JPH01215944A - Valve seat made of ni-al sintered alloy and its manufacture - Google Patents

Valve seat made of ni-al sintered alloy and its manufacture

Info

Publication number
JPH01215944A
JPH01215944A JP3924688A JP3924688A JPH01215944A JP H01215944 A JPH01215944 A JP H01215944A JP 3924688 A JP3924688 A JP 3924688A JP 3924688 A JP3924688 A JP 3924688A JP H01215944 A JPH01215944 A JP H01215944A
Authority
JP
Japan
Prior art keywords
powder
valve seat
weight
alloy
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3924688A
Other languages
Japanese (ja)
Inventor
Naoki Motooka
直樹 本岡
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3924688A priority Critical patent/JPH01215944A/en
Publication of JPH01215944A publication Critical patent/JPH01215944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a valve seat having excellent high temp. strength by mixing Al-B-Ni alloy powder and Fe powder having regulated grain size, subjecting the mixture to molding, sintering and thereafter recompressing. CONSTITUTION:The Al-B-Ni alloy powder having <=100 mesh grain size and the Fe powder having <=200 mesh grain size are mixed in such a manner that its final compsn. is regulated to, by weight, 9-13% Al, 6-16% Fe, 0.01-0.1% B and the balance consisting of Ni. The mixed powder is subjected to pressure molding and the molding body is sintered at 1,100-1,300 deg.C in a vacuum or in a nonoxidizing atmosphere. The material is then recompressed by a mold, etc., to regulate its true density ratio to >=95%. By this method, the title value seat having >=400 Mpa yield stress at 500 deg.C can be obtd. The valve seat is effective for a high load and high output engine, exposed to the high temp. of 500 deg.C or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関に使用されるバルブシートに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a valve seat used in an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来から内燃機関に使用されているバルブシート(弁座
)の材料としては、5UH−4等の耐熱鋼を代表とする
鉄系合金が大部分であった。
Conventionally, most of the materials for valve seats used in internal combustion engines have been iron-based alloys, typified by heat-resistant steel such as 5UH-4.

又、鉄系合金を用いて各種の改良を加えた内燃機関用バ
ルブシートも知られている。例えば、特開昭60−13
055号公報及び特開昭60−13062号公報には、
2層構造にすることにより耐熱性を高めたバルブシート
が開示されている。特開昭61−505号公報及び特開
昭61−561号公報には、2層構造のバルブシートに
銅を溶浸して熱伝導性を改善したものが記載されている
。更に、特開昭61−165230号公報及び特開昭6
2−52650号公報には、Orの含有量が多く且つそ
の一部が炭化物等の硬質粒子として分散した鉄系合金か
らなるバルブシートが開示されている。
In addition, valve seats for internal combustion engines that use iron-based alloys and have various improvements are also known. For example, JP-A-60-13
No. 055 and JP-A-60-13062,
A valve seat with improved heat resistance by having a two-layer structure is disclosed. JP-A-61-505 and JP-A-61-561 disclose a valve seat having a two-layer structure in which copper is infiltrated to improve thermal conductivity. Furthermore, JP-A-61-165230 and JP-A-6
Japanese Patent No. 2-52650 discloses a valve seat made of an iron-based alloy containing a large amount of Or, some of which is dispersed as hard particles such as carbide.

しかし、従来のバルブシートに用いていた鉄系合金は温
度が500Cを超えると急激に強度が低下するため、長
期間の使用に耐えられなかった。
However, the iron-based alloys used in conventional valve seats suddenly lose their strength when the temperature exceeds 500C, so they cannot withstand long-term use.

即ち、高出力・高負荷エンジンのように高性能な内燃機
関でバルブシートが500C以上の温度に曝されると「
へたり」が生じる等の問題があった。
In other words, when a valve seat is exposed to a temperature of 500C or higher in a high-performance internal combustion engine such as a high-output, high-load engine,
There were problems such as "sagging".

〔発明が解決′しようとする課題〕[Problem that the invention attempts to solve]

従来の鉄系合金からなるバルブシートは、上記の如く高
温強度に制約があるため、最近の高温で作動する高性能
な内燃機関においては耐熱性が不足してきている現状で
ある。
Conventional valve seats made of iron-based alloys are limited in their high-temperature strength as described above, and therefore their heat resistance is currently insufficient in recent high-performance internal combustion engines that operate at high temperatures.

鉄系合金以外でバルブシートに使用される材料としてC
oをベースにしたステライトがあるが、ベースとなるG
oが高価であるためバルブシート自体が非常に高価格に
なる欠点がある。
C as a material other than iron-based alloys used for valve seats
There is a stellite based on o, but the base is G
Since o is expensive, there is a drawback that the valve seat itself is very expensive.

本発明はこのような現状に鑑み、バルブシートが500
1?以上の高温に曝される高性能な内燃機関においても
長期間に亘って使用できるような優れた高温強度を有す
るバルブシートを安価に提供することを目的とするもの
である。
In view of the current situation, the present invention has been developed to reduce the number of valve seats to 500
1? The object of the present invention is to provide a valve seat at a low cost that has excellent high-temperature strength and can be used for a long period of time even in high-performance internal combustion engines exposed to high temperatures.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のバルブシートはNi−Al系焼結合金からなる
ものであって、9〜13重量%のAlと、6〜16重量
%のFeと、0.01〜0.1重量%のBと、残部のN
iとからなり、真密度比が95%以上であって、500
′Cでの降伏応力が400 MPa以上であることを特
徴としている。
The valve seat of the present invention is made of a Ni-Al based sintered alloy, and contains 9 to 13% by weight of Al, 6 to 16% by weight of Fe, and 0.01 to 0.1% by weight of B. , remainder N
i, the true density ratio is 95% or more, and 500
It is characterized by a yield stress of 400 MPa or more at 'C.

又、本発明のNi−A/!系焼結合金からなるバルブシ
ートの製造方法は粉末冶金法によるものであり、粒径が
100メツシュ以下のl!−B−Ni合金粉末と粒径が
200メツシュ以下のFe粉末とを、最終組成が9〜1
3重量%のAlと、6〜16重量%のFeと、0.01
〜0.1重量%のBと、残部のNiとになるように混合
し、この混合粉末の成形体を真空中又は非酸化性雰囲気
中(こおいて1100〜1300 Cの温度で焼結した
後、真密度比95%以上に再圧縮することを特徴として
いる。
Moreover, Ni-A/! of the present invention! The manufacturing method of the valve seat made of the sintered alloy is based on the powder metallurgy method, and the particle size is 100 mesh or less. -B-Ni alloy powder and Fe powder with a particle size of 200 mesh or less are combined to have a final composition of 9 to 1
3 wt% Al, 6-16 wt% Fe, 0.01
~0.1% by weight of B and the remainder of Ni were mixed, and a molded body of this mixed powder was sintered in a vacuum or in a non-oxidizing atmosphere (here, at a temperature of 1100 to 1300 C). After that, it is characterized by being recompressed to a true density ratio of 95% or more.

混合粉末の成形体を形成するためには、通常の如く混合
粉末にパラフィン、カンファー等の結合剤を2〜5重量
%添加して加圧成形する。この結合剤は焼結前に500
〜900Cで加熱することにより除去できる。
In order to form a molded body of the mixed powder, 2 to 5% by weight of a binder such as paraffin or camphor is added to the mixed powder and then pressure molded. This binder is 500%
It can be removed by heating at ~900C.

又、混合粉末を上記最終組成に調製するためには、A/
ニーE−Ni合金粉末の組成をA19.1〜15.5重
量%、Bo、01〜0.12重量%及び残部Niとする
ことが望ましい。
In addition, in order to prepare the mixed powder to the above final composition, A/
It is desirable that the composition of the Ni E-Ni alloy powder be A19.1 to 15.5% by weight, Bo 01 to 0.12% by weight, and the balance Ni.

なお、本発明に係るA4−Ni系焼結合金は、その性質
Gこ影響を与えない範囲で不可避不純物を含み得ること
は云うまでもない。
It goes without saying that the A4-Ni based sintered alloy according to the present invention may contain unavoidable impurities within a range that does not affect its properties.

〔作用〕[Effect]

本発明のバルブシートは、A4−Ni系金属間化合物を
ベースとするA/!−Ni系焼結合金からなる。このj
k4−Ni系金属間化合物は非常に高硬度であり、従来
は粉末冶金材料の分散粒子として使用されていた。然る
に本発明においては、この1−Ni系金属間化合物は耐
熱性が高いうえに耐摩耗性にも優れている点に着目し、
H工Pや熱間押出などの粉末冶金技術を利用して、l!
−Ni系金属間化合物自体ヲベースとしてバルブシート
を構成したものである。
The valve seat of the present invention is an A/! valve seat based on an A4-Ni intermetallic compound. - Made of Ni-based sintered alloy. This j
K4-Ni intermetallic compounds have extremely high hardness and have conventionally been used as dispersed particles in powder metallurgy materials. However, in the present invention, we focused on the fact that this 1-Ni-based intermetallic compound has high heat resistance and excellent wear resistance.
Using powder metallurgy techniques such as H-P and hot extrusion, l!
-The valve seat is constructed using the Ni-based intermetallic compound itself as a base.

しかも、高出力・高負荷エンジンのように高性能な内燃
機関でバルブシートが500C以上の温度に曝されても
「へたり」が生じないためには、500Cでの降伏応力
が400 MPa以上である必要があることが判明した
が、本発明のバルブシートはこの条件を充たすものであ
る。
Furthermore, in order for the valve seat to not "sag" even when exposed to temperatures of 500C or higher in a high-performance internal combustion engine such as a high-output, high-load engine, the yield stress at 500C must be 400 MPa or higher. The valve seat of the present invention satisfies this condition.

構成元素のうちAlはNiと共に金属間化合物を形成す
るが、Alが9重量%未満では金属間化合物の形成に不
足であり、13重量%を超えると金属間化合物を形成し
ないA’7が増加するので、合金の特性が劣化する。F
eはAl−Ni系金属間化合物のAl又はNiと置換す
る形で固溶し、延性を改善する効果を有する。しかし、
Feが6重量%未満では延性改善の効果が現われず、1
6重量%を超えると加工性の低下が大さくなる。BもF
eと同様に延性を改善するが、0゜01重量%未満では
その効果がなく、0.1重量%を超えても効果がもはや
大きくならない。
Among the constituent elements, Al forms an intermetallic compound together with Ni, but if Al is less than 9% by weight, it is insufficient to form an intermetallic compound, and if it exceeds 13% by weight, A'7, which does not form an intermetallic compound, increases. As a result, the properties of the alloy deteriorate. F
e forms a solid solution by replacing Al or Ni in the Al-Ni intermetallic compound, and has the effect of improving ductility. but,
If Fe is less than 6% by weight, the effect of improving ductility does not appear, and 1
If it exceeds 6% by weight, the deterioration in processability will be significant. B and F
Like e, it improves ductility, but if it is less than 0.01% by weight, it has no effect, and if it exceeds 0.1% by weight, the effect is no longer significant.

本発明のバルブシートは粉末冶金法により製造する。N
i、Al及びBについてはAl−B−Ni合金粉末を用
い、Feは単独の粉末として添加する。単独とは合金化
していないという意味であり、原料粉末として1−B−
Ni合金粉末の表面に微細なFe粉末が付着した拡散結
合粉末を用いることもできる。Fe単独の粉末を用いる
ことで、焼結時にFeがAl−B−Ni合金粉末中に拡
散し、これによって焼結が促進され粉末の結合が強化さ
れる。
The valve seat of the present invention is manufactured by powder metallurgy. N
For i, Al and B, Al-B-Ni alloy powder is used, and Fe is added as a single powder. Single means that it is not alloyed, and 1-B- is used as a raw material powder.
Diffusion-bonded powder in which fine Fe powder is attached to the surface of Ni alloy powder can also be used. By using a powder containing only Fe, Fe diffuses into the Al-B-Ni alloy powder during sintering, thereby promoting sintering and strengthening the bond between the powders.

従ってA4−B−Ni合金粉末との接触界面を増加させ
、拡散焼結を促進させるために、Fe粉末の粒径は微細
であることが必要であり、この粒径が200メツシュを
超えて大きくなると降伏応力などの所望の特性が得られ
ない。又、Az−B−4i合金粉末の粒径も100メツ
シュ以下とすべきであり、これより大さいと粉末の成形
性が低下すると共に、上記したFeの固溶が不充分とな
る。
Therefore, in order to increase the contact interface with the A4-B-Ni alloy powder and promote diffusion sintering, the particle size of the Fe powder needs to be fine, and if the particle size exceeds 200 mesh, it is necessary to In this case, desired properties such as yield stress cannot be obtained. Further, the particle size of the Az-B-4i alloy powder should also be 100 mesh or less; if it is larger than this, the moldability of the powder will decrease and the solid solution of Fe described above will become insufficient.

原料粉末の焼結は真空中又は非酸化性雰囲気中1100
〜1300 Cで行なう。1100 C未満の温度では
焼結が不充分となり、1300Cを超えても効果の改善
がなく不経済である。
The raw material powder is sintered in a vacuum or in a non-oxidizing atmosphere.
Perform at ~1300C. If the temperature is less than 1100 C, sintering will be insufficient, and if the temperature exceeds 1300 C, the effect will not improve and it will be uneconomical.

又、焼結後に再圧縮を行ない真密度比を95%以上店す
る。真密度比が95%未満では高温強度が不足し、所望
の降伏応力などが得られない。再圧縮の手段は、鍛造、
押出、H工P等の通常の方法で良い。
Further, after sintering, recompression is performed to increase the true density ratio to 95% or more. If the true density ratio is less than 95%, the high temperature strength will be insufficient and the desired yield stress etc. will not be obtained. The means of recompression is forging,
Conventional methods such as extrusion and H-processing may be used.

〔実施例〕〔Example〕

実施例1 粒径が100メツシュ以下のA4−B−Ni合金粉末と
粒径が200メツシュ以下のFe粉末とを、最終組成が
11重量%のAl、10重量%のFe、0.05重量%
のB及び残部のNiとになるように混合し、この混合粉
末に対して3重量%のパラフィンを添加混合した後、金
型で圧力Tton膚で成形した。
Example 1 A4-B-Ni alloy powder with a particle size of 100 mesh or less and Fe powder with a particle size of 200 mesh or less were combined in a final composition of 11% by weight of Al, 10% by weight of Fe, and 0.05% by weight.
After adding and mixing 3% by weight of paraffin to this mixed powder, it was molded using a mold under a pressure of Tton.

この成形体を水素雰囲気中800Cに加熱してパラフィ
ンを除去し、次に真空中において1200 trの温度
で焼結した。得られた焼結体を金型で再圧縮して真密度
比98%とし、更に真空中1000 Cで2時間加熱し
て焼鈍した。
The compact was heated to 800 C in a hydrogen atmosphere to remove paraffin, and then sintered in vacuum at a temperature of 1200 tr. The obtained sintered body was recompressed in a mold to a true density ratio of 98%, and further annealed by heating at 1000 C in vacuum for 2 hours.

比較のために、Fe粉末の粒径を200メツシュよりも
粗くした以外は実施例1と同じ方法により、同一組成で
同一真密度比の素材を製造した。
For comparison, materials with the same composition and true density ratio were manufactured by the same method as in Example 1 except that the particle size of the Fe powder was made coarser than 200 mesh.

これら2種類の素材からテストピースを切す出し、50
0Cに保持した状態で圧縮降伏応力を測定したところ、
本発明の素材は450 MPaであったのに対し、比較
例の素材は390 MPaでしかなかった。
Cut test pieces from these two types of materials, 50
When the compressive yield stress was measured while being held at 0C,
The material of the present invention had a strength of 450 MPa, while the material of the comparative example had a strength of only 390 MPa.

実施例2 実施例1と同様の方法であるが、焼結後の再圧縮の圧力
を変えることにより、真密度比を夫々91%、93%、
95%及び97%とした素材を製造した。
Example 2 The same method as Example 1 was used, but by changing the recompression pressure after sintering, the true density ratio was changed to 91%, 93%, and 93%, respectively.
Materials with a concentration of 95% and 97% were produced.

各素材について500Cでの圧縮降伏応力を測定し結果
を図面に示した。この図面から95%未満の真密度比で
は400 MPa以上の降伏応力が得られないことが判
る。
The compressive yield stress at 500C was measured for each material, and the results are shown in the drawings. It can be seen from this drawing that a yield stress of 400 MPa or more cannot be obtained with a true density ratio of less than 95%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の鉄系合金製バルブシートに比べ
て高温強度に優れたNi−A4系焼結合金製バルブシー
トを提供することができる。従って、本発明はバルブシ
ートが従来にない500C以上の高温に曝される高負荷
・高出力エンジン等に特に有効である。
According to the present invention, it is possible to provide a Ni-A4-based sintered alloy valve seat that has superior high-temperature strength compared to conventional iron-based alloy valve seats. Therefore, the present invention is particularly effective in high-load, high-output engines where valve seats are exposed to unprecedented high temperatures of 500C or higher.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はバルブシートを構成するNi−Al系焼結合金の
真密度比と500Cでの降伏応力との関係を示すグラフ
である。 出願人  住友電気工業株式会社
The drawing is a graph showing the relationship between the true density ratio of the Ni--Al based sintered alloy constituting the valve seat and the yield stress at 500C. Applicant: Sumitomo Electric Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)9〜13重量%のAlと、6〜16重量%のFe
と、0.01〜0.1重量%のBと、残部のNiとから
なり、真密度比が95%以上であつて、500℃での降
伏応力が400MPa以上であることを特徴とするNi
−Al系焼結合金製バルブシート。
(1) 9-13% by weight of Al and 6-16% by weight of Fe
, 0.01 to 0.1% by weight of B, and the balance of Ni, which has a true density ratio of 95% or more and a yield stress of 400 MPa or more at 500°C.
-Al-based sintered alloy valve seat.
(2)粒径が100メッシュ以下のAl−B−Ni合金
粉末と粒径が200メッシュ以下のFe粉末とを、最終
組成が9〜13重量%のAlと、6〜16重量%のFe
と、0.01〜0.1重量%のBと、残部のNiとにな
るように混合し、この混合粉末の成形体を真空中又は非
酸化性雰囲気中において1100〜1300℃の温度で
焼結した後、真密度比95%以上に再圧縮することを特
徴とするNi−Al系焼結合金製バルブシートの製造方
法。
(2) Al-B-Ni alloy powder with a particle size of 100 mesh or less and Fe powder with a particle size of 200 mesh or less have a final composition of 9 to 13% by weight of Al and 6 to 16% by weight of Fe.
, 0.01 to 0.1% by weight of B, and the balance of Ni, and a compact of this mixed powder is sintered at a temperature of 1100 to 1300°C in vacuum or in a non-oxidizing atmosphere. A method for manufacturing a valve seat made of a Ni-Al based sintered alloy, which comprises recompressing the Ni-Al based sintered alloy to a true density ratio of 95% or more after solidification.
JP3924688A 1988-02-22 1988-02-22 Valve seat made of ni-al sintered alloy and its manufacture Pending JPH01215944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3924688A JPH01215944A (en) 1988-02-22 1988-02-22 Valve seat made of ni-al sintered alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3924688A JPH01215944A (en) 1988-02-22 1988-02-22 Valve seat made of ni-al sintered alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH01215944A true JPH01215944A (en) 1989-08-29

Family

ID=12547775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3924688A Pending JPH01215944A (en) 1988-02-22 1988-02-22 Valve seat made of ni-al sintered alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH01215944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295361C (en) * 2005-11-09 2007-01-17 锦州市催化剂厂 Production method of regenerating metal alloy from imperfect fine powder using nickel aluminium alloy catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295361C (en) * 2005-11-09 2007-01-17 锦州市催化剂厂 Production method of regenerating metal alloy from imperfect fine powder using nickel aluminium alloy catalyst

Similar Documents

Publication Publication Date Title
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
EP1347068A1 (en) Sintered alloy for valve seats, valve seat and manufacturing method thereof
EP0480495A2 (en) Sintered ferrous-based material
JPH1171651A (en) Ferrous sintered alloy for valve seat
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
JPH0835027A (en) Copper alloy excellent in high temperature wear resistance
JP2634103B2 (en) High temperature bearing alloy and method for producing the same
JPH01215944A (en) Valve seat made of ni-al sintered alloy and its manufacture
JPS60100646A (en) High toughness sintered body of ceramic
JPH03158444A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JP7143899B2 (en) Method for producing copper-based sintered body
JP4240761B2 (en) Al-based oxide-dispersed Fe-based sintered alloy with excellent wear resistance and method for producing the same
JPH0931612A (en) Iron-base sintered alloy excellent in strength and wear resistance
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JPH0543998A (en) Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material
KR0118773B1 (en) Sintered alloy steel for valve seat
JPH07109023B2 (en) Iron-based sintered alloy for valve sheet
JP3257212B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine intake
JP3346292B2 (en) High strength Fe-based sintered valve seat
JPH0431014B2 (en)
JPS649367B2 (en)
JPH07188873A (en) Valve seat made of iron base sintered alloy for internal combustion engine
JP3105509B2 (en) Iron-based sintered alloy for valve seat
JP2643740B2 (en) Two-layer valve seat made of copper infiltrated iron-based sintered alloy for internal combustion engines