JP2011177607A - Oil-containing waste water treatment method - Google Patents

Oil-containing waste water treatment method Download PDF

Info

Publication number
JP2011177607A
JP2011177607A JP2010041586A JP2010041586A JP2011177607A JP 2011177607 A JP2011177607 A JP 2011177607A JP 2010041586 A JP2010041586 A JP 2010041586A JP 2010041586 A JP2010041586 A JP 2010041586A JP 2011177607 A JP2011177607 A JP 2011177607A
Authority
JP
Japan
Prior art keywords
oil
activated sludge
concentration
tank
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010041586A
Other languages
Japanese (ja)
Other versions
JP5463952B2 (en
JP2011177607A5 (en
Inventor
Kiyoko Matani
聖子 間谷
Atsushi Kitanaka
敦 北中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010041586A priority Critical patent/JP5463952B2/en
Publication of JP2011177607A publication Critical patent/JP2011177607A/en
Publication of JP2011177607A5 publication Critical patent/JP2011177607A5/ja
Application granted granted Critical
Publication of JP5463952B2 publication Critical patent/JP5463952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient oil-containing waste water treatment method which can effectively inhibit the clogging of a membrane caused by inflow oil and can stably operate a membrane separation activated sludge treatment tank by controlling the oil concentration so as to satisfy a fixed index in a process for performing membrane separation activated sludge treatment of oil-containing waste water. <P>SOLUTION: In the oil-containing waste water treatment method having a membrane separation activated sludge treatment process for biologically treating the oil-containing waste water in the activated sludge treatment tank and membrane separating the biologically treated water by a membrane separation device installed in an activated sludge treatment tank, at least one of oil concentration X flowing into the activated sludge treatment tank, a solid retention time SRT, a hydraulic retention time HRT, and retained oil concentration Y in the activated sludge treatment tank is controlled so that the oil concentration X, the concentration rate represented by SRT/HRT, and the retained oil concentration Y satisfies the following relation: X<(HRT/SRT)Y. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、一般下水や産業廃水など油分を含む廃水を、活性汚泥処理槽内で生物処理し、次いで膜分離処理(以下、これらを併せて、適宜「膜分離活性汚泥処理」と称する。)して、処理水を得る際に、好適に用いることのできる処理方法である。   In the present invention, wastewater containing oil, such as general sewage and industrial wastewater, is biologically treated in an activated sludge treatment tank, and then subjected to membrane separation treatment (hereinafter collectively referred to as “membrane separation activated sludge treatment”). Thus, it is a treatment method that can be suitably used when obtaining treated water.

従来、油分を含む廃水を、膜分離活性汚泥処理する際には、処理槽を安定して運転維持管理する為、前処理による流入油分濃度の低減を行っている。廃水に含まれる油分には様々な種類があり、性状や含有量も異なるが、一般的な前処理として、凝集分離処理、加圧浮上分離処理、電解処理などが行われている。例えば、特許文献1では、油脂など有機性固形物を含む廃水を固液分離槽で予め固形分と上澄液に分離し、固形分は高温で可溶化処理後、上澄液および処理液を生物処理する技術が提案されている。また、特許文献2では、難分解性の油脂などを含む廃水を電解処理や凝集処理した処理水を活性汚泥処理する技術が提案されている。   Conventionally, when wastewater containing oil is subjected to membrane separation activated sludge treatment, inflow oil concentration is reduced by pretreatment in order to stably operate and maintain the treatment tank. There are various types of oil contained in the wastewater, and the properties and contents differ, but as a general pretreatment, agglomeration separation treatment, pressurized flotation separation treatment, electrolytic treatment, and the like are performed. For example, in Patent Document 1, waste water containing organic solids such as fats and oils is separated into a solid content and a supernatant liquid in a solid-liquid separation tank in advance, and the solid content is solubilized at a high temperature, and then the supernatant liquid and the processing liquid are Biological treatment techniques have been proposed. Moreover, in patent document 2, the technique of carrying out the activated sludge process of the treated water which carried out the electrolytic treatment and the coagulation process of the waste water containing a hard-to-decompose oil and fat etc. is proposed.

これらはいずれも、予め流入油分を低減するための前処理に関する技術であり、それなりの効果を奏するものである。しかし、油分濃度に関わらず、一律に低減化する為、低い油分濃度の場合、過大な前処理設備が必要となり、運転費用の面で問題となる。さらに、運転開始後、活性汚泥の状態が悪化し、活性汚泥槽の状態や処理能力に合わせて、前処理条件を変更する際に、膜分離活性汚泥処理槽で許容される油分条件が不明である為、不適正な運転条件となり、膜を詰まらせることもある。   All of these are technologies related to pretreatment for reducing the inflow oil content in advance, and have a certain effect. However, since it is reduced uniformly regardless of the oil concentration, if the oil concentration is low, an excessive pretreatment facility is required, which causes a problem in terms of operating costs. In addition, after the start of operation, the activated sludge condition deteriorates, and when changing the pretreatment conditions according to the activated sludge tank condition and treatment capacity, the oil condition allowed in the membrane separation activated sludge treatment tank is unknown. As a result, it may result in improper operating conditions and clog the membrane.

このような状況において、前処理を強化し、流入油分量を出来る限り低減すれば良いことは知られていたが、膜分離活性汚泥処理槽を効率よく運転維持管理する為に、どの程度まで制御するべきか、油分濃度の許容範囲が不明であった。   In this situation, it was known that the pretreatment should be strengthened and the inflow oil content should be reduced as much as possible. It was unclear whether the allowable range of oil concentration should be done.

そこで、膜分離活性汚泥処理槽を安定に運転維持管理する為の許容範囲の明確化(以下「指針」と称す。)が必要であった。   Therefore, it was necessary to clarify the allowable range (hereinafter referred to as “guideline”) for stable operation and maintenance of the membrane separation activated sludge treatment tank.

特許3900796号公報Japanese Patent No. 3900796 特開2007−029825号公報JP 2007-029825 A

本発明は、上記問題点を解決し、油分含有廃水を、膜分離活性汚泥処理して処理水を得る際に、膜分離活性汚泥処理槽を安定して運転維持管理する為の指針を基にした油分含有廃水の適切な処理方法を提案するものであり、膜を詰まらせることなく、効率のよい処理方法を提供する。   The present invention solves the above-mentioned problems and is based on a guideline for stable operation and maintenance of a membrane separation activated sludge treatment tank when oil-containing wastewater is treated with membrane separation activated sludge to obtain treated water. The present invention proposes an appropriate treatment method for oil-containing wastewater, and provides an efficient treatment method without clogging the membrane.

上記課題を解決するために、本発明は以下の構成を有する。
(1)油分含有廃水を活性汚泥処理槽内で生物処理し、活性汚泥処理槽内に設置された膜分離装置によって生物処理した水を膜分離処理する膜分離活性汚泥処理工程、を有する油分含有廃水の処理方法において、前記活性汚泥処理槽に流入する油分濃度X、固形物滞留時間SRTと水理学的滞留時間HRTの比(SRT/HRT比)で表される濃縮率、活性汚泥処理槽内の保持油分濃度Yが、次の関係を満たすよう油分濃度X、固形物滞留時間SRT、水理学的滞留時間HRTおよび保持油分濃度Yのうちの少なくとも1つを制御することを特徴とする油分含有廃水の処理方法。
In order to solve the above problems, the present invention has the following configuration.
(1) Oil-containing wastewater having a membrane-separated activated sludge treatment process in which oil-containing wastewater is biologically treated in an activated sludge treatment tank, and the water that has been biologically treated by a membrane separator installed in the activated sludge treatment tank is membrane-separated. In the wastewater treatment method, the oil concentration X flowing into the activated sludge treatment tank, the concentration ratio represented by the ratio of solid residence time SRT and hydraulic residence time HRT (SRT / HRT ratio), in the activated sludge treatment tank Oil content is characterized in that at least one of oil concentration X, solid residence time SRT, hydraulic residence time HRT, and retained oil concentration Y is controlled so that the retained oil concentration Y satisfies the following relationship: Wastewater treatment method.

X<(HRT/SRT)Y
(2)前記膜分離活性汚泥処理工程の前に油分含有廃水を前処理する前処理工程を有し、前記活性汚泥処理槽に流入する油分濃度X、および、槽内活性汚泥における上澄と汚泥とに含有される油分濃度をそれぞれ測定し、その測定結果に基づいて、前処理工程の条件および膜分離活性汚泥槽運転の条件のうちの少なくとも1つを制御することを特徴とする(1)に記載の油分含有廃水の処理方法。
X <(HRT / SRT) Y
(2) A pretreatment step of pretreating oil-containing wastewater before the membrane separation activated sludge treatment step, the oil concentration X flowing into the activated sludge treatment tank, and the supernatant and sludge in the activated sludge in the tank And measuring at least one of the pretreatment process conditions and the membrane separation activated sludge tank operation conditions based on the measurement results (1) The processing method of oil-containing wastewater as described in 2.

本発明によれば、上記問題点を解決し、油分含有廃水を膜分離活性汚泥処理する工程において、一定の指針を満たすよう油分濃度などを制御することで、流入油分が原因で引き起こされる膜の詰まりを効果的に抑制し、膜分離活性汚泥処理槽を安定して運転することができ、効率の良い処理方法を提供可能となる。   According to the present invention, in the process of solving the above-mentioned problems and treating the oil-containing wastewater with membrane separation activated sludge, by controlling the oil concentration and the like so as to satisfy a certain guideline, Clogging can be effectively suppressed, the membrane separation activated sludge treatment tank can be stably operated, and an efficient treatment method can be provided.

本発明の水処理方法に用いる水処理装置の一例を示す概略図である。It is the schematic which shows an example of the water treatment apparatus used for the water treatment method of this invention.

本発明における処理方法は、被処理水を膜分離活性汚泥処理する工程において、油分を含む廃水を処理する際、膜を詰まらせることなく、安定した運転維持管理を行うために、一定の基準を満たすよう活性汚泥槽に流入する油分濃度を制御することを特徴とする。   The treatment method according to the present invention is based on a certain standard in order to perform stable operation and maintenance without clogging the membrane when treating wastewater containing oil in the process of treating the water to be treated with membrane separation activated sludge. It is characterized by controlling the oil concentration flowing into the activated sludge tank so as to satisfy.

本発明者らは、鋭意検討の結果、流入油分が、膜分離活性汚泥槽内で、膜によって阻止され槽内で濃縮する効果と、汚泥に油分が吸着される効果との相乗効果により、槽内保持され、その保持濃度が上限に至る時に、膜を詰まらせることを見出した。本発明は、その結果から得られた知見、すなわち、流入油分濃度を、槽内保持油分濃度の上限に至ることなく制御することで、安定した運転維持管理が可能であるという知見に基づくものである。   As a result of intensive studies, the inventors have determined that the inflow oil content is blocked by the membrane in the membrane separation activated sludge tank, and is concentrated in the tank, and the synergistic effect of the effect that the oil content is adsorbed on the sludge. It has been found that the membrane is clogged when it is held inside and its holding concentration reaches the upper limit. The present invention is based on the knowledge obtained from the results, that is, the knowledge that stable operation and maintenance is possible by controlling the inflow oil concentration without reaching the upper limit of the retained oil concentration in the tank. is there.

図1は、本発明で用いられる一般的な膜分離活性汚泥処理装置の工程を概略化したものである。図1の装置では、被処理水1を精密ろ過膜でろ過してろ過水を得るための膜ろ過装置2(以下、MF膜ろ過装置2と略す。)と、このMF膜ろ過装置2を、被処理水1と活性汚泥の混合液中に浸漬設置させるための活性汚泥処理槽3と、MF膜ろ過装置2により被処理水1と活性汚泥の混合液を膜ろ過して得られたろ過水を貯留するろ過水槽4が備えられている。処理水5は、処理水として再利用され、あるいは放流される。   FIG. 1 outlines the steps of a general membrane separation activated sludge treatment apparatus used in the present invention. In the apparatus of FIG. 1, the membrane filtration apparatus 2 (henceforth abbreviated as MF membrane filtration apparatus 2) for filtering the to-be-processed water 1 with a microfiltration membrane, and obtaining this filtered water, and this MF membrane filtration apparatus 2 are used. Activated sludge treatment tank 3 for immersing in the mixed liquid of treated water 1 and activated sludge, and filtered water obtained by membrane filtration of the mixed liquid of treated water 1 and activated sludge using MF membrane filtration device 2 Is stored. The treated water 5 is reused or discharged as treated water.

以下では、本発明の水処理方法の実施態様を示す処理フローについて概説する。   Below, the processing flow which shows the embodiment of the water treatment method of this invention is outlined.

まず、油分を含む被処理水1が活性汚泥処理槽3内に供給され、この被処理水は活性汚泥処理槽3内で活性汚泥処理される。活性汚泥処理槽3内に導入する活性汚泥は、廃水処理等に一般に利用されるものであり、種汚泥としては他の廃水処理施設の引き抜き汚泥などが通常使用される。被処理水の活性汚泥処理槽3内での滞留時間は通常1時間〜24時間であるが、被処理水性状に応じて最適なものを採択するのがよい。   First, the treated water 1 containing oil is supplied into the activated sludge treatment tank 3, and the treated water is subjected to activated sludge treatment in the activated sludge treatment tank 3. The activated sludge introduced into the activated sludge treatment tank 3 is generally used for wastewater treatment and the like, and as the seed sludge, drawn sludge from other wastewater treatment facilities is usually used. The residence time in the activated sludge treatment tank 3 of the water to be treated is usually 1 hour to 24 hours, but it is preferable to select an optimum one according to the state of the water to be treated.

次に、活性汚泥処理槽3内で活性汚泥処理された水は、同じ活性汚泥処理槽3内で膜分離装置2によりろ過される。ろ過された水はろ過水槽4に貯えられる。   Next, the water subjected to the activated sludge treatment in the activated sludge treatment tank 3 is filtered by the membrane separation device 2 in the same activated sludge treatment tank 3. The filtered water is stored in the filtered water tank 4.

ここで、膜ろ過装置2は、ろ過膜の取り扱い性や物理的耐久性を向上させるために、例えば、フレームの両面にろ過水流路材を挟んだ上にろ過膜を接着した平膜エレメント構造であることが望ましい。MF膜ろ過装置2の構造は特に限定されるものではなく、中空糸膜を用いたエレメントであっても構わないが、平膜エレメント構造は、膜面に平行な流速を与えた場合の剪断力による汚れの除去効果が高いことから、本発明に適している。なお、平膜エレメント構造には、平膜がスパイラル状に巻かれた回転平膜構造も含まれる。   Here, the membrane filtration device 2 has, for example, a flat membrane element structure in which a filtration membrane is bonded to both sides of a frame with a filtration membrane attached to both sides of the frame in order to improve the handling and physical durability of the filtration membrane. It is desirable to be. The structure of the MF membrane filtration device 2 is not particularly limited and may be an element using a hollow fiber membrane, but the flat membrane element structure has a shearing force when a flow velocity parallel to the membrane surface is applied. This is suitable for the present invention since the effect of removing dirt due to is high. The flat membrane element structure includes a rotating flat membrane structure in which a flat membrane is wound in a spiral shape.

MF膜ろ過装置2に用いられるろ過膜の膜構造としては、多孔質膜や、多孔質膜に機能層を複合化した複合膜などが挙げられるが、特に限定されるものではない。これらの膜の具体例としては、ポリアクリロニトリル多孔質膜、ポリイミド多孔質膜、ポリエーテルスルホン多孔質膜、ポリフェニレンスルフィドスルホン多孔質膜、ポリテトラフルオロエチレン多孔質膜、ポリフッ化ビニリデン多孔質膜、ポリプロピレン多孔質膜、ポリエチレン多孔質膜等の多孔質膜などが挙げられるが、ポリフッ化ビニリデン多孔質膜やポリテトラフルオロエチレン多孔質膜は耐薬品性が高いため、特に好ましい。さらに、これら多孔質膜に機能層として架橋型シリコーン、ポリブタジエン、ポリアクリロニトリルブタジエン、エチレンプロピレンラバー、ネオプレンゴム等のゴム状高分子を複合化した複合膜も、MFろ過膜2として用いることができる。   Examples of the membrane structure of the filtration membrane used in the MF membrane filtration device 2 include a porous membrane and a composite membrane obtained by combining a functional layer with a porous membrane, but are not particularly limited. Specific examples of these membranes include polyacrylonitrile porous membrane, polyimide porous membrane, polyethersulfone porous membrane, polyphenylene sulfide sulfone porous membrane, polytetrafluoroethylene porous membrane, polyvinylidene fluoride porous membrane, polypropylene Examples of the porous film include a porous film and a porous film such as a polyethylene porous film, and a polyvinylidene fluoride porous film and a polytetrafluoroethylene porous film are particularly preferable because of high chemical resistance. Furthermore, a composite membrane in which a rubbery polymer such as a crosslinked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, or neoprene rubber is combined as a functional layer with these porous membranes can also be used as the MF filtration membrane 2.

ここでいう精密ろ過膜(MF膜)とは、孔径が0.01μmから10μm程度のものをいい、一般的に分子ふるいによる分離が行われる限外ろ過膜(UF膜)より目が粗く、通常操作圧は減圧状態から200kPa以下で運転される。   The microfiltration membrane (MF membrane) referred to here is one having a pore size of about 0.01 μm to 10 μm, and is generally coarser than an ultrafiltration membrane (UF membrane) in which separation by molecular sieve is generally performed. The operation pressure is operated at 200 kPa or less from the reduced pressure state.

活性汚泥処理槽3は、被処理水を貯え、MF膜ろ過装置2を被処理水と活性汚泥の混合液に浸漬することができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。また、活性汚泥処理槽3の内部が複数に分割されていてもかまわないし、複数に分割されている槽のうち一部を、膜ろ過装置2を浸漬する槽として、他方を脱窒槽として利用し、被処理水を互いの分割されている槽間で循環されるようにしていてもよい。   The activated sludge treatment tank 3 is not particularly limited as long as it can store the treated water and immerse the MF membrane filtration device 2 in the mixed liquid of the treated water and activated sludge. Concrete tank, fiber reinforced plastic tank, etc. Is preferably used. Moreover, the inside of the activated sludge treatment tank 3 may be divided into a plurality of parts, and a part of the plurality of divided tanks is used as a tank for immersing the membrane filtration device 2 and the other is used as a denitrification tank. The water to be treated may be circulated between the tanks that are divided from each other.

活性汚泥処理槽3に導入する活性汚泥は、排水処理等に一般に利用されるものであり、種汚泥としては他の排水処理施設の引き抜き汚泥などが通常使用される。また、膜分離活性汚泥法では、汚泥濃度として2,000mg/L〜20,000mg/L程度で運転される。活性汚泥法は、微生物が廃水中の生分解性の高い成分を餌として利用することにより、水の浄化を可能とするものである。   The activated sludge introduced into the activated sludge treatment tank 3 is generally used for wastewater treatment and the like, and the sludge extracted from other wastewater treatment facilities is usually used as seed sludge. In the membrane separation activated sludge method, the operation is performed at a sludge concentration of about 2,000 mg / L to 20,000 mg / L. The activated sludge method makes it possible to purify water by using a highly biodegradable component in wastewater as a feed for microorganisms.

ろ過水槽4は、ろ過水を貯留することができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。また、被処理水をMF膜ろ過装置2でろ過するために、MF膜ろ過装置2とろ過水槽4との間にポンプ等を設けていてもかまわないし、水頭圧力差をかけるために、ろ過水槽4内のろ過水液面が、活性汚泥処理槽3内の被処理水液面よりも低くなるようにしていてもかまわない。なお、図1においては、吸引ポンプ9によるろ過を実施している。   The filtered water tank 4 is not particularly limited as long as the filtered water can be stored, and a concrete tank, a fiber reinforced plastic tank, and the like are preferably used. Moreover, in order to filter to-be-processed water with the MF membrane filtration apparatus 2, you may provide a pump etc. between the MF membrane filtration apparatus 2 and the filtration water tank 4, and in order to apply a head pressure difference, a filtration water tank The filtrate water level in 4 may be lower than the water level to be treated in the activated sludge treatment tank 3. In FIG. 1, filtration by the suction pump 9 is performed.

ここで被処理水1に含まれる油分には、例えば、動植物から抽出され、グリセリンと脂肪酸の化合物から成る生分解性の高い油や、石油精製によって得られたり、化学合成によって製造されたりする、難分解性の鉱物油等が挙げられる。油分濃度の測定法としては、油分濃度を定量化できる方法であれば、特に制限されるものではなく、例えば、下水試験法(日本下水道協会)に記載のn-ヘキサン抽出物濃度測定法などが好適に用いられる。また、市販されている油分濃度計や油分濃度測定キットなどを用いてもかまわない。   Here, the oil contained in the water 1 to be treated is, for example, extracted from animals and plants, highly biodegradable oil composed of a compound of glycerin and fatty acid, obtained by petroleum refining, or produced by chemical synthesis. Examples include hardly-degradable mineral oils. The oil concentration measurement method is not particularly limited as long as the oil concentration can be quantified. For example, the n-hexane extract concentration measurement method described in the sewage test method (Japan Sewerage Association) Preferably used. Also, a commercially available oil concentration meter or oil concentration measurement kit may be used.

ここで、好適に用いられるn-ヘキサン抽出物測定方法は、油分を含む対象物にn-ヘキサンと塩酸等の酸を添加し、撹拌して、油分をn-ヘキサン層に抽出し、水分と油分を分離した後、油層だけを回収して、80℃で蒸発乾固後の重量を測定する手法である。   Here, the n-hexane extract measuring method preferably used is to add n-hexane and an acid such as hydrochloric acid to the object containing oil, and stir to extract the oil into the n-hexane layer. After separating the oil component, only the oil layer is recovered and the weight after evaporation to dryness at 80 ° C. is measured.

膜分離活性汚泥法において、通常、活性汚泥処理槽3に流入する物質は、活性汚泥と混合され、生分解性の高い物質は活性汚泥内の微生物により生分解される。一方、難分解性の物質は、活性汚泥と共に余剰汚泥として引き抜かれるまで、槽内に濃縮されていく。この場合、濃縮率は、流入した物質が槽内に濃縮、蓄積される割合を表し、その割合(濃縮率=反応タンク濃度/流入水濃度)は、理論的にはSRT(固形物滞留時間)とHRT(水理学的滞留時間)の比(SRT/HRT比)に相当し、次の関係式(式1)で表される。   In the membrane separation activated sludge method, the substance flowing into the activated sludge treatment tank 3 is usually mixed with the activated sludge, and the highly biodegradable substance is biodegraded by microorganisms in the activated sludge. On the other hand, the hardly decomposable substance is concentrated in the tank until it is extracted as excess sludge together with the activated sludge. In this case, the concentration rate represents the rate at which the inflowed substance is concentrated and accumulated in the tank, and the rate (concentration rate = reaction tank concentration / inflow water concentration) is theoretically SRT (solid matter residence time). It corresponds to the ratio of SRT / HRT (hydraulic residence time) (SRT / HRT ratio) and is expressed by the following relational expression (formula 1).

濃縮率=SRT/HRT ・・・式1
この濃縮率には上限があり、超過した場合には、処理水に流出したり、膜を詰まらせたりする。そこで、膜ろ過運転を安定に行うには、濃縮率の限界を超えないようSRTとHRTを調整した運転を行う。ここで、SRTは、反応槽内活性汚泥が新たに生成した汚泥によって全量入れ替わるのに必要な時間のことをいう。具体的には、引き抜き汚泥(余剰汚泥)量と反応槽内容積に基づいて求められ、次の関係式(式2)で表される。
Concentration rate = SRT / HRT Equation 1
This concentration rate has an upper limit, and if it exceeds, it will flow into the treated water or clog the membrane. Therefore, in order to stably perform the membrane filtration operation, an operation in which SRT and HRT are adjusted so as not to exceed the limit of the concentration rate is performed. Here, SRT means the time required for the activated sludge in the reaction tank to be completely replaced by newly generated sludge. Specifically, it is determined based on the amount of extracted sludge (surplus sludge) and the reaction tank internal volume, and is expressed by the following relational expression (Formula 2).

SRT=反応槽内容積/単位時間当たりの引き抜き汚泥量 ・・・式2
また、HRTは、流入原水(被処理水)が槽内に滞留する時間のことをいう。具体的には流入液量と反応槽内容積に基づいて求められ、次の関係式(式3)で表される。
SRT = reaction tank internal volume / amount of extracted sludge per unit time (2)
Moreover, HRT means time for inflow raw | natural water (to-be-processed water) to stay in a tank. Specifically, it is obtained based on the amount of inflow liquid and the reaction tank internal volume, and is expressed by the following relational expression (Formula 3).

HRT=反応槽内容積/単位時間当たりの流入液量 ・・・式3
発明者らの検討の結果、連続的に流入する油分についても他の物質と同様の傾向が見られた。つまり、生分解性の高い油分は活性汚泥により生分解され、難分解性の油分は、膜で阻止され、槽内に蓄積され保持される。この油分保持濃度と膜の詰まりとの関連について、実施例1に示す膜分離活性汚泥実験装置を用い、連続的に油分を供給して検証した。具体的には、連続運転中、槽内活性汚泥の一部を遠心分離(3000rpm、5分間)し、上澄とそれ以外の汚泥に分けて(以下、それぞれ「上澄」「汚泥」と称す。)それぞれの油分濃度を測定した。経時的に測定した結果、槽内の上澄に保持可能な油分濃度の上限に達すると、膜を詰まらせることを見出した。さらに、槽内の汚泥は上澄より高い油分吸着効果があり、上澄に保持される油分濃度が上限に達した場合でも、汚泥が吸着効果を持つため、すぐには膜を詰まらせず、油分が槽内に保持されることを見出した。
HRT = reaction tank internal volume / inflow amount per unit time (formula 3)
As a result of the study by the inventors, the same tendency as other substances was observed for the oil component that continuously flows. That is, the highly biodegradable oil is biodegraded by activated sludge, and the hardly degradable oil is blocked by the membrane and accumulated and retained in the tank. The relationship between the oil retention concentration and the clogging of the membrane was verified by continuously supplying the oil using the membrane separation activated sludge experimental apparatus shown in Example 1. Specifically, during continuous operation, a part of the activated sludge in the tank is centrifuged (3000 rpm, 5 minutes) and separated into supernatant and other sludge (hereinafter referred to as “supernatant” and “sludge”, respectively). .) Each oil concentration was measured. As a result of measurement over time, it was found that when the upper limit of the oil concentration that can be retained in the supernatant in the tank was reached, the membrane was clogged. Furthermore, the sludge in the tank has a higher oil adsorption effect than the supernatant, and even if the oil concentration held in the supernatant reaches the upper limit, the sludge has an adsorption effect, so it will not clog the membrane immediately, It was found that the oil was retained in the tank.

流入油分の活性汚泥処理槽内での挙動は次の通りである。油分は槽内流入後、比重の影響で上澄に保持されるが、その後、槽内で生分解、曝気、撹拌等により、汚泥にも吸着、凝集しながら保持される。上澄保持濃度が上限に達した後も、汚泥吸着効果により槽内保持濃度は増加し、やがて、汚泥の保持濃度が上限に達すると、超過分が上澄に移行し、膜を詰まらせる(ろ過圧力が上昇する)。   The behavior of the inflow oil in the activated sludge treatment tank is as follows. The oil component is retained in the supernatant due to the influence of specific gravity after flowing into the tank, but is then retained in the tank while adsorbing and aggregating to sludge by biodegradation, aeration, stirring, and the like. Even after reaching the upper limit of the supernatant retention concentration, the retention concentration in the tank increases due to the sludge adsorption effect, and when the sludge retention concentration reaches the upper limit, the excess moves to the supernatant and clogs the membrane ( Filtration pressure increases).

そこで、上澄や汚泥に保持される油分濃度を上限に至ることなく制御することで、膜の詰まりを効果的に抑制し、安定した運転維持管理を行うことが可能である。   Therefore, by controlling the oil concentration held in the supernatant or sludge without reaching the upper limit, it is possible to effectively suppress clogging of the membrane and perform stable operation maintenance.

このように、槽内油分濃度が、上澄や汚泥の保持上限濃度を超えない濃度になるよう制御するには、汚泥引き抜き量や汚泥滞留時間に関わるSRTやHRTを適宜設定することで達成される。さらに好ましくは、次の関係式(式4)に基づいて、活性汚泥処理槽に流入する油分濃度Xを設定するとよい。   Thus, in order to control the oil concentration in the tank to a concentration that does not exceed the upper limit concentration of supernatant or sludge, it is achieved by appropriately setting the SRT and HRT related to the sludge extraction amount and sludge retention time. The More preferably, the oil concentration X flowing into the activated sludge treatment tank may be set based on the following relational expression (Formula 4).

油分濃度X<保持油分濃度Y/濃縮率 ・・・式4
(すなわち、X<(HRT/SRT)Yである。)
ここで、保持油分濃度Yは、濃縮率で表される上澄濃縮効果のみならず、汚泥に吸着される効果により、高くなる。汚泥には油分を上澄のα倍吸着する効果があり、保持量比を上澄:汚泥=1:αとすると、次の関係式(式5)で表すことができる。
Oil concentration X <retained oil concentration Y / concentration ratio (Formula 4)
(That is, X <(HRT / SRT) Y.)
Here, the retained oil concentration Y is increased not only by the supernatant concentration effect expressed by the concentration rate, but also by the effect of being adsorbed by the sludge. The sludge has the effect of adsorbing the oil α times the amount of the supernatant, and when the retention ratio is supernatant: sludge = 1: α, it can be expressed by the following relational expression (Formula 5).

保持油分濃度Y=上澄油分濃度(1+α) ・・・式5
αは油の性状によって異なるが、例えば、動粘度85mm/s(at 40℃)の高粘性油分では3〜4、動粘度32mm/s(at 40℃)の油分では1.5〜2である。
Retained oil concentration Y = Supernatant oil concentration (1 + α) Formula 5
α varies depending on the properties of the oil. For example, the high viscosity oil component having a kinematic viscosity of 85 mm 2 / s (at 40 ° C.) is 3 to 4, and the oil component having a kinematic viscosity of 32 mm 2 / s (at 40 ° C.) is 1.5 to 2 It is.

槽内の保持油分濃度Yを算出する際に、上澄と汚泥に分けて、それぞれの油分濃度を測定することで、膜を詰まらせる前に、油分濃度を調整することができる為、より好適である。この上澄と汚泥への分離手段は、遠心分離、沈降分離など、一般的な活性汚泥の固液分離に用いられているもので、上澄と汚泥を分離できる方法であればよく、中でも遠心分離がより好適に用いられる。遠心分離の条件は、特に制限されるものではないが、一連の評価の間、つまり運転期間中、挙動変化を観察するために、一定の条件で行うことが好ましく、例えば3000rpmで5分間行うことが好ましい。   When calculating the retained oil concentration Y in the tank, the oil concentration can be adjusted before clogging the membrane by measuring the oil concentration separately from the supernatant and sludge. It is. The separation means for the supernatant and sludge is used for general solid-liquid separation of activated sludge, such as centrifugal separation and sedimentation separation, and any method capable of separating the supernatant and sludge may be used. Separation is more preferably used. Centrifugation conditions are not particularly limited, but are preferably performed under certain conditions in order to observe behavior changes during a series of evaluations, that is, during operation, for example, at 3000 rpm for 5 minutes. Is preferred.

濃縮率を表す(式1)と槽内保持濃度を表す(式5)から、(式4)で表される油分濃度Xの算出には、次の関係式(式6)を用いることが好適である。   The following relational expression (Expression 6) is preferably used for calculating the oil concentration X expressed by (Expression 4) from (Expression 1) indicating the concentration ratio and (Expression 5) indicating the retained concentration in the tank. It is.

油分濃度X<上澄油分濃度(1+α)/(SRT/HRT)・・・式6
このような関係式に基づき、安定して膜ろ過運転可能な槽内保持油分濃度を満たすには、汚泥引き抜き量やその頻度を調整するとよい。また、油分分解効果のある薬剤添加や、凝集剤添加により、上澄の油分量を低減させたり、汚泥吸着効果を高めたりして、槽内油分の保持割合を調整しても良い。さらに、活性汚泥処理槽の槽内活性汚泥量(MLSS)を変更し、槽内保持濃度Yを高めてもよい。ここでいう槽内活性汚泥量(MLSS)は、活性汚泥内の浮遊物質濃度を表したものである。このMLSS測定方法は、浮遊物質濃度を定量化できる方法であれば、特に制限されるものではなく、例えば、下水試験法(日本下水道協会)に記載の蒸発残留物測定法や浮遊物質測定法などが好適に用いられる。また、市販されているMLSS濃度計などを用いてもかまわない。ここで好適に用いられるMLSS測定法は、活性汚泥を遠心分離やガラス繊維ろ紙により固液分離した後、残留固形物を105〜110℃で約2時間加熱乾燥させ、その質量から、浮遊物質濃度を算出するものである。
Oil concentration X <Supernatant oil concentration (1 + α) / (SRT / HRT) Equation 6
Based on such a relational expression, in order to satisfy the concentration of retained oil in the tank that allows stable membrane filtration operation, the amount and frequency of sludge extraction should be adjusted. Moreover, you may adjust the holding | maintenance ratio of the oil content in a tank by adding the chemical | medical agent with an oil content decomposition | disassembly effect or flocculant addition, reducing the amount of oil content of a supernatant, or improving a sludge adsorption effect. Furthermore, the tank activated sludge amount (MLSS) of the activated sludge treatment tank may be changed to increase the retained concentration Y in the tank. The amount of activated sludge in the tank (MLSS) referred to here represents the concentration of suspended solids in the activated sludge. The MLSS measurement method is not particularly limited as long as the suspended solids concentration can be quantified. For example, the evaporation residue measurement method and the suspended solid measurement method described in the sewage test method (Japan Sewerage Association) Are preferably used. Also, a commercially available MLSS densitometer may be used. The MLSS measurement method preferably used here is that activated sludge is solid-liquid separated by centrifugation or glass fiber filter paper, and then the residual solid is heated and dried at 105 to 110 ° C. for about 2 hours. Is calculated.

さらに、MF膜ろ過装置2に流入する上流、より好ましくは活性汚泥処理槽に流入する上流で、前処理工程を行い、浮上分離など油分除去手段等により、流入濃度を調整することも好ましい。ここで、本発明で適用できる前処理工程を例示すると、加圧浮上分離装置、オイルスキマー、凝集沈殿装置、ストリッピング装置等が挙げられる。これらは、一般的な油分分離回収に用いられているもので、比重が小さく浮上し易い油分や、高濃度で流入した油分に対して、好適に用いられる。   Furthermore, it is also preferable to perform a pretreatment step upstream of the MF membrane filtration apparatus 2 and more preferably upstream of the activated sludge treatment tank and adjust the inflow concentration by means of oil removal means such as flotation separation. Here, examples of the pretreatment step that can be applied in the present invention include a pressure flotation separation device, an oil skimmer, a coagulation sedimentation device, and a stripping device. These are used for general oil separation and recovery, and are preferably used for oil components that have a small specific gravity and are likely to float, and oil components that flow in at a high concentration.

以下に、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to these examples.

農集落廃水処理場汚泥を種汚泥とし、活性汚泥処理槽と、それぞれ膜ろ過して得られたろ過水を貯留するろ過水槽などから構成される膜分離活性汚泥処理実験装置を3台(A系列、B系列、C系列)用い、並列で連続ろ過運転を行った。図1にA・B・C各系列で使用した装置を示す。被処理水には、水道水に酢酸、窒素、リンで調製した人工下水と各種油を添加した油分含有水を用いた。鉱物油は、繊維油剤や離型剤に用いられているパラフィン系の工業用原料油「コスモSP83」(コスモ石油ルブリカンツ株式会社製)を使用した。槽内油分量測定は、槽内活性汚泥を遠心分離(3000rpm、5分間)し、汚泥と上澄に分けてそれぞれn-ヘキサン抽出物濃度を経時的に測定した。装置運転条件を表1に示す。   Agricultural settlement wastewater treatment plant sludge is used as seed sludge, and three membrane-separated activated sludge treatment experimental equipment consisting of an activated sludge treatment tank and a filtered water tank for storing filtered water obtained by membrane filtration, respectively (A series) , B series, C series), and continuous filtration operation was performed in parallel. FIG. 1 shows an apparatus used in each of the A / B / C series. As water to be treated, tap water containing artificial sewage prepared with acetic acid, nitrogen and phosphorus and oil-containing water added with various oils were used. As the mineral oil, paraffin-based industrial raw material oil “Cosmo SP83” (manufactured by Cosmo Oil Lubricants Co., Ltd.) used in fiber oils and mold release agents was used. The oil content in the tank was measured by centrifuging the activated sludge in the tank (3000 rpm, 5 minutes), dividing it into sludge and supernatant, and measuring the n-hexane extract concentration over time. Table 1 shows the apparatus operating conditions.

Figure 2011177607
Figure 2011177607

(比較例1)
A系列では、油分を50mg/L含有する被処理水を用いて、連続ろ過運転した結果、運転19日で、膜ろ過圧力の上昇が見られた。この時の槽内保持油分濃度Yと濃縮率の積から安定運転可能な油分濃度Xは37mg/Lであった。
(Comparative Example 1)
In the A series, as a result of continuous filtration using water to be treated containing 50 mg / L of oil, an increase in membrane filtration pressure was observed on the 19th day of operation. The oil concentration X at which stable operation was possible was 37 mg / L from the product of the retained oil concentration Y in the tank and the concentration rate.

安定運転可能な油分濃度X<(HRT/SRT)×上澄保持濃度(1+α)
HRT=3.5日、SRT=40日、
上澄保持濃度200mg/L、汚泥保持濃度220mg/L
汚泥吸着効果α=1.1
X[mg/L]<37
本比較例では、安定運転可能な油分許容濃度の関係式を示すX<(HRT/SRT)Yを満たしていなかった為、膜ろ過圧力上昇を起こしたと考えられる。
(実施例1)
一方、B系列では、被処理水を予め油分含有前の被処理水で希釈し、流入油分濃度を25mg/L(1/2倍)に調整した条件で、連続ろ過運転を行った。安定運転可能な流入許容濃度Xと濃縮率と槽内油分保持量Yが、X<(HRT/SRT)Yの関係式を満たすよう、流入油分濃度Xを調整した運転を行った。
Oil concentration X <(HRT / SRT) x supernatant retention concentration (1 + α) for stable operation
HRT = 3.5 days, SRT = 40 days,
Supernatant retention concentration 200mg / L, sludge retention concentration 220mg / L
Sludge adsorption effect α = 1.1
X [mg / L] <37
In this comparative example, X <(HRT / SRT) Y indicating the relational expression of the allowable oil concentration that can be stably operated was not satisfied, so it is considered that the membrane filtration pressure was increased.
Example 1
On the other hand, in the B series, the water to be treated was previously diluted with the water to be treated before containing the oil, and the continuous filtration operation was performed under the condition that the inflow oil concentration was adjusted to 25 mg / L (1/2 times). An operation in which the inflow oil concentration X was adjusted so that the allowable inflow concentration X, the concentration rate, and the oil retention amount Y in the tank satisfy the relational expression X <(HRT / SRT) Y was performed.

安定運転可能な油分濃度X<(HRT/SRT)×上澄保持濃度(1+α)
HRT=3.5日、SRT=40日、
上澄保持濃度200mg/L、汚泥保持濃度220mg/L
反応槽内容積=30L、単位時間当たりの引き抜き汚泥量=0.75L/日、
単位時間当たりの流入液量=8.5L/日
汚泥吸着効果α=1.1
X[mg/L]<37
連続運転した結果、約30日間安定運転可能であった。本実施例では、安定運転可能な油分許容濃度の関係式を満たした運転であった為、膜ろ過圧力上昇を起こさなかった。
(実施例2)
さらに、C系列では、油分を50mg/L含有する被処理水を用い、槽内汚泥引き抜き量を2倍にして、濃縮率を調整した条件で連続ろ過運転を行った。この時のXの上限は73.5mg/Lであり、流入油分濃度Xと槽内保持油分濃度Yが、油分許容濃度の関係式X<(HRT/SRT)Yを満たすよう、濃縮率を調整した運転を行った。
Oil concentration X <(HRT / SRT) x supernatant retention concentration (1 + α) for stable operation
HRT = 3.5 days, SRT = 40 days,
Supernatant retention concentration 200mg / L, sludge retention concentration 220mg / L
Reaction tank internal volume = 30L, amount of extracted sludge per unit time = 0.75L / day,
Inflow volume per unit time = 8.5L / day Sludge adsorption effect α = 1.1
X [mg / L] <37
As a result of continuous operation, stable operation was possible for about 30 days. In this example, the membrane filtration pressure did not increase because the operation satisfied the relational expression of the allowable oil concentration that allows stable operation.
(Example 2)
Furthermore, in C series, the water to be treated containing 50 mg / L of oil was used, the amount of sludge withdrawn in the tank was doubled, and the continuous filtration operation was performed under the condition of adjusting the concentration rate. The upper limit of X at this time is 73.5 mg / L, and the concentration rate is adjusted so that the inflow oil concentration X and the retained oil concentration Y in the tank satisfy the relational expression X <(HRT / SRT) Y of the allowable oil concentration Drove.

安定運転可能な油分濃度X<(HRT/SRT)×上澄保持濃度(1+α)
HRT=3.5日、SRT=20日、
上澄保持濃度200mg/L、汚泥保持濃度220mg/L
反応槽内容積=30L、単位時間当たりの引き抜き汚泥量=1.5L/日、
単位時間当たりの流入液量=8.5L/日
汚泥吸着効果α=1.1
X[mg/L]<73.5
本条件で、連続運転した結果、約40日間安定運転可能であった。本実施例では、安定運転可能な油分許容濃度の関係式を満たした運転であった為、膜ろ過圧力上昇を起こさなかった。
Oil concentration X <(HRT / SRT) x supernatant retention concentration (1 + α) for stable operation
HRT = 3.5 days, SRT = 20 days,
Supernatant retention concentration 200mg / L, sludge retention concentration 220mg / L
Reaction tank internal volume = 30 L, amount of extracted sludge per unit time = 1.5 L / day,
Inflow volume per unit time = 8.5L / day Sludge adsorption effect α = 1.1
X [mg / L] <73.5
As a result of continuous operation under these conditions, stable operation was possible for about 40 days. In this example, the membrane filtration pressure did not increase because the operation satisfied the relational expression of the allowable oil concentration that allows stable operation.

これらの結果から、流入油分量X、濃縮率(SRT/HRT)、及び槽内保持油分濃度Yが、X<(HRT/SRT)Yの関係を満たすよう制御することで、膜分離活性汚泥槽の安定運転が可能となることを確認した。   From these results, the membrane separation activated sludge tank is controlled by controlling the inflow oil amount X, the concentration rate (SRT / HRT), and the retained oil concentration Y in the tank to satisfy the relationship of X <(HRT / SRT) Y. It was confirmed that stable operation was possible.

本発明は、油分含有廃水を、膜分離活性汚泥処理して、処理水を得る際に、好適に用いることができる処理方法である。   The present invention is a treatment method that can be suitably used when oil-containing wastewater is subjected to membrane separation activated sludge treatment to obtain treated water.

1:被処理水(原水)
2:MF膜ろ過装置
3:活性汚泥処理槽
4:ろ過水槽
5:処理水
6:原水供給ポンプ
7:空気供給装置
8:散気装置
9:吸引ポンプ
10:汚泥引き抜きポンプ
11:引き抜き汚泥(余剰汚泥)
1: treated water (raw water)
2: MF membrane filtration device 3: activated sludge treatment tank 4: filtered water tank 5: treated water 6: raw water supply pump 7: air supply device 8: aeration device 9: suction pump 10: sludge extraction pump 11: extraction sludge (surplus Sludge)

Claims (2)

油分含有廃水を活性汚泥処理槽内で生物処理し、活性汚泥処理槽内に設置された膜分離装置によって生物処理した水を膜分離処理する膜分離活性汚泥処理工程、を有する油分含有廃水の処理方法において、前記活性汚泥処理槽に流入する油分濃度X、固形物滞留時間SRTと水理学的滞留時間HRTの比(SRT/HRT比)で表される濃縮率、活性汚泥処理槽内の保持油分濃度Yが、次の関係を満たすよう油分濃度X、固形物滞留時間SRT、水理学的滞留時間HRTおよび保持油分濃度Yのうちの少なくとも1つを制御することを特徴とする油分含有廃水の処理方法。
X<(HRT/SRT)Y
Treatment of oil-containing wastewater having a membrane-separated activated sludge treatment process in which oil-containing wastewater is biologically treated in an activated sludge treatment tank and biologically treated by a membrane separation device installed in the activated sludge treatment tank. In the method, concentration of oil X flowing into the activated sludge treatment tank, concentration ratio represented by a ratio of solid residence time SRT and hydraulic residence time HRT (SRT / HRT ratio), retained oil content in the activated sludge treatment tank Treatment of oil-containing wastewater, wherein at least one of oil concentration X, solid residence time SRT, hydraulic residence time HRT, and retained oil concentration Y is controlled so that concentration Y satisfies the following relationship: Method.
X <(HRT / SRT) Y
前記膜分離活性汚泥処理工程の前に油分含有廃水を前処理する前処理工程を有し、前記活性汚泥処理槽に流入する油分濃度X、および、槽内活性汚泥における上澄と汚泥とに含有される油分濃度をそれぞれ測定し、その測定結果に基づいて、前処理工程の条件および膜分離活性汚泥槽運転の条件のうちの少なくとも1つを制御することを特徴とする請求項1に記載の油分含有廃水の処理方法。   It has a pretreatment step of pretreating oil-containing wastewater before the membrane separation activated sludge treatment step, and is contained in the oil concentration X flowing into the activated sludge treatment tank, and the supernatant and sludge in the activated sludge in the tank 2. The oil concentration according to claim 1, wherein at least one of a pretreatment process condition and a membrane separation activated sludge tank operation condition is controlled based on the measurement result. Treatment method for oil-containing wastewater.
JP2010041586A 2010-02-26 2010-02-26 Treatment method of wastewater containing oil Expired - Fee Related JP5463952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041586A JP5463952B2 (en) 2010-02-26 2010-02-26 Treatment method of wastewater containing oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041586A JP5463952B2 (en) 2010-02-26 2010-02-26 Treatment method of wastewater containing oil

Publications (3)

Publication Number Publication Date
JP2011177607A true JP2011177607A (en) 2011-09-15
JP2011177607A5 JP2011177607A5 (en) 2013-04-11
JP5463952B2 JP5463952B2 (en) 2014-04-09

Family

ID=44689751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041586A Expired - Fee Related JP5463952B2 (en) 2010-02-26 2010-02-26 Treatment method of wastewater containing oil

Country Status (1)

Country Link
JP (1) JP5463952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
JP2019181327A (en) * 2018-04-03 2019-10-24 日本製鉄株式会社 Oil-containing wastewater treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218692A (en) * 1988-02-26 1989-08-31 Nkk Corp Operation control method in activated sludge method
JPH04371295A (en) * 1991-06-19 1992-12-24 Kubota Corp Treatment of sewage by activated sludge
JPH11244886A (en) * 1998-02-27 1999-09-14 Ishikawajima Harima Heavy Ind Co Ltd Method for decomposing heavy oil portion in waste water and device therefor
JP2004148144A (en) * 2002-10-29 2004-05-27 Kubota Corp Method for treating sewage
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218692A (en) * 1988-02-26 1989-08-31 Nkk Corp Operation control method in activated sludge method
JPH04371295A (en) * 1991-06-19 1992-12-24 Kubota Corp Treatment of sewage by activated sludge
JPH11244886A (en) * 1998-02-27 1999-09-14 Ishikawajima Harima Heavy Ind Co Ltd Method for decomposing heavy oil portion in waste water and device therefor
JP2004148144A (en) * 2002-10-29 2004-05-27 Kubota Corp Method for treating sewage
JP2004306026A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Method and apparatus for treating liquid containing soluble organic matter
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
JP2019181327A (en) * 2018-04-03 2019-10-24 日本製鉄株式会社 Oil-containing wastewater treatment method
JP7052500B2 (en) 2018-04-03 2022-04-12 日本製鉄株式会社 Oil-impregnated wastewater treatment method

Also Published As

Publication number Publication date
JP5463952B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
Hu et al. Characteristics of an A2O–MBR system for reclaimed water production under constant flux at low TMP
CN105036298B (en) For the method and system filtered and cake layer is formed
JP5463952B2 (en) Treatment method of wastewater containing oil
CN204281479U (en) A kind for the treatment of system of coating wastewater
JP2007289847A (en) Raw tap water purification method and its apparatus
JP5458950B2 (en) Treatment method of wastewater containing oil
KR101199583B1 (en) Equipment for treating waste water using integrated membrane-clarification system
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP2010046602A (en) Method of treating oil-containing waste water
JP6613323B2 (en) Water treatment apparatus and water treatment method
WO2008035710A1 (en) Method of wastewater disposal
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
WO2017159303A1 (en) Method for treating waste water having high hardness
JP6654013B2 (en) Oil-containing wastewater treatment method
JPWO2011136043A1 (en) Waste water treatment apparatus and waste water treatment method
US20160214876A1 (en) Water treatment systems and methods for concurrent removal of various types of organic materials
JP5772759B2 (en) Water treatment method and water treatment apparatus
JP2011140003A (en) Turbid water treatment apparatus and turbid water treatment method
JP2009220020A (en) Wastewater treatment system and its operation method
JP2011177607A5 (en)
JP7052500B2 (en) Oil-impregnated wastewater treatment method
JP6110276B2 (en) Oil-containing water treatment apparatus and oil-containing water treatment method
KR102315906B1 (en) Membrane filtration for advanced water treatment device using hydraulic head differential
JP4996516B2 (en) Reclaimed water production method
JP2006055852A (en) Cleaning method and equipment for filter element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R151 Written notification of patent or utility model registration

Ref document number: 5463952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees