JPH01217416A - Optical modulating element - Google Patents

Optical modulating element

Info

Publication number
JPH01217416A
JPH01217416A JP63042198A JP4219888A JPH01217416A JP H01217416 A JPH01217416 A JP H01217416A JP 63042198 A JP63042198 A JP 63042198A JP 4219888 A JP4219888 A JP 4219888A JP H01217416 A JPH01217416 A JP H01217416A
Authority
JP
Japan
Prior art keywords
optical waveguide
incident light
energy
modulation
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042198A
Other languages
Japanese (ja)
Inventor
Masatoshi Suzuki
正敏 鈴木
Shigeyuki Akiba
重幸 秋葉
Hideaki Tanaka
英明 田中
Katsuyuki Uko
宇高 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP63042198A priority Critical patent/JPH01217416A/en
Priority to US07/311,218 priority patent/US4913506A/en
Priority to KR1019890002229A priority patent/KR0145187B1/en
Priority to GB8905098A priority patent/GB2229287B/en
Publication of JPH01217416A publication Critical patent/JPH01217416A/en
Priority to GB9314798A priority patent/GB2266968B/en
Priority to GB9314799A priority patent/GB2266969A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain rapid modulation at a low voltage even when the intensity of incident light is >=0.1mW by setting up a difference between incident photon energy and modulation waveguide forbidden band width energy to >=50meV to suppress the deterioration of a modulation voltage and band width due to the increment of incident light intensity and setting up the length of the title element also to a previously fixed length. CONSTITUTION:When incident intensity of incident light into an optical waveguide is >=0.1mW, the forbidden band width energy of the optical waveguide layer is >=50meV and the ratio of energy difference between forbidden band width energy and incident light energy to the length of optical modulating element determined by the length from the incident end face of the optical waveguide up to its projection end face is 10meV/mm-250meV/mm. Consequently, the optical modulating element capable of executing low voltage and rapid modulation almost without generating the increment of the modulation voltage or the reduction of the band width even when the incident light intensity is increased from 0.1mW practical level to several mW or more can be obtained.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は外部から入射される光を変調する光変調素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a light modulation element that modulates light incident from the outside.

(従来技術とその問題点) 光フアイバ通信技術は光ファイバの超低損失性と光が本
質的に有する超広帯域性を利用して進展し、伝送のます
ますの長距離化と大容量化の研究が世界的に進められて
いる。光ファイバの損失が理論的な限界にまで達した今
日では、特に伝送の高速化、大容量化の研究が重要にな
ってきている。
(Conventional technology and its problems) Optical fiber communication technology has progressed by taking advantage of the ultra-low loss properties of optical fibers and the ultra-broadband properties that light inherently has, and has enabled transmission of increasingly longer distances and larger capacities. Research is underway worldwide. Nowadays, the loss of optical fibers has reached its theoretical limit, and research into increasing transmission speed and capacity has become particularly important.

光信号を高速にオン・オフする技術としては、現在では
一般に半導体レーザを直接変調する方法がとられている
。しかし、直接変調方式では、発振素子である半導体レ
ーザの電流を高速に変化させるため、発振波長が時間的
に大きく変動し、結果的に発振スペクトル幅が変調帯域
のスペクトル幅に比べて異常に大きく広がってしまうこ
とになる。従って、長距離あるいは高速の伝送では、光
ファイバの波長分散の影響を大きく受け、受信される光
パルスが歪んでしまうため、良好な伝送特性が得られな
い。そこで、このような問題を避けるため、半導体レー
ザの出力は一定に保持し、外部の光変調素子で高速な変
調を行う方法が近年検討されている。
Currently, a method of directly modulating a semiconductor laser is generally used as a technique for rapidly turning on and off optical signals. However, in the direct modulation method, since the current of the semiconductor laser, which is the oscillation element, changes rapidly, the oscillation wavelength fluctuates greatly over time, and as a result, the oscillation spectral width becomes abnormally large compared to the spectral width of the modulation band. It will spread. Therefore, in long-distance or high-speed transmission, good transmission characteristics cannot be obtained because the received optical pulses are distorted due to the large influence of wavelength dispersion of the optical fiber. Therefore, in order to avoid such problems, a method has been recently considered in which the output of the semiconductor laser is held constant and high-speed modulation is performed using an external optical modulation element.

光変調素子としては、LiNbO3等の強誘電体を用い
た光変調素子やDFB レーザ等の単一波長半導体レー
ザとモノシリツクに集積可能な光変調素子などが提案さ
れているが、中でも後者の変調導波路に電界を印加して
電気吸収効果により強度変調する電気吸収型光変調素子
が最も有望視されている。
As optical modulators, optical modulators using ferroelectric materials such as LiNbO3 and optical modulators that can be monolithically integrated with single wavelength semiconductor lasers such as DFB lasers have been proposed. Electro-absorption optical modulators, which apply an electric field to a wave path and modulate the intensity by electro-absorption effects, are considered the most promising.

第1図は、従来の電気吸収型光変調素子の斜視図である
。n型InP基板1の上に、n −−InGaAsP変
調導波路層2、メサ状のP型1nPクラッド層3及びp
型1nGaAsPキャップ層4が積層されており、さら
に、p型電極5及びn型電極6がそれぞれP型InGa
AsPキャンプ層4とn型InP基板1に接するように
形成されている。この光変調素子ではInGaAsP変
調導波路層2に光を入射してp型電極5に印加するマイ
ナスと、n型電極6に印加するプラスの電圧を変化させ
、InGaAsP変調導波路層2の吸収係数を変化させ
ることによって、出射光の強度を変調することができる
。電気吸収型変調素子においては、低電圧で変調できる
こと、高速変調可能なこと及び高速変調時のスペクトル
広がりが小さいことが重要である。今まで、InGaA
sP変調導波路層2の禁制帯エネルギーE、に入射光フ
ォトエネルギーhνが近いほど低電圧で吸収係数の変化
が大きくとれ、かつ、素子長L (InGaAsP変調
導波路層2の入射端面から出射端面までの長さ)を短く
できるため、高速変調が可能でスペクトル広がりも抑制
できるとされていた。従って、従来では両者のエネルギ
ー差ΔE、(E、−hν)だけに着目し、エネルギー差
ΔE9を30〜40meVに設定すれば、高性能な光変
調素子が実現されると考えられていた。しかし、従来の
光変調素子では、入射光強度が約百μ−以下の場合には
変調電圧。
FIG. 1 is a perspective view of a conventional electroabsorption light modulation element. On an n-type InP substrate 1, an n--InGaAsP modulation waveguide layer 2, a mesa-shaped P-type 1nP cladding layer 3, and a p-type InP substrate 1 are formed.
A type 1nGaAsP cap layer 4 is laminated, and a p-type electrode 5 and an n-type electrode 6 are each made of p-type InGa.
It is formed so as to be in contact with the AsP camp layer 4 and the n-type InP substrate 1. In this optical modulation element, light is incident on the InGaAsP modulation waveguide layer 2, and the negative voltage applied to the p-type electrode 5 and the positive voltage applied to the n-type electrode 6 are changed, and the absorption coefficient of the InGaAsP modulation waveguide layer 2 is changed. By changing , the intensity of the emitted light can be modulated. In an electroabsorption modulation element, it is important to be able to perform modulation at a low voltage, to be able to perform high-speed modulation, and to have small spectral broadening during high-speed modulation. Until now, InGaA
The closer the incident light photoenergy hv is to the forbidden band energy E of the sP modulation waveguide layer 2, the larger the change in absorption coefficient can be obtained at low voltage. It was believed that this would enable high-speed modulation and suppress spectral broadening. Therefore, conventionally, it was thought that a high-performance optical modulation element could be realized by focusing only on the energy difference ΔE, (E, -hν) between the two and setting the energy difference ΔE9 to 30 to 40 meV. However, in conventional optical modulation elements, when the incident light intensity is about 100 μm or less, the modulation voltage decreases.

変調帯域幅及びスペクトル幅ともに良好な特性を示すも
のの、入射光の強度が0゜11以上となるに従い、変調
電圧が著しく増加し、又帯域幅も減少するということが
明らかになった。
Although both the modulation bandwidth and the spectral width exhibit good characteristics, it has become clear that as the intensity of the incident light increases beyond 0°11, the modulation voltage increases significantly and the bandwidth also decreases.

以上述べたように、従来の電気吸収型光変調素子では、
入射光強度が小さい場合には低電圧変調。
As mentioned above, in conventional electroabsorption optical modulators,
Low voltage modulation when the incident light intensity is low.

高速動作及び狭スペクトル動作が可能なものの、実用レ
ベルの数mWまで入射光強度を増大させた場合には、こ
れらの特性が著しく劣化するという欠点があった。
Although high-speed operation and narrow-spectrum operation are possible, when the incident light intensity is increased to a practical level of several mW, these characteristics deteriorate significantly.

(発明の目的及び特@) 本発明は、上述した従来技術の問題点を解決するために
なされたもので、入射光の強度が0.1mW以上でも低
電圧で高速の変調が可能な光変調素子を実現することを
目的とする。
(Object of the Invention and Features @) The present invention was made to solve the problems of the prior art described above. The purpose is to realize the device.

本発明の特徴は、入射光フォトンエネルギーと変調導波
路禁制帯幅エネルギーの差を50meV以上に設定して
入射光強度増大に伴う変調電圧と帯域幅の劣化を抑制し
、かつ素子長を予め定められた長さにすることにより、
変調電圧を下げたことにある。
The present invention is characterized by setting the difference between the incident light photon energy and the modulation waveguide forbidden bandwidth energy to 50 meV or more to suppress deterioration of the modulation voltage and bandwidth due to an increase in the incident light intensity, and by predetermining the element length. By making the length
This is due to lowering the modulation voltage.

(発明の構成及び作用) 以下に、図面を用いて本発明の詳細な説明する。(Structure and operation of the invention) The present invention will be explained in detail below using the drawings.

(実施例1) 第2図は本発明による第1の実施例であり、光変調素子
の断面図である。
(Example 1) FIG. 2 is a first example according to the present invention, and is a sectional view of a light modulation element.

従来構成と異なる点は、n −−InGaAsP光導波
路層10の禁制帯エネルギーE9が入射光のフォトンエ
ネルギーhνよりも50meV以上となるようにエネル
ギー差ΔE、(=E9−hν)を設け、かつ光変調素子
の素子長り。が10meV/mm≦ΔE 、/ L。
The difference from the conventional structure is that an energy difference ΔE, (=E9-hν) is provided so that the forbidden band energy E9 of the n--InGaAsP optical waveguide layer 10 is 50 meV or more higher than the photon energy hν of the incident light, and Element length of modulation element. is 10 meV/mm≦ΔE, /L.

≦250 meV/mmを満足する長さに定められてい
る点にある。
The length is set to satisfy ≦250 meV/mm.

以下に、エネルギー差ΔE9の相違から発生する問題点
については本発明の実験結果である第3図及び第4図を
用い、素子長L0については同様に第5図を用いて説明
する。なお、第3図から第5図では、本発明と従来との
差を明確にするために、エネルギー差ΔE9が55me
V及び50meVの本発明の特性図に■及び■を付し、
エネルギー差ΔEgが40meV及び30meVの従来
構成の特性図に■及び■を付して説明する。
Below, problems arising from the difference in the energy difference ΔE9 will be explained using FIGS. 3 and 4, which are experimental results of the present invention, and the element length L0 will be explained using FIG. 5 as well. In addition, in FIGS. 3 to 5, in order to clarify the difference between the present invention and the conventional method, the energy difference ΔE9 is 55 me
■ and ■ are attached to the characteristic diagram of the present invention at V and 50 meV,
Characteristic diagrams of conventional configurations with energy difference ΔEg of 40 meV and 30 meV will be described with ■ and ■.

まず、エネルギー△E9の相違から発生する問題点につ
いて詳細に説明する。
First, the problems caused by the difference in energy ΔE9 will be explained in detail.

本発明者らが、入射光のフォトンエネルギーhνと変調
導波路層の禁制帯幅E9とのエネルギー差ΔE、(=E
9−hν)が、入射光強度を増大させた場合の光変調素
子の特性に与える影響について、従来構成(第1図)と
本発明の構成(第2図)の光変調素子を用いて検討した
。その結果、上述した従来例のように、ΔE、=30〜
40meVとした場合の変調電圧及び変調帯域幅は、入
射光強度が約0.1mW以下の場合には、良好な特性を
示すものの、入射光強度が数mWまで増大するに従って
、変調電圧は約2倍程度まで増大し、かつ変調帯域幅が
著しく劣化する現象が判明した。
The present inventors discovered that the energy difference ΔE, (=E
9-hν) on the characteristics of the light modulation element when the incident light intensity is increased, using the light modulation element of the conventional configuration (Figure 1) and the configuration of the present invention (Figure 2). did. As a result, as in the conventional example described above, ΔE, = 30~
The modulation voltage and modulation bandwidth when set to 40 meV show good characteristics when the incident light intensity is about 0.1 mW or less, but as the incident light intensity increases to several mW, the modulation voltage decreases to about 2. It has been found that the modulation bandwidth increases to about twice as much, and the modulation bandwidth significantly deteriorates.

第3図は本発明による実験結果であり、素子長520μ
mの素子の20dB消光比を与える電圧値の入射光強度
依存性を示す入射光強度と20dB消光比電圧の特性図
である。図中のパラメータΔE9(曲線■〜■)は、I
nGaAsP光変調導波路層10及び2の禁制帯エネル
ギーE9と入射光フォトンエネルギーhνとのエネルギ
ー差へE、(E、−hν)である。八E、=30(曲線
■)、40meV (曲線■)の従来構成の場合には、
20dB消光比電圧が入射光強度を増大するに従って増
加し、ある入射光強度3〜4mWに達すると、変調電圧
の増加が飽和する傾向を示した。一方、八E q = 
50meV (曲線■)、55meV(曲線■)の本発
明の場合には、変調電圧の増加がほぼ直線的であった。
Figure 3 shows the experimental results according to the present invention, with an element length of 520 μm.
FIG. 7 is a characteristic diagram of the incident light intensity and the 20 dB extinction ratio voltage, showing the dependence of the voltage value giving the 20 dB extinction ratio of the element of m on the incident light intensity. The parameter ΔE9 (curves ■ to ■) in the figure is I
The energy difference between the forbidden band energy E9 of the nGaAsP optical modulation waveguide layers 10 and 2 and the incident light photon energy hv is E, (E, -hv). In the case of the conventional configuration of 8E, = 30 (curve ■), 40 meV (curve ■),
The 20 dB extinction ratio voltage increased as the incident light intensity increased, and when the incident light intensity reached a certain level of 3 to 4 mW, the increase in modulation voltage tended to be saturated. On the other hand, eight E q =
In the case of the present invention at 50 meV (curve ■) and 55 meV (curve ■), the increase in modulation voltage was almost linear.

変調電圧の直線的な増加は、光吸収電流によるオーミッ
ク抵抗等における電圧降下により光変調素子に印加する
電圧が実効的に減少するためであり、これは吸収型の光
変調素子の持つ本質的な特性である。それに対して、従
来の八E9が30〜40meVの場合に観測される変調
電圧の急激な増加は、過剰な吸収キャリアによって、バ
ンド構造が歪められ、光導波路へ印加される実効的電界
が弱められていることに起因すると考えられる。
The linear increase in modulation voltage is due to the fact that the voltage applied to the light modulation element effectively decreases due to the voltage drop across the ohmic resistance due to the light absorption current, and this is due to the essential characteristic of absorption type light modulation elements. It is a characteristic. On the other hand, the rapid increase in modulation voltage observed when the conventional 8E9 is 30 to 40 meV is due to excess absorbed carriers that distort the band structure and weaken the effective electric field applied to the optical waveguide. This is thought to be due to the fact that

第4図は本発明の詳細な説明するための実験結果であり
、周波数特性の高周波における劣化の入射光強度依存性
をΔEgをパラメータとして示した入射高強度と帯域劣
化との特性図である。ΔE9=30〜40meVの従来
構造の場合には、入射光強度が増加するに従い、2〜3
dBの劣化が観測されたが、ΔE9が50meV以上の
本発明では、劣化度は1dB以下である。1dB以下の
劣化は、上述したような吸収電流によるオーミック抵抗
や終端抵抗における電圧降下であるため、これも吸収型
光変調素子の持つ本質的特性と考えられる。八E、 =
30〜40meVによる劣化は、導波路に印加される電
界が過剰吸収キャリアに阻害され、空間電荷効果等によ
り、外部印加電圧を忠実にトレースしていないことに起
因する。
FIG. 4 shows experimental results for explaining the present invention in detail, and is a characteristic diagram of incident high intensity and band deterioration, showing the dependence of deterioration of frequency characteristics at high frequencies on incident light intensity using ΔEg as a parameter. In the case of the conventional structure with ΔE9 = 30 to 40 meV, as the incident light intensity increases, 2 to 3
Although a dB deterioration was observed, in the present invention where ΔE9 is 50 meV or more, the deterioration degree is 1 dB or less. Deterioration of 1 dB or less is a voltage drop in the ohmic resistance or termination resistor due to the absorption current as described above, so this is also considered to be an essential characteristic of the absorption type optical modulation element. Eight E, =
The deterioration due to 30 to 40 meV is caused by the fact that the electric field applied to the waveguide is inhibited by excessively absorbed carriers, and the externally applied voltage is not faithfully traced due to space charge effects and the like.

従来は、変調電圧を2v程度2周波数帯域幅を例えば、
5 GHz以上でスペクトル広がりがほとんどない光変
調素子を設計する場合には八E、 =30〜40meV
 、素子長0.5non程度が最適と考えられ、実際に
作製されてきた。しかし、第3図及び第4図から明らか
なように、従来のエネルギー差ΔE。
Conventionally, the modulation voltage is about 2V and the two frequency bandwidths are, for example,
When designing an optical modulation element with almost no spectral broadening above 5 GHz, 8E = 30 to 40 meV
, an element length of about 0.5 non is considered to be optimal, and has been actually produced. However, as is clear from FIGS. 3 and 4, the conventional energy difference ΔE.

(30〜40meV)では、変調電圧及び変調帯域幅と
もに、入射光強度を増大すると著しく劣化してしまうと
いう大きな問題を生ずることが判明した。
(30 to 40 meV), it has been found that both the modulation voltage and the modulation bandwidth are significantly degraded when the incident light intensity is increased, which is a major problem.

次に素子長L0と変調電圧及び周波数帯域幅の関係につ
いて説明する。第5図は、入射光強度が5mWの場合の
変調電圧(光強度を90%から10%まで減少させるた
めの電圧)の素子長依存性を説明するための本発明によ
る実験結果を示す。現在の技術では変調電圧を4V程度
にすることが可能である。第5図より、八E9 =50
meV  (曲線■)及び55meV  (曲線■)と
した場合、素子長L0をそれぞれ0.2mm及び0.5
mm以上にすれば良い。従ってその時のΔE、/Lは2
50meV/mm及び110meV/胴となり、上限の
八E、/Lが250meV/mmとすれば変調電圧を4
v程度にすることが可能となることがわかる。
Next, the relationship between the element length L0, modulation voltage, and frequency bandwidth will be explained. FIG. 5 shows experimental results according to the present invention for explaining the element length dependence of the modulation voltage (voltage for reducing the light intensity from 90% to 10%) when the incident light intensity is 5 mW. With current technology, it is possible to reduce the modulation voltage to about 4V. From Figure 5, 8E9 = 50
When meV (curve ■) and 55 meV (curve ■), the element length L0 is 0.2 mm and 0.5, respectively.
It may be set to mm or more. Therefore, ΔE, /L at that time is 2
50 meV/mm and 110 meV/body, and if the upper limit of 8E and /L is 250 meV/mm, the modulation voltage is 4
It can be seen that it is possible to make it approximately v.

周波数帯域幅については変調導波路幅によってほぼ決定
され、変調導波路幅を1μmとした場合、5GHz以上
の帯域幅を実現できる長さの上限は約5Mである。従っ
て、高速光変調器を得るためには八E、/L≧10me
V/inとする必要がある。なお、変調導波路幅を増や
すに従って八E、/Lも大きくなり、変調導波路幅が5
μmとしたときの△E9/Lは30meV/mmとなる
The frequency bandwidth is almost determined by the modulation waveguide width, and when the modulation waveguide width is 1 μm, the upper limit of the length that can realize a bandwidth of 5 GHz or more is about 5M. Therefore, in order to obtain a high-speed optical modulator, 8E, /L≧10me
It is necessary to set it to V/in. Note that as the modulation waveguide width increases, 8E, /L also increases, and the modulation waveguide width becomes 5.
ΔE9/L in μm is 30 meV/mm.

以上のように、入射光強度が0.1mW以上の場合、4
■以下の変調電圧で5 GHz以上の帯域幅を有する光
変調素子を実現するためには、△Eg≧50meVでか
つ、10meV/mm≦ΔE 9/ L O≦250m
eV/mmが必要条件となる。従って本発明は、このΔ
E9とΔE9/LOの条件を満足するよう光変調素子を
構成している。
As mentioned above, when the incident light intensity is 0.1 mW or more, 4
■In order to realize an optical modulation element with a bandwidth of 5 GHz or more with the following modulation voltage, △Eg≧50meV and 10meV/mm≦ΔE9/L O≦250m
eV/mm is a necessary condition. Therefore, the present invention provides this Δ
The light modulation element is configured to satisfy the conditions of E9 and ΔE9/LO.

(実施例2) 第6図は本発明による第2の実施例であり、光変調素子
の断面図である。
(Example 2) FIG. 6 shows a second example according to the present invention, and is a sectional view of a light modulation element.

実施例1と異なる点は、ビルトイン電界による吸収損失
を減少させるため、n −−InGaAsP導波路層1
0とp−InP層3との間にInGaAsP導波路層1
0と同一の導電型を有し、層厚が約0.2μmのn−−
InP Nllを挿入した点にある。素子長り。をll
l1[11幅を5μmとすると、2■以下の動作電圧で
10dBの消光比が得られ、約5 GHzの3dB帯域
幅が実現できる。又、本実施例の光変調素子では、八E
9≧50meV 八E9 / L =50meV/mm となるように構成しであるため、入射光強度を増大して
も、変調電圧の増加や変調帯域幅の減少はほとんどない
The difference from Example 1 is that in order to reduce absorption loss due to the built-in electric field, the n −-InGaAsP waveguide layer 1
InGaAsP waveguide layer 1 between 0 and p-InP layer 3
n--, which has the same conductivity type as 0 and has a layer thickness of approximately 0.2 μm.
It is at the point where InP Nll was inserted. Motoko is long. ll
If the width of l1[11 is 5 μm, an extinction ratio of 10 dB can be obtained at an operating voltage of 2.0 cm or less, and a 3 dB bandwidth of approximately 5 GHz can be achieved. Moreover, in the light modulation element of this example, 8E
Since the structure is such that 9≧50 meV 8E9/L = 50 meV/mm, even if the incident light intensity is increased, there is almost no increase in modulation voltage or decrease in modulation bandwidth.

以上の説明では、InGaAsP/ InP系の材料を
例にとって説明したがへI!、GaAs/GaAs系や
、A I InGaAs/InP系などの他の材料にも
同様に適用できる。
In the above explanation, InGaAsP/InP materials were used as an example. , GaAs/GaAs series, AI InGaAs/InP series, and other materials can be similarly applied.

更に、それらの材料で構成される多重量子井戸層を用い
ることもでき、その場合説明で用いた禁制帯幅は、量子
井戸準位で定まる実効的な禁制帯幅となる。又、横モー
ド安定化のためのストライプ構造については、ストリッ
プ装荷形を例にとり説明したが、埋め込みストライプ構
造やリッジ導波路ストライプ構造等の従来の技術がすべ
て適用可能である。
Furthermore, it is also possible to use a multiple quantum well layer made of these materials, and in that case, the forbidden band width used in the explanation becomes an effective forbidden band width determined by the quantum well level. Furthermore, although the stripe structure for stabilizing the transverse mode has been described using a strip loading type as an example, all conventional techniques such as a buried stripe structure and a ridge waveguide stripe structure are applicable.

(発明の効果) 以上述べたように、本発明ではエネルギー差ΔEgを5
0meVとし、かつΔE、/L、を10meV以上で2
50meV/mm以下に光変調素子を構成するため、入
射光強度が実用レベルの0.1mWから数m−以上に増
大しても、変調電圧の増加や、帯域幅の減少がほとんど
なく、低電圧、高速変調が可能な光変調素子を実現する
ことができる。さらに、InGaAsP導波路層10と
p−InP層3との間にInP層11を挿入することに
よりビルトイン電界による吸収損失を減少させることが
可能となる。従って、超高速光フアイバ通信等に応用で
き、その効果は極めて大である。
(Effect of the invention) As described above, in the present invention, the energy difference ΔEg is
0 meV and ΔE,/L, is 10 meV or more and 2
Since the optical modulation element is configured to have a voltage of 50 meV/mm or less, even if the incident light intensity increases from the practical level of 0.1 mW to several meters or more, there is almost no increase in modulation voltage or decrease in bandwidth, resulting in low voltage , an optical modulation element capable of high-speed modulation can be realized. Furthermore, by inserting the InP layer 11 between the InGaAsP waveguide layer 10 and the p-InP layer 3, absorption loss due to the built-in electric field can be reduced. Therefore, it can be applied to ultra-high-speed optical fiber communications, etc., and its effects are extremely large.

【図面の簡単な説明】 第1図は従来の電気吸収型光変調素子の例を示す断面図
、第2図は本発明による第1の実施例である光変調素子
の断面図、第3図、第4図及び第5図は本発明と従来例
の光変調素子との特性を比較するための本発明による実
験結果の特性図、第6図は本発明による第2の実施例で
あり、光変調素子の断面図である。 1−n”−1nP基板、2−・・n −−1nGaAs
P導波路層、3 ・−p −InP層、4・”p  I
nGaAsPキャップ層、5・・・p側電極、6・・・
n側電極、10・・・n −−1nGaAsP導波路層
、ll ・・・n −−InP層。 特許出願人  国際電信電話株式会社
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing an example of a conventional electroabsorption light modulation device, FIG. 2 is a sectional view of a light modulation device according to a first embodiment of the present invention, and FIG. 3 , FIGS. 4 and 5 are characteristic diagrams of experimental results according to the present invention for comparing the characteristics of the present invention and a conventional light modulation element, and FIG. 6 is a second embodiment according to the present invention, FIG. 3 is a cross-sectional view of a light modulation element. 1-n"-1nP substrate, 2-...n--1nGaAs
P waveguide layer, 3・-p-InP layer, 4・”p I
nGaAsP cap layer, 5... p-side electrode, 6...
n-side electrode, 10...n--1nGaAsP waveguide layer, ll...n--InP layer. Patent applicant International Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に光導波路層と該光導波路層よりも屈折率
の小なるp型及びn型のクラッド層と電極とを有し、該
電極から前記光導波路層へ印加する電界によって、前記
光導波路の入射端面へ入射する一定強度の入射光に対す
る吸収係数を変化させて光変調を行って前記光導波路の
出射端面から変調光を取り出す光変調素子において、前
記入射光の前記光導波路へ入射する強度が0.1mW以
上のとき、前記光導波路層の禁制帯幅エネルギーが前記
入射光エネルギーよりも50meV以上大きく、かつ、
該禁制帯幅エネルギーと前記入射光エネルギーとのエネ
ルギー差と、前記光導波路の入射端面から出射端面まで
の長さで定まる光変調素子長との比が10meV/mm
以上でかつ250meV/mm以下となるように構成さ
れたことを特徴とする光変調素子。
(1) An optical waveguide layer, p-type and n-type cladding layers having a smaller refractive index than the optical waveguide layer, and an electrode are provided on the substrate, and an electric field applied from the electrode to the optical waveguide layer causes the In an optical modulation element that performs optical modulation by changing an absorption coefficient for incident light of a constant intensity that enters an input end face of an optical waveguide, and extracts modulated light from an output end face of the optical waveguide, the input light enters the optical waveguide. When the intensity of the incident light is 0.1 mW or more, the forbidden band energy of the optical waveguide layer is 50 meV or more larger than the incident light energy, and
The ratio between the energy difference between the forbidden band energy and the incident light energy and the length of the optical modulation element determined by the length from the input end face to the output end face of the optical waveguide is 10 meV/mm.
A light modulation element characterized in that it is configured to have a voltage of at least 250 meV/mm.
(2)基板上に光導波路層と該光導波路層よりも屈折率
の小なるp型及びn型のクラッド層と電極とを有し、該
電極から前記光導波路層へ印加する電界によって、前記
光導波路の入射端面へ入射する一定強度の入射光に対す
る吸収係数を変化させて光変調を行って前記光導波路の
出射端面から変調光を取り出す光変調素子において、前
記入射光の前記光導波路へ入射する強度が0.1mW以
上のとき、前記光導波路層の禁制帯幅エネルギーが前記
入射光エネルギーよりも50meV以上大きく、かつ、
該禁制帯幅エネルギーと前記入射光エネルギーとのエネ
ルギー差と、前記光導波路の入射端面から出射端面まで
の長さで定まる光変調素子長との比が10meV/mm
以上でかつ250meV/mm以下とし、前記光導波路
層と前記p型クラッド層との間に、前記光導波路層の禁
制帯幅よりも大きく、前記クラッド層の禁制帯幅よりも
小さいか等しい禁制帯幅を有し、かつ前記光導波路層と
同一の導電型を有する半導体層が形成されていることを
特徴とする光変調素子。
(2) An optical waveguide layer, p-type and n-type cladding layers having a smaller refractive index than the optical waveguide layer, and an electrode are provided on the substrate, and an electric field applied from the electrode to the optical waveguide layer causes the In an optical modulation element that performs optical modulation by changing an absorption coefficient for incident light of a constant intensity that enters an input end face of an optical waveguide, and extracts modulated light from an output end face of the optical waveguide, the input light enters the optical waveguide. When the intensity of the incident light is 0.1 mW or more, the forbidden band energy of the optical waveguide layer is 50 meV or more larger than the incident light energy, and
The ratio between the energy difference between the forbidden band energy and the incident light energy and the length of the optical modulation element determined by the length from the input end face to the output end face of the optical waveguide is 10 meV/mm.
or more and 250 meV/mm or less, and there is a forbidden band between the optical waveguide layer and the p-type cladding layer that is larger than the forbidden band width of the optical waveguide layer and smaller than or equal to the forbidden band width of the cladding layer. An optical modulation element characterized in that a semiconductor layer having a width and the same conductivity type as the optical waveguide layer is formed.
JP63042198A 1988-02-26 1988-02-26 Optical modulating element Pending JPH01217416A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63042198A JPH01217416A (en) 1988-02-26 1988-02-26 Optical modulating element
US07/311,218 US4913506A (en) 1988-02-26 1989-02-16 Optical modulation device
KR1019890002229A KR0145187B1 (en) 1988-02-26 1989-02-25 Optical modulation element
GB8905098A GB2229287B (en) 1988-02-26 1989-03-06 Optical modulation device
GB9314798A GB2266968B (en) 1988-02-26 1993-07-19 Optical modulation device
GB9314799A GB2266969A (en) 1988-02-26 1993-07-19 Optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042198A JPH01217416A (en) 1988-02-26 1988-02-26 Optical modulating element

Publications (1)

Publication Number Publication Date
JPH01217416A true JPH01217416A (en) 1989-08-31

Family

ID=12629311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042198A Pending JPH01217416A (en) 1988-02-26 1988-02-26 Optical modulating element

Country Status (1)

Country Link
JP (1) JPH01217416A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270726A (en) * 1985-05-27 1986-12-01 Nec Corp Waveguide type optical gate switch
JPS62260120A (en) * 1986-05-07 1987-11-12 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor external light modulator
JPS62299936A (en) * 1986-06-20 1987-12-26 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270726A (en) * 1985-05-27 1986-12-01 Nec Corp Waveguide type optical gate switch
JPS62260120A (en) * 1986-05-07 1987-11-12 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor external light modulator
JPS62299936A (en) * 1986-06-20 1987-12-26 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
US4743087A (en) Optical external modulation semiconductor element
JP2003248204A (en) Semiconductor optical element, semiconductor optical modulation element and semiconductor optical photodetector
US8600198B2 (en) Semiconductor optical modulator, semiconductor optical integrated device, and method of manufacturing the same
JPH0465367B2 (en)
US4913506A (en) Optical modulation device
JPH0732279B2 (en) Semiconductor light emitting element
KR100500097B1 (en) Optical modulator
US4991921A (en) Pn junction optical modulating device having a buffer layer with small energy gap
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
US4946243A (en) Optical modulation element
US6760141B2 (en) Semiconductor optical modulator and semiconductor optical device
JPS63186210A (en) Semiconductor integrated light modulating element
JPH01217416A (en) Optical modulating element
JPH01217418A (en) Optical modulation element
US5920419A (en) Quantum well electro-optical modulator
JP4653940B2 (en) Light controller for communication
JP7402014B2 (en) Optical semiconductor elements, optical semiconductor devices
JP3164063B2 (en) Semiconductor optical modulator and semiconductor optical device
JPS6170779A (en) Optical transmitter
JPH03291617A (en) Integrated type optical modulator
JPH01217417A (en) Optical modulation element
JP2596186B2 (en) Integrated semiconductor optical modulator
JPS6281086A (en) Optical transmitter
JP2776381B2 (en) Semiconductor laser device