチ試験は実施例1と同様の条件で行った。但し、分析工程2ではフェノール濃度を測定しなかった。流入する安水の既知成分COD換算工程4では、上記フェノールを除き、チオ硫酸、チオシアンとCODMnとの関係式をもとに流入する安水の既知成分COD濃度5を決定した。難分解性COD分画工程6は、実施例1と同様に行った。流入する安水の未知成分COD分画工程10では、流入する安水の未知成分COD濃度9を、流入する安水の溶解性COD濃度8から流入する安水の既知成分COD濃度5(フェノールを除く)及び難分解性COD濃度6を差し引くことにより決定した。
但し、バッチ試験結果より、反応初期の未知成分COD濃度の分解速度と、それ以降の分解速度が異なると考えられたため、未知成分COD濃度を未知成分a及び未知成分bに分画し、パラメーター設定及びシミュレーションを実施した。詳細は計算工程15で後述する。
Example 2: Simulation of a batch test for actual low water (Phenol is treated as an unknown component)
Hereinafter, a simulation method when setting phenol as an unknown component in Example 1 will be described. The batch test was performed under the same conditions as in Example 1. However, the phenol concentration was not measured in the analysis step 2. In the known component COD conversion step 4 of the inflowing aqueous water, the known component COD concentration 5 of the inflowing aquatic water was determined based on the relational expression of thiosulfuric acid, thiocyan and COD Mn , excluding the phenol. The hardly decomposable COD fractionation step 6 was performed in the same manner as in Example 1. In the unknown component COD fractionation step 10 of the inflowing water, the unknown component COD concentration 9 of the inflowing water is changed from the soluble COD concentration 8 of the inflowing water into the known component COD concentration 5 (phenol Excluding) and subtractable COD concentration 6 was subtracted.
However, from the batch test results, it was considered that the decomposition rate of the unknown component COD concentration at the beginning of the reaction was different from the decomposition rate thereafter, so the unknown component COD concentration was fractionated into unknown component a and unknown component b, and parameter settings were made. And a simulation was performed. Details will be described later in calculation step 15.

パラメーター設定工程11は、実施例1と同様に行った。
計算工程15は、流入する安水の既知成分COD濃度5、溶存酸素濃度及びパラメーターを用いて、バッチ試験のフェノールを除いたチオ硫酸、チオシアン濃度の既知成分COD濃度、及び、未知成分COD濃度の経時変化のシミュレーションを行い、処理水溶解性COD濃度の計算精度を確認した。計算方法は、前記演算式(1)を用いた。表4は、計算に用いた各成分濃度Ci及び化学量論パラメーター、反応速度パラメーターを示す。表5は、プロセスρjにおける化学量論の関係を示す。表6は、計算に用いる反応速度式を示す。
The parameter setting step 11 was performed in the same manner as in Example 1.
The calculation step 15 uses the known component COD concentration 5 and dissolved oxygen concentration and parameters of the inflowing water to calculate the thiosulfuric acid excluding the phenol in the batch test, the known component COD concentration of the thiocyanate concentration, and the unknown component COD concentration. A time-dependent change simulation was performed to confirm the calculation accuracy of the treated water-soluble COD concentration. As the calculation method, the arithmetic expression (1) was used. Table 4 shows each component concentration C i used in the calculation, the stoichiometric parameter, and the reaction rate parameter. Table 5 shows the stoichiometric relationship in the process ρ j . Table 6 shows the reaction rate equation used for the calculation.

ここで、未知成分の分解は図6のような結果となり、60分以降で大きく分解速度が減少したことから、未知成分a及び未知成分bに分画し、それぞれ成分濃度及び化学量論及び反応速度式を設定した。フェノール及び未知成分a及び未知成分bは従属栄養細菌によって分解されると考えられるため、同様の化学量論関係、反応速度式を設定した。但し、これらの成分におけるパラメーター値は異なるため、同じ分解速度式にはならない。   Here, the decomposition of the unknown component results as shown in FIG. 6, and the decomposition rate is greatly reduced after 60 minutes. Therefore, the unknown component is fractionated into the unknown component a and the unknown component b. A speed equation was set. Since phenol and unknown component a and unknown component b are considered to be degraded by heterotrophic bacteria, the same stoichiometric relationship and reaction rate equation were set. However, since the parameter values in these components are different, they do not have the same decomposition rate equation.

Figure 2011045872
Figure 2011045872

Figure 2011045872
Figure 2011045872

Figure 2011045872
Figure 2011045872

また、チオ硫酸、チオシアンについては、実施例1と同様に、硫黄当量で計算を行った。   Moreover, about thiosulfuric acid and thiocyan, it calculated by the sulfur equivalent similarly to Example 1.

上記のシミュレーションの結果を図7に示す。図7は、本実施例の溶解性COD濃度の経時変化及びシミュレーション結果を示す。以上述べたように、本実施例によれば、安水の生物学的好気処理において、フェノールを未知成分に含めることにより、チオ硫酸、チオシアンの既知成分COD濃度と、難分解性COD濃度と、フェノールとを含む未知成分COD濃度(2成分)に分画し、活性汚泥モデルを適用することにより、処理水のCOD濃度を予測できる。このことによって、分析工程2でフェノール濃度の分析を行わずに、簡易に処理水溶解性COD濃度をシミュレーション可能である。但し、未知成分分解におけるパラメーターがフェノール濃度の変動により影響を受ける可能性があるため、シミュレーションにあたっては、キャリブレーションの頻度を多くする等、慎重にパラメーター設定を行う必要がある。   The result of the simulation is shown in FIG. FIG. 7 shows the change over time in the soluble COD concentration and the simulation results of this example. As described above, according to the present example, in the biological aerobic treatment of the aqueous water, by including phenol as an unknown component, the known component COD concentration of thiosulfuric acid and thiocyan, the persistent COD concentration, The COD concentration of treated water can be predicted by fractionating into an unknown component COD concentration (two components) containing phenol and applying an activated sludge model. This makes it possible to easily simulate the treated water-soluble COD concentration without analyzing the phenol concentration in the analysis step 2. However, since parameters in unknown component decomposition may be affected by fluctuations in phenol concentration, it is necessary to carefully set parameters such as increasing the frequency of calibration in the simulation.

実施例3:実安水を対象とした連続試験データからのシミュレーション
以下、実施例2と同様にフェノールを未知成分として扱い、かつ連続試験データから処理水CODシミュレーションを行う方法について説明する。連続試験は実安水に対して、前段より200Lの反応槽を2槽、100Lの反応槽を1槽、沈降槽を1槽連結し、滞留時間12時間程度で運転を行い、2ヶ月間連続処理を行った。分析工程2では、実施例2と同様に、フェノール濃度を測定しなかった。流入する安水の既知成分COD換算工程4では、実施例2と同様に、上記フェノールを除き、流入する安水の既知成分COD濃度5を決定した。難分解性COD分画工程7は、生分解性CODが安定的に処理されているときの処理水データをもとに、溶解性COD濃度から、既知成分のCOD濃度を差し引くことにより求めた。未知成分COD分画工程10では、実施例2と同様に流入する安水の未知成分COD濃度9を決定した。未知成分COD濃度については、実施例2と同様に、未知成分a及び未知成分bに分画し、パラメーター設定を実施した。
Example 3 Simulation from Continuous Test Data for Actual Aqueous Water A method for treating phenol as an unknown component and performing a treated water COD simulation from continuous test data as in Example 2 will be described below. In the continuous test, two 200L reaction tanks, one 100L reaction tank and one settling tank are connected to actual low water from the previous stage, and run for about 12 hours. Processed. In the analysis step 2, as in Example 2, the phenol concentration was not measured. In the known component COD conversion step 4 of the inflowing safe water, the same component COD concentration 5 of the inflowing safe water was determined as in Example 2, except for the phenol. The hardly degradable COD fractionation step 7 was determined by subtracting the COD concentration of the known component from the soluble COD concentration based on the treated water data when the biodegradable COD was stably treated. In the unknown component COD fractionation step 10, the unknown component COD concentration 9 of the inflowing water was determined in the same manner as in Example 2. About the unknown component COD density | concentration, it fractionated into the unknown component a and the unknown component b similarly to Example 2, and parameter setting was implemented.

パラメーター設定工程11では、増殖収率、最大比増殖速度、飽和定数、及び後述する計算工程15で用いる従属栄養細菌濃度、チオ硫酸分解細菌濃度、及び、チオシアン分解細菌濃度を設定した。設定方法は、本実施例で得られた17日間の4点(0日、3日、15日、17日後)の流入する安水及び処理水中の溶解性COD濃度、チオ硫酸、チオシアン濃度の分析値、並びに、その分析値から算出した難分解性COD濃度及び未知成分COD濃度のデータを、前記式(2)に代入してキャリブレーションにより決定する方法を行った。キャリブレーションには市販のASMシミュレーションソフトAQUASIMを用いた。計算値は、後述する計算工程15の方法により求めた。溶存酸素濃度は、連続試験の制御値2.0mg/Lを用いた。   In the parameter setting step 11, the growth yield, the maximum specific growth rate, the saturation constant, and the heterotrophic bacterium concentration, thiosulfate-decomposing bacterium concentration, and thiocyanate-decomposing bacterium concentration used in the calculation step 15 described later were set. The setting method is the analysis of the dissolved COD concentration, thiosulfuric acid, and thiocyanate concentration in 4 points (0 days, 3 days, 15 days, and 17 days later) inflowing water and treated water obtained in this example. The value and the data of the hardly-decomposable COD concentration and the unknown component COD concentration calculated from the analysis value were substituted into the equation (2) and determined by calibration. A commercially available ASM simulation software AQUASIM was used for calibration. The calculated value was obtained by the method of calculation step 15 described later. As the dissolved oxygen concentration, a control value of 2.0 mg / L of the continuous test was used.

計算工程15は、上記パラメーターを用いて、本実施例の連続試験の45日後における、安水の処理水中のチオ硫酸、チオシアン濃度、未知成分COD濃度をシミュレーションし、難分解性COD濃度6と足し合わせることにより、処理水COD濃度17のシミュレーションを行った。計算方法は、45日後の流入する安水の既知成分COD濃度及び未知成分COD濃度を、前記演算式(1)に代入して行った。表4は、計算に用いた各成分濃度Ci及び化学量論パラメーター、反応速度パラメーターを示す。表5は、プロセスρjにおける化学量論の関係を示す。表6は、計算に用いる反応速度式を示す。また、計算結果を実測値と比較することにより、計算精度を確認した。 Calculation step 15 uses the above parameters to simulate thiosulfuric acid, thiocyanate concentration and unknown component COD concentration in the treated water for 45 days after the continuous test of this example, and add to the persistent COD concentration of 6. By combining them, a simulation of the treated water COD concentration 17 was performed. The calculation method was performed by substituting the known component COD concentration and the unknown component COD concentration of the inflowing water into the calculation formula (1) after 45 days. Table 4 shows each component concentration C i used in the calculation, the stoichiometric parameter, and the reaction rate parameter. Table 5 shows the stoichiometric relationship in the process ρ j . Table 6 shows the reaction rate equation used for the calculation. Moreover, the calculation accuracy was confirmed by comparing the calculation result with the actual measurement value.

また、チオ硫酸、チオシアンについては、実施例1及び2と同様に、硫黄当量で計算を行った。   Moreover, about thiosulfuric acid and thiocyan, it calculated by the sulfur equivalent similarly to Examples 1 and 2.

上記のシミュレーションの結果を図8に示す。図8は、本実施例の連続試験45日後に流入する安水の溶解性COD実測値及び処理水溶解性COD実測値及び処理水溶解性COD濃度シミュレーション結果を示す。以上述べたように、本実施例によれば、安水の生物学的好気連続処理プロセスにおいて、フェノールを未知成分に含め、連続試験データからキャリブレーションによりパラメーターを設定し、そのパラメーター値を元に異なる安水が流入した場合にも、チオ硫酸、チオシアンの既知成分COD濃度5、及び、難分解性COD濃度、及び、フェノールを含む未知成分COD濃度(2成分)に分画し、活性汚泥モデルを適用することにより、処理水のCOD濃度を予測できる。このことによって、連続処理のCODシミュレーションが可能であり、分析工程2でフェノール濃度の分析を行わずに、簡易に処理水溶解性COD濃度をシミュレーション可能である。但し、実施例2と同様に、未知成分分解におけるパラメーターがフェノール濃度の変動により影響を受ける可能性があるため、シミュレーションにあたっては、キャリブレーションの頻度を多くする等、慎重にパラメーター設定を行う必要がある。   The result of the above simulation is shown in FIG. FIG. 8 shows the dissolved COD measured value, treated water-soluble COD measured value, and treated water-soluble COD concentration simulation result that flowed in after 45 days of the continuous test of this example. As described above, according to this example, in the biological aerobic continuous treatment process of water, phenol is included as an unknown component, parameters are set by calibration from continuous test data, and the parameter values are based on the parameters. Even when different water flows into the water, it is fractionated into the known component COD concentration of thiosulfuric acid and thiocyan, 5 and the difficult-to-decompose COD concentration and the unknown component COD concentration (2 components) containing phenol, and activated sludge. By applying the model, the COD concentration of the treated water can be predicted. Thus, COD simulation of continuous treatment is possible, and the treatment water-soluble COD concentration can be easily simulated without analyzing the phenol concentration in the analysis step 2. However, as in Example 2, the parameters in the unknown component decomposition may be affected by fluctuations in the phenol concentration. Therefore, it is necessary to carefully set parameters such as increasing the frequency of calibration in the simulation. is there.

実施例4:実安水の流量変動を加味したシミュレーション
以下、実施例3と同様にフェノールを未知成分として扱い、かつ流入安水量を変動させた連続試験データから処理水CODシミュレーションを行う方法について説明する。図9は、本実施例における実安水の流量変動を加味した安水のCOD濃度シミュレーション方法のフローを例示した図である。連続試験は実施例3と同様の反応槽、沈降槽、滞留時間、試験期間で行った。ただし、流入安水量は0日目の水量を基準とし、30日後に3.0倍へと変動させた。分析工程2では、実施例3と同様に、フェノール濃度を測定しなかった。流入する安水の既知成分COD換算工程4では、実施例3と同様に、上記フェノールを除き、流入する安水の既知成分COD濃度5を決定した。難分解性COD分画工程7は、生物分解性CODが安定的に処理されている時の処理水データをもとに、溶解性COD濃度から、既知成分のCOD濃度を差し引くことで求めた。未知成分COD分画工程10では、実施例3と同様に流入する安水の未知成分COD濃度9を決定した。未知成分COD濃度については、実施例3と同様に、未知成分a及び未知成分bに分画し、パラメーター設定を実施した。
Example 4: Simulation in consideration of flow rate variation of actual safe water Hereinafter, a method for conducting a treated water COD simulation from continuous test data in which phenol is treated as an unknown component and the inflowing water amount is varied as in Example 3 will be described. To do. FIG. 9 is a diagram exemplifying a flow of the safe water COD concentration simulation method in consideration of the flow rate variation of actual safe water in the present embodiment. The continuous test was performed in the same reaction tank, sedimentation tank, residence time, and test period as in Example 3. However, the inflow low water amount was changed to 3.0 times after 30 days on the basis of the water amount on the 0th day. In the analysis step 2, as in Example 3, the phenol concentration was not measured. In the known component COD conversion step 4 of the inflowing safe water, the same component COD concentration 5 of the inflowing safe water was determined as in Example 3, except for the phenol. The hardly degradable COD fractionation step 7 was determined by subtracting the COD concentration of the known component from the soluble COD concentration based on the treated water data when the biodegradable COD was stably treated. In the unknown component COD fractionation step 10, the unknown component COD concentration 9 of the inflowing water was determined in the same manner as in Example 3. About the unknown component COD density | concentration, it fractionated into the unknown component a and the unknown component b similarly to Example 3, and parameter setting was implemented.

パラメーター設定工程11では、増殖収率、最大比増殖速度、飽和定数、及び後述する計算工程15で用いる従属栄養細菌濃度、チオ硫酸分解細菌濃度、及び、チオシアン分解細菌濃度を設定した。設定方法は、本実施例で得られた17日間の4点(0日、3日、15日、17日後)の流入する安水及び処理水中の溶解性COD濃度、チオ硫酸、チオシアン濃度の分析値、並びに、その分析値から算出した難分解性COD濃度及び未知成分COD濃度のデータを、前記式(2)に代入してキャリブレーションにより決定する方法を行った。キャリブレーションには市販のASMシミュレーションソフトAQUASIMを用いた。計算値は、後述する計算工程15の方法により求めた。溶存酸素濃度は、連続試験の制御値2.0mg/Lを用いた。   In the parameter setting step 11, the growth yield, the maximum specific growth rate, the saturation constant, and the heterotrophic bacterium concentration, thiosulfate-decomposing bacterium concentration, and thiocyanate-decomposing bacterium concentration used in the calculation step 15 described later were set. The setting method is the analysis of the dissolved COD concentration, thiosulfuric acid, and thiocyanate concentration in 4 points (0 days, 3 days, 15 days, and 17 days later) inflowing water and treated water obtained in this example. The value and the data of the hardly-decomposable COD concentration and the unknown component COD concentration calculated from the analysis value were substituted into the equation (2) and determined by calibration. A commercially available ASM simulation software AQUASIM was used for calibration. The calculated value was obtained by the method of calculation step 15 described later. As the dissolved oxygen concentration, a control value of 2.0 mg / L of the continuous test was used.

