JPH01218085A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01218085A
JPH01218085A JP4500888A JP4500888A JPH01218085A JP H01218085 A JPH01218085 A JP H01218085A JP 4500888 A JP4500888 A JP 4500888A JP 4500888 A JP4500888 A JP 4500888A JP H01218085 A JPH01218085 A JP H01218085A
Authority
JP
Japan
Prior art keywords
layer
double
semiconductor laser
liquid phase
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4500888A
Other languages
Japanese (ja)
Inventor
Yasuo Shinohara
篠原 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4500888A priority Critical patent/JPH01218085A/en
Publication of JPH01218085A publication Critical patent/JPH01218085A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of each unskillful p-n junction which is formed at a base of double channel parts and avoid leakage of an electric current, by making an n-type buffer layer grow thinly before forming a p-n-p current block layer in the process of a liquid phase epitaxy. CONSTITUTION:A multilayer structure consisting of an n-type buffer layer 2, an active layer 3, and a p-type clad layer 4 is formed by a liquid phase combined growth process on an n-type InP substrate 1. Then, two parallel grooves 5 (double channels) are formed in the multilayer by a photoresist process. After that, a p-n-p current block layer 6 as well as a cap layer 7 where the double channels are embedded grows by the second liquid phase epitaxy. In such a case, the current block layer 6 grows and its growth permits the n-type buffer layer 8 to grow thinly at the base of the double channels 5 before forming each p-n junction at the base of the channels 5. Thus, a semiconductor laser which is superior in characteristics is formed in such a way that no current leaks very much.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバー通信等に使用される半導体レーザ
に関し、特にリーク電流の少ない埋込み層を備えた構造
の半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser used for optical fiber communications, and more particularly to a semiconductor laser having a structure including a buried layer with low leakage current.

〔従来の技術〕[Conventional technology]

従来埋込み構造の半導体レーザはダブルへテロ接合を含
む多層構造を形成したダブルへテロエピタキシャル層に
ダブルチャンネルを形成し、この部分に直接p−n−p
の電流ブロック構造のエピタキシャル層を液相成長によ
り埋込んだ構成となっていた6 〔発明が解決しようとする課題〕 上述した従来の埋込み構造の半導体レーザはダブルへテ
ロエピタキシャル層に形成されたチャンネルの底と埋込
み第1Miとの界面に出来たp−n接合が液相成長プロ
セスの熱履歴過程における基板表面の熱劣化の為に拙劣
なものとなり、得られた半導体レーザのリーク電流発生
の原因となっているという欠点がある。
In conventional buried structure semiconductor lasers, a double channel is formed in a double heteroepitaxial layer that has a multilayer structure including a double heterojunction, and a p-n-p layer is directly formed in this part.
[Problem to be solved by the invention] The conventional buried structure semiconductor laser described above has a channel formed in a double heteroepitaxial layer. The p-n junction formed at the interface between the bottom of the substrate and the buried first Mi becomes poor due to thermal deterioration of the substrate surface during the thermal history process of the liquid phase growth process, which causes leakage current in the resulting semiconductor laser. There is a drawback that it is.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の埋込み構造半導体レーザはダブルへテロ接合を
有する多層構造にダブルチャンネルを有し、このダブル
チャンネルを電流ブロック層で埋込んだ構造を有し、ダ
ブルチャンネルに形成する電流ブロック層の埋込み第1
層とダブルチャンネル底部との界面に基板と同一導電型
のバッファー層を埋込みエピタキシャル成長の最初の層
として形成した構成となっている。
The buried structure semiconductor laser of the present invention has a double channel in a multilayer structure having a double heterojunction, and has a structure in which this double channel is buried with a current blocking layer. 1
The structure is such that a buffer layer of the same conductivity type as the substrate is formed as the first layer of buried epitaxial growth at the interface between the layer and the bottom of the double channel.

本発明は、ダブルチャンネル底部に直接電流ブロック層
を形成するのではなく、先ず基板と同一導電型のバッフ
ァー層を形成し、その後にp−n−p構造の電流ブロッ
ク層を形成した構造とすることにより、電流ブロック層
、を構成する第1層は熱劣化したダブルチャンネル底部
とではなく、バッファ層とp−n接合を形成するのでダ
ブルチャンネル底部と電流ブロック層の埋込み第1層と
の界面におけるp−n接合でのリーク電流を低減出来る
In the present invention, instead of directly forming a current blocking layer at the bottom of the double channel, a buffer layer of the same conductivity type as the substrate is first formed, and then a current blocking layer with a p-n-p structure is formed. As a result, the first layer constituting the current blocking layer forms a p-n junction with the buffer layer rather than with the thermally degraded bottom of the double channel, so that the interface between the bottom of the double channel and the buried first layer of the current blocking layer The leakage current at the p-n junction can be reduced.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する0図は本
発明の一実施例の縦断面図である。
Next, the present invention will be explained with reference to the drawings. Figure 0 is a longitudinal sectional view of one embodiment of the present invention.

n型InP基板1にn型バッファーj[2、活性層3、
p型りラッドM4の多N構造を液相連結成長により形成
させる0次にフォトレジスト工程により平行な2本のf
R(ダブルチャンネル)5を多層構造中に形成する。こ
の後、2回目の液相成長によりこのダブルチャンネル5
を埋込むp−n−p電流ブロック層6及びキャップ層7
を成長させる。この時ρ−n−p電流ブロック層6を成
長しダブルチャンネル5の底にp−n接合を形成する前
にn型バッファー層8をこのダブルチャンネル5の底に
薄く成長させ、続いてp−n−p電流ブロック層6.キ
ャップ層7を順次成長させ、リーク電流の少い特性の良
い半導体レーザを形成する。
An n-type buffer j [2, active layer 3,
A multi-N structure of p-type rad M4 is formed by liquid phase coupled growth.
R (double channel) 5 is formed in the multilayer structure. After this, the double channel 5 is formed by the second liquid phase growth.
p-n-p current blocking layer 6 and cap layer 7
grow. At this time, before growing the ρ-n-p current blocking layer 6 and forming a p-n junction at the bottom of the double channel 5, a thin n-type buffer layer 8 is grown on the bottom of the double channel 5, and then the p-n-type buffer layer 8 is grown thinly on the bottom of the double channel 5. n-p current blocking layer 6. The cap layer 7 is sequentially grown to form a semiconductor laser with good characteristics and low leakage current.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は液相成長工程で成長開始前
の高温に晒されて′ダブルチャンネルの底が熱劣化して
もダブルチャンネル底部にp−n−p電流ブロック層を
形成する前にn型バッファー層を薄く成長させているの
で、ダブルチャンネル部の底に生じる拙劣なp−n接合
の発生を防止し、リーク電流の発生のない特性の良い半
導体レーザが得られる。
As explained above, in the present invention, even if the bottom of the double channel is thermally degraded by being exposed to high temperature before the growth starts in the liquid phase growth process, the process can be performed before forming the pn-p current blocking layer at the bottom of the double channel. Since the n-type buffer layer is grown thinly, generation of a poor p-n junction at the bottom of the double channel portion can be prevented, and a semiconductor laser with good characteristics without leakage current can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の詳細な説明する為の半導体レーザの縦断面
図である。 1・・・InP基板、2・・・n型バッファー層、3・
・・活性層、4・・・p型クラッド層、5・・・ダブル
チャンネル、6・・・p−n−p電流ブロック層、7・
・・キャップ層、8・・・n型バッファー層。
The figure is a longitudinal sectional view of a semiconductor laser for explaining the present invention in detail. 1... InP substrate, 2... n-type buffer layer, 3...
... active layer, 4... p-type cladding layer, 5... double channel, 6... p-n-p current blocking layer, 7.
... Cap layer, 8... N-type buffer layer.

Claims (1)

【特許請求の範囲】[Claims] 基板上にバッファー層、活性層及びクラッド層を順次積
層させた多層構造に平行な2本の溝(ダブルチャンネル
)を備え、さらに前記溝を有する多層構造にp−n−p
(又はn−p−n)電流ブロック層及びキャップ層を備
えている半導体レーザにおいて、前記電流ブロック層の
最下層の下に基板と同一導電型を有するバッファー層を
備えていることを特徴とする半導体レーザ。
A multilayer structure in which a buffer layer, an active layer, and a cladding layer are sequentially laminated on a substrate is provided with two parallel grooves (double channel), and a p-n-p is further added to the multilayer structure having the grooves.
(or n-p-n) semiconductor laser comprising a current blocking layer and a cap layer, characterized in that a buffer layer having the same conductivity type as the substrate is provided below the lowest layer of the current blocking layer. semiconductor laser.
JP4500888A 1988-02-26 1988-02-26 Semiconductor laser Pending JPH01218085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4500888A JPH01218085A (en) 1988-02-26 1988-02-26 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4500888A JPH01218085A (en) 1988-02-26 1988-02-26 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01218085A true JPH01218085A (en) 1989-08-31

Family

ID=12707344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4500888A Pending JPH01218085A (en) 1988-02-26 1988-02-26 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01218085A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187287A (en) * 1985-02-14 1986-08-20 Fujitsu Ltd Semiconductor light-emitting device
JPS63144589A (en) * 1986-12-09 1988-06-16 Sharp Corp Semiconductor laser element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187287A (en) * 1985-02-14 1986-08-20 Fujitsu Ltd Semiconductor light-emitting device
JPS63144589A (en) * 1986-12-09 1988-06-16 Sharp Corp Semiconductor laser element

Similar Documents

Publication Publication Date Title
US6472718B2 (en) Semiconductor device
JPH05190898A (en) Led and method of forming led
JPH01218085A (en) Semiconductor laser
JPS5810875B2 (en) handout
JPH0897466A (en) Light emitting device
JPH05218585A (en) Semiconductor light emitting device
JPS63269593A (en) Semiconductor laser device and its manufacture
JP2942404B2 (en) Method of manufacturing buried heterostructure semiconductor laser
JPH07111361A (en) Buried type semiconductor laser device and manufacture thereof
JPS61198713A (en) Manufacture of semiconductor device
JPH11266051A (en) Semiconductor light-emitting element
JPH02202085A (en) Manufacture of semiconductor laser device
JP2503263B2 (en) Method for manufacturing semiconductor light emitting device
JP3046161B2 (en) Semiconductor device including undoped layer
JPS63281487A (en) Semiconductor laser
JPS62226674A (en) Light-emitting diode
JPS59124184A (en) Semiconductor light emitting device
JPS6244715B2 (en)
JPS61191092A (en) Manufacture of semiconductor laser device
JPS62230078A (en) Buried semiconductor laser
JPH07154031A (en) Semiconductor laser
JPS5534482A (en) Manufacturing method for semiconductor laser
JPS6327872B2 (en)
JPS6072285A (en) Buried type semiconductor laser device
JPS6155982A (en) Semiconductor laser device