計算工程15は、上記パラメーターを用いて、本実施例の連続試験の45日後における、安水の処理水中のチオ硫酸、チオシアン濃度、未知成分COD濃度をシミュレーションし、難分解性COD濃度6と足し合わせることで、処理水COD濃度17のシミュレーションを行った。計算方法は、45日後の流入する安水の既知成分COD濃度及び未知成分COD濃度を、安水の水量及び反応槽の容積を用いて、前記演算式(8)に代入して行った。表4は、計算に用いた各成分濃度C及び化学量論パラメーター、反応速度パラメーターを示す。表5は、プロセスρにおける化学量論の関係を示す。表6は、計算に用いる反応速度式を示す。また、計算結果を実測値と比較することで、計算精度を確認した。 Calculation step 15 uses the above parameters to simulate thiosulfuric acid, thiocyanate concentration and unknown component COD concentration in the treated water for 45 days after the continuous test of this example, and add to the persistent COD concentration of 6. By combining them, a simulation of a treated water COD concentration of 17 was performed. The calculation method was performed by substituting the known component COD concentration and the unknown component COD concentration of the inflowing inflow water after 45 days into the arithmetic expression (8) by using the amount of the aqueous solution and the volume of the reaction tank. Table 4 shows each component concentration C i used in the calculation, the stoichiometric parameter, and the reaction rate parameter. Table 5 shows the stoichiometric relationship in process ρ j . Table 6 shows the reaction rate equation used for the calculation. Moreover, the calculation accuracy was confirmed by comparing the calculation result with the actual measurement value.

また、チオ硫酸、チオシアンについては、実施例1〜3と同様に、硫黄当量で計算を行った。   Moreover, about thiosulfuric acid and thiocyan, it calculated by the sulfur equivalent similarly to Examples 1-3.

上記のシミュレーションの結果を図10に示す。図10は、本実施例の連続試験45日後に流入する安水の溶解性COD実測値及び処理水溶解性COD実測値及び処理水溶解性COD濃度シミュレーション結果を示す。以上述べたように、本実施例によれば、安水の生物学的好気連続処理プロセスにおいて、フェノールを未知成分に含め、連続試験データからキャリブレーションによりパラメーターを設定し、そのパラメーター値を元に異なる安水が流入し、安水流入量が変動した場合にも、チオ硫酸、チオシアンの既知成分COD濃度5、及び、難分解性COD濃度、及び、フェノールを含む未知成分COD濃度(2成分)に分画し、活性汚泥モデルを適用することで、処理水のCOD濃度を予測できる。このことによって、連続処理の流入量変動時のCODシミュレーションが可能であり、分析工程2でフェノール濃度の分析を行わずに、簡易に処理水溶解性COD濃度をシミュレーション可能である。ただし、実施例3と同様に、未知成分分解におけるパラメーターがフェノール濃度の変動により影響を受ける可能性があるため、シミュレーションにあたっては、キャリブレーションの頻度を多くする等、慎重にパラメーター設定を行っていく必要がある。   The result of the simulation is shown in FIG. FIG. 10 shows the dissolved COD measured values, treated water soluble COD measured values, and treated water soluble COD concentration simulation results that flowed in after 45 days of the continuous test of this example. As described above, according to this example, in the biological aerobic continuous treatment process of water, phenol is included as an unknown component, parameters are set by calibration from continuous test data, and the parameter values are based on the parameters. Even when different aqueous water flows into the water and the inflow amount of the aquatic water fluctuates, the known component COD concentration of thiosulfuric acid, thiocyan, 5 and the unknown component COD concentration including phenol (two components) ) And applying the activated sludge model, the COD concentration of the treated water can be predicted. This makes it possible to perform COD simulation when the inflow amount of continuous treatment is changed, and to easily simulate the treated water-soluble COD concentration without analyzing the phenol concentration in the analysis step 2. However, as in Example 3, parameters in the unknown component decomposition may be affected by fluctuations in the phenol concentration. Therefore, in the simulation, parameters are set carefully, for example, by increasing the frequency of calibration. There is a need.

1 COD濃度シミュレーション方法
2 分析工程
3 成分濃度とCOD濃度の相関関係
4 既知成分COD換算分画工程
5 流入する安水の既知成分COD濃度
6 難分解性COD濃度
7 難分解性COD分画工程
8 流入する安水の溶解性COD濃度
9 流入する安水の未知成分COD濃度
10 未知成分COD分画工程
11 パラメーター設定工程
12 溶存酸素濃度測定工程
13 処理水の予測既知成分COD濃度
14 処理水の予測未知成分COD濃度
15 計算工程
16 処理水のCOD濃度算出工程
17 処理水の予測COD濃度
21 酸素消費速度試験装置
22 微生物汚泥
23 硝化阻害剤
24 撹拌装置
25 栄養塩
26 対象成分
27 溶存酸素濃度計
28 データ記録装置
29 空気供給装置
30 pH計
31 酸・アルカリ供給装置
32 ヒーター
33 恒温水槽
DESCRIPTION OF SYMBOLS 1 COD density | concentration simulation method 2 Analysis process 3 Correlation of component density | concentration and COD density | concentration 4 Known component COD conversion fractionation process 5 Known component COD density | concentration of inflowing water 6 Refractory COD density | concentration 7 Refractory COD fractionation process 8 Dissolved COD concentration of inflowing water 9 Unidentified component COD concentration of inflowing water 10 Unknown component COD fractionation step 11 Parameter setting step 12 Dissolved oxygen concentration measurement step 13 Predicted known component COD concentration of treated water 14 Predicted treated water Unknown component COD concentration 15 Calculation step 16 COD concentration calculation step of treated water 17 Predicted COD concentration of treated water 21 Oxygen consumption rate test device 22 Microbial sludge 23 Nitrification inhibitor 24 Stirrer 25 Nutrient salt 26 Target component 27 Dissolved oxygen concentration meter 28 Data recording device 29 Air supply device 30 pH meter 31 Acid / alkali supply device 2 heater 33 a constant temperature water bath

Claims (10)

コークス製造工程で発生する安水を、微生物を使用した生物反応槽にて生物学的好気処理するプロセスにおけるCOD濃度シミュレーション方法であって、
前記生物反応槽へ流入する前記安水に含まれる、フェノール、チオ硫酸、チオシアンの各既知成分濃度及び溶解性COD濃度を測定分析する分析工程と、
前記各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記各既知成分濃度の分析値をCOD濃度に換算することにより、前記各既知成分濃度に対応する各既知成分のCOD濃度を決定する既知成分COD分画工程と、
事前に、前記生物反応槽にて生物学的好気処理した安水の処理水に含まれる残存する前記フェノール、チオ硫酸、チオシアンの各既知成分濃度及び残存する溶解性COD濃度を測定分析し、前記残存する各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記残存する各既知成分濃度に対応する残存する各既知成分のCOD濃度を決定し、前記残存する溶解性COD濃度から前記残存する各既知成分のCOD濃度の合計値を差し引くことにより、事前に難分解性COD濃度を決定する難分解性COD分画工程と、
前記分析工程で得られた溶解性COD濃度から前記既知成分COD分画工程で得られた各既知成分のCOD濃度の合計値及び前記難分解性COD分画工程で得られた難分解性COD濃度を差し引くことにより、前記生物反応槽へ流入する安水に含まれる未知成分COD濃度を決定する未知成分分画工程と、
前記フェノール、チオ硫酸、チオシアン及び未知成分CODを分解する微生物の種類及び濃度、並びに、化学量論パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する増殖収率、反応速度式パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する飽和定数、最大比増殖速度を設定するパラメーター設定工程と、
前記生物反応槽の溶存酸素濃度を測定する溶存酸素濃度測定工程と、
前記既知成分COD濃度、前記未知成分COD濃度、前記難分解性COD濃度、前記増殖収率、前記飽和定数、前記最大比増殖速度、前記微生物の種類、濃度、及び前記測定した溶存酸素濃度を用いて、演算式(1)の計算により、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する計算工程と、
当該算出された残存する各既知成分COD濃度及び残存する未知成分COD濃度に、難分解性COD濃度を加算することにより、処理水における残存する溶解性COD濃度を算出する処理水COD濃度算出工程
を有することを特徴とする安水の生物学的好気処理におけるCOD濃度シミュレーション方法。
Figure 2011045872
但し、Ci:各既知成分COD濃度及び未知成分COD濃度
i:各既知成分COD及び未知成分CODの種類を表す通し番号
ij:化学量論パラメーター
j:各プロセスを表す通し番号
ρj:反応速度式(反応速度式パラメーターを含む速度式)
A method for simulating COD concentration in a process of biologically aerobic treatment of aqueous water generated in a coke production process in a biological reaction tank using microorganisms,
An analysis step for measuring and analyzing the concentration of each known component and soluble COD concentration of phenol, thiosulfuric acid, and thiocyan contained in the aqueous solution flowing into the biological reaction tank;
Based on the correlation between each known component concentration and the COD concentration of COD Cr , COD Mn, or COD theoretical value, the analysis value of each known component concentration is converted into a COD concentration, thereby obtaining each known component concentration. A known component COD fractionation step for determining the COD concentration of each known component corresponding to
In advance, each of the remaining components of phenol, thiosulfuric acid, and thiocyan remaining in the treated water of the aerobic biologically aerobically treated in the biological reaction tank is measured and analyzed, and the remaining soluble COD concentration is measured and analyzed. Based on the correlation between each remaining known component concentration and the COD concentration of COD Cr , COD Mn or COD theoretical value, the COD concentration of each remaining known component corresponding to each remaining known component concentration is determined. A subtractive COD fractionation step for determining the subtractable COD concentration in advance by subtracting the total value of the COD concentrations of the remaining known components from the residual soluble COD concentration;
From the soluble COD concentration obtained in the analysis step, the total value of the COD concentration of each known component obtained in the known component COD fractionation step and the hardly decomposable COD concentration obtained in the hardly decomposable COD fractionation step Subtracting the unknown component fractionation step for determining the unknown component COD concentration contained in the water that flows into the biological reaction tank,
The types and concentrations of microorganisms that decompose phenol, thiosulfuric acid, thiocyanate, and unknown component COD, and the growth yield and reaction rate parameters for the phenol, thiosulfuric acid, thiocyanate, and unknown component COD that are stoichiometric parameters. A parameter setting step for setting a saturation constant and a maximum specific growth rate for the phenol, thiosulfuric acid, thiocyan and unknown component COD;
A dissolved oxygen concentration measuring step for measuring a dissolved oxygen concentration in the biological reaction tank;
Using the known component COD concentration, the unknown component COD concentration, the persistent COD concentration, the growth yield, the saturation constant, the maximum specific growth rate, the type and concentration of the microorganism, and the measured dissolved oxygen concentration Thus, by calculating the calculation formula (1), the remaining known component COD concentration and the remaining unknown component COD concentration in the treated water of the safe water after the biological aerobic treatment in the biological reaction tank are simulated. A calculation process to calculate
A treated water COD concentration calculation step of calculating the remaining soluble COD concentration in the treated water by adding the hardly decomposable COD concentration to the calculated remaining known component COD concentration and remaining unknown component COD concentration. A COD concentration simulation method in a biological aerobic treatment of an aqueous water characterized by comprising:
Figure 2011045872
Where C i is the concentration of each known component COD and the unknown component COD i is a serial number representing the type of each known component COD and unknown component COD P ij is a stoichiometric parameter j is a serial number representing each process ρ j is a reaction rate equation (Rate equation including reaction rate equation parameters)
前記パラメーター設定工程は、
(ア)前記流入する安水、及び、安水の処理水において、事前に時系列的に別途採取した溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、及び、未知成分COD濃度と、溶存酸素濃度を用い、キャリブレーションによって決定する方法、
(イ)溶存酸素計を用いて連続的に溶存酸素濃度を計測するバッチ試験装置を使用し、前記生物反応槽中の微生物及び前記安水中の対象成分を用いて、酸素消費速度試験の酸素消費速度データ、及び溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、未知成分COD濃度の時系列データから決定する方法
のいずれかの方法を用いて、パラメーターを設定することを特徴とする、請求項1に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。
The parameter setting step includes
(A) In the inflowing water and treated water, the soluble COD concentration, the phenol concentration, the thiosulfuric acid concentration, the thiocyanate concentration, the hardly decomposable COD concentration separately collected in time series in advance, and A method of determining by calibration using unknown component COD concentration and dissolved oxygen concentration,
(B) Using a batch test device that continuously measures the dissolved oxygen concentration using a dissolved oxygen meter, using the microorganisms in the biological reaction tank and the target components in the aqueous solution, oxygen consumption in the oxygen consumption rate test Set parameters using any of the methods determined from the time series data of rate data and soluble COD concentration, phenol concentration, thiosulfate concentration, thiocyan concentration, persistent COD concentration, unknown component COD concentration The COD concentration simulation method in the biological aerobic treatment of the aquatic water according to claim 1, wherein
前記難分解性COD分画工程において、前記生物反応槽にて生物学的好気処理した安水の処理水に替えて、前記生物反応槽内の微生物と前記安水とを反応させたバッチ試験後の処理水を用いて、事前に前記難分解性COD濃度を決定することを特徴とする、請求項1又は2に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。   In the persistent COD fractionation step, a batch test in which microorganisms in the biological reaction tank and the low water were reacted instead of the treated water of biological aerobic treatment in the biological reaction tank The method for simulating COD concentration in biological aerobic treatment of safe water according to claim 1, wherein the persistent COD concentration is determined in advance using treated water afterwards. 前記フェノールを前記未知成分COD濃度に含め、前記既知成分をチオ硫酸、チオシアンとして、前記各工程を実施することを特徴とする、請求項1〜3のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。   The aquatic organism according to any one of claims 1 to 3, wherein the steps are performed by including the phenol in the concentration of the unknown component COD and using the known component as thiosulfuric acid or thiocyan. COD concentration simulation method in biological aerobic treatment. 前記流入する安水の水量と、前記既知成分COD濃度と、前記未知成分COD濃度と、前記難分解性COD成分濃度の経時データ、及び、前記生物学的反応槽の容積を用いて、前記計算工程において演算式(1)の計算と併せて物質収支を計算することにより、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する、請求項1〜4のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション方法。   Using the amount of the inflowing water, the known component COD concentration, the unknown component COD concentration, the time-dependent data of the persistent COD component concentration, and the volume of the biological reaction tank, the calculation is performed. Each known component COD concentration remaining in the treated water of the safe water after the biological aerobic treatment in the biological reaction tank is calculated by calculating the mass balance together with the calculation of the calculation formula (1) in the process. The method for simulating COD concentration in the biological aerobic treatment of aquatic water according to any one of claims 1 to 4, wherein the remaining unknown component COD concentration is calculated by simulation. コークス製造工程で発生する安水を、微生物を使用した生物反応槽にて生物学的好気処理するプロセスにおけるCOD濃度シミュレーション装置であって、
前記生物反応槽へ流入する前記安水に含まれる、フェノール、チオ硫酸、チオシアンの各既知成分濃度及び溶解性COD濃度を測定分析する分析手段と、
前記各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記各既知成分濃度の分析値をCOD濃度に換算することにより、前記各既知成分濃度に対応する各既知成分のCOD濃度を決定する既知成分COD分画手段と、
事前に、前記生物反応槽にて生物学的好気処理した安水の処理水に含まれる残存する前記フェノール、チオ硫酸、チオシアンの各既知成分濃度及び残存する溶解性COD濃度を測定分析し、前記残存する各既知成分濃度と、CODCr、CODMn又はCOD理論値のCOD濃度との相関関係をもとに、前記残存する各既知成分濃度に対応する残存する各既知成分のCOD濃度を決定し、前記残存する溶解性COD濃度から前記残存する各既知成分のCOD濃度の合計値を差し引くことにより、事前に難分解性COD濃度を決定する難分解性COD分画手段と、
前記分析手段で得られた溶解性COD濃度から前記既知成分COD分画手段で得られた各既知成分のCOD濃度の合計値及び前記難分解性COD分画手段で得られた難分解性COD濃度を差し引くことにより、前記生物反応槽へ流入する安水に含まれる未知成分COD濃度を決定する未知成分分画手段と、
前記フェノール、チオ硫酸、チオシアン及び未知成分CODを分解する微生物の種類及び濃度、並びに、化学量論パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する増殖収率、反応速度式パラメーターである前記フェノール、チオ硫酸、チオシアン及び未知成分CODに対する飽和定数、最大比増殖速度を設定するパラメーター設定手段と、
前記生物反応槽の溶存酸素濃度を測定する溶存酸素濃度測定手段と、
前記既知成分COD濃度、前記未知成分COD濃度、前記難分解性COD濃度、前記増殖収率、前記飽和定数、前記最大比増殖速度、前記微生物の種類、濃度、及び前記測定した溶存酸素濃度を用いて、演算式(1)の計算により、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する計算手段と、
当該算出された残存する各既知成分COD濃度及び残存する未知成分COD濃度に、難分解性COD濃度を加算することにより、処理水における残存する溶解性COD濃度を算出する処理水COD濃度算出手段
を有することを特徴とする安水の生物学的好気処理におけるCOD濃度シミュレーション装置。
Figure 2011045872
但し、Ci:各既知成分COD濃度及び未知成分COD濃度
i:各既知成分COD及び未知成分CODの種類を表す通し番号
ij:化学量論パラメーター
j:各プロセスを表す通し番号
ρj:反応速度式(反応速度式パラメーターを含む速度式)
A COD concentration simulation device in a process of biologically aerobic treatment of aqueous water generated in a coke production process in a biological reaction tank using microorganisms,
Analytical means for measuring and analyzing the concentration of each known component and soluble COD concentration of phenol, thiosulfuric acid, and thiocyan contained in the aqueous solution flowing into the biological reaction tank;
Based on the correlation between each known component concentration and the COD concentration of COD Cr , COD Mn, or COD theoretical value, the analysis value of each known component concentration is converted into a COD concentration, thereby obtaining each known component concentration. A known component COD fractionation means for determining the COD concentration of each known component corresponding to
In advance, each of the remaining components of phenol, thiosulfuric acid, and thiocyan remaining in the treated water of the aerobic biologically aerobically treated in the biological reaction tank is measured and analyzed, and the remaining soluble COD concentration is measured and analyzed. Based on the correlation between each remaining known component concentration and the COD concentration of COD Cr , COD Mn or COD theoretical value, the COD concentration of each remaining known component corresponding to each remaining known component concentration is determined. And subtractable COD fractionating means for determining the persistent COD concentration in advance by subtracting the total COD concentration of each remaining known component from the remaining soluble COD concentration,
The total COD concentration of each known component obtained by the known component COD fractionation means from the soluble COD concentration obtained by the analysis means, and the hardly decomposable COD concentration obtained by the hardly decomposable COD fractionation means Subtracting the unknown component fractionation means for determining the unknown component COD concentration contained in the water that flows into the biological reaction tank,
The types and concentrations of microorganisms that decompose phenol, thiosulfuric acid, thiocyanate, and unknown component COD, and the growth yield and reaction rate parameters for the phenol, thiosulfuric acid, thiocyanate, and unknown component COD that are stoichiometric parameters. Parameter setting means for setting a saturation constant for the phenol, thiosulfuric acid, thiocyan and unknown component COD, and a maximum specific growth rate;
A dissolved oxygen concentration measuring means for measuring a dissolved oxygen concentration in the biological reaction tank;
Using the known component COD concentration, the unknown component COD concentration, the persistent COD concentration, the growth yield, the saturation constant, the maximum specific growth rate, the type and concentration of the microorganism, and the measured dissolved oxygen concentration Thus, by calculating the calculation formula (1), the remaining known component COD concentration and the remaining unknown component COD concentration in the treated water of the safe water after the biological aerobic treatment in the biological reaction tank are simulated. Calculating means for calculating
A treated water COD concentration calculating means for calculating the remaining soluble COD concentration in the treated water by adding the hardly decomposable COD concentration to the calculated remaining known component COD concentration and remaining unknown component COD concentration. A COD concentration simulation apparatus for biological aerobic treatment of aquatic water characterized by comprising:
Figure 2011045872
Where C i is the concentration of each known component COD and the unknown component COD i is a serial number representing the type of each known component COD and unknown component COD P ij is a stoichiometric parameter j is a serial number representing each process ρ j is a reaction rate equation (Rate equation including reaction rate equation parameters)
前記パラメーター設定手段は、
(ア)前記流入する安水、及び、安水の処理水において、事前に時系列的に別途採取した溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、及び、未知成分COD濃度と、溶存酸素濃度を用い、キャリブレーションによって決定する装置、
(イ)溶存酸素計を用いて連続的に溶存酸素濃度を計測するバッチ試験装置を使用し、前記生物反応槽中の微生物及び前記安水中の対象成分を用いて、酸素消費速度試験の酸素消費速度データ、及び溶解性COD濃度、フェノール濃度、チオ硫酸濃度、チオシアン濃度、難分解性COD濃度、未知成分COD濃度の時系列データから決定する装置
のいずれかの装置を用いて、パラメーターを設定することを特徴とする、請求項6に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。
The parameter setting means includes
(A) In the inflowing water and treated water, the soluble COD concentration, the phenol concentration, the thiosulfuric acid concentration, the thiocyanate concentration, the hardly decomposable COD concentration separately collected in time series in advance, and An apparatus that uses unknown component COD concentration and dissolved oxygen concentration to determine by calibration,
(B) Using a batch test device that continuously measures the dissolved oxygen concentration using a dissolved oxygen meter, using the microorganisms in the biological reaction tank and the target components in the aqueous solution, oxygen consumption in the oxygen consumption rate test Set parameters using any one of the devices determined from the time series data of rate data and soluble COD concentration, phenol concentration, thiosulfate concentration, thiocyan concentration, persistent COD concentration, unknown component COD concentration The apparatus for simulating COD concentration in the biological aerobic treatment of aquatic water according to claim 6, wherein:
前記難分解性COD分画手段において、前記生物反応槽にて生物学的好気処理した安水の処理水に替えて、前記生物反応槽内の微生物と前記安水とを反応させたバッチ試験後の処理水を用いて、事前に前記難分解性COD濃度を決定することを特徴とする、請求項6又は7に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。   In the persistent COD fractionation means, a batch test in which microorganisms in the biological reaction tank and the low water were reacted instead of the treated water of biological aerobic treatment in the biological reaction tank The apparatus for simulating COD concentration in biological aerobic treatment of safe water according to claim 6 or 7, wherein the persistent COD concentration is determined in advance using treated water afterwards. 前記フェノールを前記未知成分COD濃度に含め、前記既知成分をチオ硫酸、チオシアンとして、前記各手段を実施することを特徴とする、請求項6〜8のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。   The aquatic organism according to any one of claims 6 to 8, wherein said means is implemented by including said phenol in said unknown component COD concentration and said known component as thiosulfuric acid or thiocyan. COD concentration simulation device for biological aerobic treatment. 前記流入する安水の水量と、前記既知成分COD濃度と、前記未知成分COD濃度と、前記難分解性COD成分濃度の経時データ、及び、前記生物学的反応槽の容積を用いて、前記計算手段において演算式(1)の計算と併せて物質収支を計算することにより、前記生物学的反応槽で前記生物学的好気処理した後の安水の処理水における残存する各既知成分COD濃度及び残存する未知成分COD濃度をシミュレーションして算出する、請求項6〜9のいずれか1項に記載の安水の生物学的好気処理におけるCOD濃度シミュレーション装置。   Using the amount of the inflowing water, the known component COD concentration, the unknown component COD concentration, the time-dependent data of the persistent COD component concentration, and the volume of the biological reaction tank, the calculation is performed. By calculating the mass balance together with the calculation of the calculation formula (1) in the means, the concentration of each known component COD remaining in the treated water of the aqueous water after the biological aerobic treatment in the biological reaction tank 10. The COD concentration simulation apparatus for biological aerobic treatment of aquatic water according to any one of claims 6 to 9, wherein the remaining unknown component COD concentration is calculated by simulation.
JP2010166202A 2009-07-31 2010-07-23 COD concentration simulation method and apparatus in biological aerobic treatment of aquatic water Expired - Fee Related JP5449072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166202A JP5449072B2 (en) 2009-07-31 2010-07-23 COD concentration simulation method and apparatus in biological aerobic treatment of aquatic water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009179651 2009-07-31
JP2009179651 2009-07-31
JP2010166202A JP5449072B2 (en) 2009-07-31 2010-07-23 COD concentration simulation method and apparatus in biological aerobic treatment of aquatic water

Publications (2)

Publication Number Publication Date
JP2011045872A true JP2011045872A (en) 2011-03-10
JP5449072B2 JP5449072B2 (en) 2014-03-19

Family

ID=43832726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166202A Expired - Fee Related JP5449072B2 (en) 2009-07-31 2010-07-23 COD concentration simulation method and apparatus in biological aerobic treatment of aquatic water

Country Status (1)

Country Link
JP (1) JP5449072B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290758B (en) * 2015-05-20 2019-03-12 中国石油天然气股份有限公司 The detection device of the acquisition methods of organic compound theoretical COD, the detection method of COD of sewage and COD of sewage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218692A (en) * 1988-02-26 1989-08-31 Nkk Corp Operation control method in activated sludge method
JP2008142704A (en) * 2006-11-15 2008-06-26 Kobelco Eco-Solutions Co Ltd Method and apparatus for simulating biological water treatment
JP2009142787A (en) * 2007-12-17 2009-07-02 Nippon Steel Corp Method for removing nitrogen and cod component from ammoniacal liquor
WO2010055642A1 (en) * 2008-11-14 2010-05-20 新日本製鐵株式会社 Process and device for simulating water quality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218692A (en) * 1988-02-26 1989-08-31 Nkk Corp Operation control method in activated sludge method
JP2008142704A (en) * 2006-11-15 2008-06-26 Kobelco Eco-Solutions Co Ltd Method and apparatus for simulating biological water treatment
JP2009142787A (en) * 2007-12-17 2009-07-02 Nippon Steel Corp Method for removing nitrogen and cod component from ammoniacal liquor
WO2010055642A1 (en) * 2008-11-14 2010-05-20 新日本製鐵株式会社 Process and device for simulating water quality

Also Published As

Publication number Publication date
JP5449072B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Sepehri et al. Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process
Sin et al. Global sensitivity analysis in wastewater treatment plant model applications: prioritizing sources of uncertainty
JP5435658B2 (en) Water quality simulation method and apparatus
Wu et al. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM)
Pérez et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study
Liu et al. Probing the stoichiometry of the nitrification process using the respirometric approach
Cheng et al. Effects of Cr (VI) on the performance and kinetics of the activated sludge process
Orhon et al. A description of three methods for the determination of the initial inert particulate chemical oxygen demand of wastewater
Cui et al. Application of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge
Gatti et al. Wastewater COD characterization: analysis of respirometric and physical‐chemical methods for determining biodegradable organic matter fractions
Mora et al. Investigating the kinetics of autotrophic denitrification with thiosulfate: Modeling the denitritation mechanisms and the effect of the acclimation of SO-NR cultures to nitrite
Jemaat et al. Closed-loop control of ammonium concentration in nitritation: convenient for reactor operation but also for modeling
Jones et al. Simulation for operation and control of reject water treatment processes
HagMan et al. Oxygen uptake rate measurements for application at wastewater treatment plants
Elawwad et al. Modeling of phenol and cyanide removal in a full-scale coke-oven wastewater treatment plant
Trojanowicz et al. Model extension, calibration and validation of partial nitritation–anammox process in moving bed biofilm reactor (MBBR) for reject and mainstream wastewater
Leix et al. Strategies for enhanced deammonification performance and reduced nitrous oxide emissions
Katipoglu‐Yazan et al. Modeling sequential ammonia oxidation kinetics in enriched nitrifying microbial culture
JP5175647B2 (en) Water quality prediction method and biological treatment method
JP4922214B2 (en) Water treatment method and water treatment apparatus
JP5449072B2 (en) COD concentration simulation method and apparatus in biological aerobic treatment of aquatic water
Artiga et al. Multiple analysis reprogrammable titration analyser for the kinetic characterization of nitrifying and autotrophic denitrifying biomass
JP2010155189A (en) Water treatment method and apparatus
JP4278701B1 (en) Simulation method, simulation apparatus, biological treatment method, and biological treatment apparatus
Fall et al. Bacterial inactivation and regrowth in ozonated activated sludges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5449072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees