JPH01213961A - Electrode catalyst of fuel battery - Google Patents

Electrode catalyst of fuel battery

Info

Publication number
JPH01213961A
JPH01213961A JP63037425A JP3742588A JPH01213961A JP H01213961 A JPH01213961 A JP H01213961A JP 63037425 A JP63037425 A JP 63037425A JP 3742588 A JP3742588 A JP 3742588A JP H01213961 A JPH01213961 A JP H01213961A
Authority
JP
Japan
Prior art keywords
catalyst
manganese
electrode
electrode catalyst
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63037425A
Other languages
Japanese (ja)
Inventor
Noboru Segawa
昇 瀬川
Sanji Ueno
上野 三司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63037425A priority Critical patent/JPH01213961A/en
Publication of JPH01213961A publication Critical patent/JPH01213961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To maintain a three-phase interface stably for a long period of time by subjecting electrode catalyst to a processing to turn it into alloy, and suppress dissolution of rare metal catalyst in an electrolyte solution. CONSTITUTION:A filter 3 consisting of a plurality of carbon papers stacked one over another is furnished at the outlet from a heat treatment furnace 2, and thereover electrode catalyst 1 bearing a platinum catalyst is placed. Manganese chloride is placed on a ceramic tray 4 and heated to generate vapor including manganese, which is thus vapored fast in the electrode catalyst 1. Thus manganese is vapored fast on catalyst layer 1 containing platinum as main component to produce platinum-manganese alloy catalyst, wherein dissolution of the alloy catalyst in the electrolyte solvent can be suppressed. This suppresses surface area reduction of rare metal catalyst and enables maintaining of the three-phase interface stably for a long period of time.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、貴金属触媒を担持したカーボン粉と結着剤か
ら成る燃料電池の電極触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell electrode catalyst comprising carbon powder supporting a noble metal catalyst and a binder.

(従来の技術) 燃料電池は、燃料の持つ化学エネルギーを電気化学プロ
セスで酸化させることにより、酸化反応に伴って放出さ
れるエネルギーを直接電気エネルギーに変換する装置で
ある。この燃料電池は、通常電解質を挾んで一対の多孔
質電極を配置し、−方の電極の背面に水素等の燃料ガス
を接触させて燃料極を構成するとともに、他方の電極の
背面に酸素等の酸化剤を接触させて酸化剤極を構成して
、このときに起こる電気化学的反応により発生する電気
エネルギーを、上記一対の電極間から取出すようにした
ものである。この場合、電解質として一般に用いられて
いるのは、リン酸等の酸性溶液である。また、前記多孔
質電極は、通常カーボンペーパーのような多孔性炭素基
材に貴金属触媒を担持させたものである。
(Prior Art) A fuel cell is a device that directly converts the energy released as a result of the oxidation reaction into electrical energy by oxidizing the chemical energy of fuel through an electrochemical process. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte between them, and the back of the negative electrode is contacted with a fuel gas such as hydrogen to form a fuel electrode, while the back of the other electrode is contacted with a fuel gas such as oxygen, etc. The oxidizing agent is brought into contact with the oxidizing agent to form an oxidizing agent electrode, and the electrical energy generated by the electrochemical reaction that occurs at this time is extracted from between the pair of electrodes. In this case, an acidic solution such as phosphoric acid is generally used as the electrolyte. Further, the porous electrode is usually made by supporting a noble metal catalyst on a porous carbon substrate such as carbon paper.

この様にリン酸等の酸性電解質を用いる燃料電池におい
ては、電極反応は、例えば上記の様に、貴金属触媒を担
持させた炭素基材からなる固相、リン酸溶液のような電
解質からなる液相、及び燃料ガス及び酸化剤ガスのよう
な反応ガスからなる気相の三つの相が共存する場所で起
こる。この様な三つの相が共存する場所は、一般に三相
帯と呼ばれるが、この三相帯の面積によって、燃料電池
の電極反応及び電池特性が影響を受ける。即ち、その面
積が小さいほど電池特性は低下し、反対に。
In a fuel cell that uses an acidic electrolyte such as phosphoric acid, the electrode reaction is carried out in a solid phase consisting of a carbon base material supporting a noble metal catalyst, or in a liquid phase consisting of an electrolyte such as a phosphoric acid solution, as described above. This occurs where three phases coexist: a phase, and a gas phase consisting of a reactant gas such as a fuel gas and an oxidant gas. A place where these three phases coexist is generally called a three-phase zone, and the electrode reaction and cell characteristics of the fuel cell are affected by the area of this three-phase zone. In other words, the smaller the area, the lower the battery characteristics, and vice versa.

面積が大きいほど電池特性は向上し、高性能燃料電池を
得ることができる。
The larger the area, the better the cell characteristics will be, making it possible to obtain a high-performance fuel cell.

上述した様に、燃料電池特性に影響を及ぼす三相帯の面
積を考える上において、多孔質電極に配設される貴金属
触媒の表面積の維持は不可欠である。
As mentioned above, when considering the area of the three-phase zone that affects fuel cell characteristics, it is essential to maintain the surface area of the noble metal catalyst disposed in the porous electrode.

(発明が解決しようとする課題) しかしながら、この様な電極触媒は、燃料電池の運転に
伴い貴金属触媒の電解質溶液への溶解、貴金属触媒の凝
縮による造粒あるいはカーボン担体の腐蝕による担持触
媒の凝集等によりその表面積の減少が進み、その結果、
三相界面の面積の減少を引き起こすので、電極反応が充
分に行なわれず、電池特性の低下につながる不具合があ
った。
(Problems to be Solved by the Invention) However, with such electrode catalysts, during the operation of the fuel cell, the noble metal catalyst dissolves in the electrolyte solution, the noble metal catalyst becomes granulated due to condensation, or the supported catalyst agglomerates due to corrosion of the carbon support. etc., the surface area continues to decrease, and as a result,
Since this causes a decrease in the area of the three-phase interface, sufficient electrode reaction is not carried out, leading to a problem of deterioration of battery characteristics.

そこで本発明は貴金属触媒の表面積減少を抑制し、長期
間安定した三相界面を維持できる燃料電池の電極触媒を
堤供することを目的とする。
Therefore, an object of the present invention is to provide an electrode catalyst for a fuel cell that can suppress the decrease in surface area of a noble metal catalyst and maintain a stable three-phase interface for a long period of time.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明の燃料電池の電極触媒
は、一方の面にガス流通路を形成するとともに、電解質
と接する他方の面に貴金属微粒子を担持して触媒層を形
成した燃料電池の電極において、触媒層は白金金属にケ
ミカルペーパーデイポジション法によりマンガン金属を
蒸着し、白金金属を主成分とする白金−マンガン合金触
媒としたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the electrode catalyst of the fuel cell of the present invention has gas flow passages formed on one surface and precious metal fine particles supported on the other surface in contact with the electrolyte. In a fuel cell electrode having a catalyst layer formed thereon, the catalyst layer is characterized in that manganese metal is vapor-deposited onto platinum metal by a chemical paper deposition method to form a platinum-manganese alloy catalyst containing platinum metal as a main component.

(作  用) 白金を主成分とする触媒層にマンガンを蒸着して白金−
マンガン合金触媒としたもので、合金触媒の電解質溶液
への溶解を抑制することが可能となり、触媒層の表面積
減少を防止できろ。
(Function) Manganese is vapor-deposited on the catalyst layer whose main component is platinum.
With a manganese alloy catalyst, it is possible to suppress dissolution of the alloy catalyst into the electrolyte solution, and prevent a decrease in the surface area of the catalyst layer.

(実 施 例) 以下本発明の一実施例について第1図および第2図を参
照して説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

■は燃料電池の電極触媒であり、この電極触媒1はカー
ボンブラック(この実施例ではキャボット社製のVXC
−72Rを採用した。)よりなるカーボン担持体とこの
カーボン担持体に塩化白金酸の環元法により7重量パー
セントに担持した白金触媒とにより構成する。そして、
電極触媒1は塩化マンガン(MnC1,・4H,0)を
蒸着発生源としたケミカルペーパーデイポジション(以
下CVDとする。)法によりマンガンを蒸着し、白金金
属を主成分とする少くともPL−Mn合金触媒を形成す
る。
3 is an electrode catalyst of a fuel cell, and this electrode catalyst 1 is carbon black (in this example, VXC manufactured by Cabot Co., Ltd.).
-72R was adopted. ) and a platinum catalyst supported at 7% by weight on the carbon support by a cycloplatinic acid ring process. and,
Electrode catalyst 1 is made by depositing manganese by chemical paper deposition (hereinafter referred to as CVD) method using manganese chloride (MnC1,4H,0) as a deposition source, and at least PL-Mn whose main component is platinum metal. Forms an alloy catalyst.

次にCVD法について詳細に説明する。2は外側に熱源
を設置した円筒形の熱処理炉であり、この熱処理炉2の
出口側にはカーボンペーパーを複数枚重ねたフィルター
3を配設し、このフィルター3の上に白金触媒を担持し
た電極触媒1を熱処理炉2の内側を満すように載置する
とともに、入口側には温度を任意に設定できる平型のセ
ラミック皿4を配設した。粉状にした塩化マンガンをセ
ラミック皿4にのせて1200℃まで加熱し、マンガン
を含む蒸気を発生させるとともに、熱処理炉2の入口側
より一定量のN2(200Q/m1n)をキャリヤガス
として流入させ、3時間この状態を保持して400℃に
加熱した電極触媒1にマンガンを蒸着させる。
Next, the CVD method will be explained in detail. Reference numeral 2 denotes a cylindrical heat treatment furnace with a heat source installed on the outside, and a filter 3 made of multiple sheets of carbon paper is placed on the exit side of the heat treatment furnace 2, and a platinum catalyst is supported on the filter 3. The electrode catalyst 1 was placed so as to fill the inside of the heat treatment furnace 2, and a flat ceramic plate 4 whose temperature could be arbitrarily set was placed on the inlet side. Powdered manganese chloride is placed on a ceramic plate 4 and heated to 1200°C to generate manganese-containing steam, and a certain amount of N2 (200Q/m1n) is introduced as a carrier gas from the inlet side of the heat treatment furnace 2. , Manganese is evaporated onto the electrode catalyst 1 which is heated to 400° C. by maintaining this state for 3 hours.

次にljl/winのト1□をキャリヤガスとして1時
間流入させた後炉冷する。熱処理炉2より取り出した電
極触媒1は不活性ガス(N2)雰囲気中でかつ。
Next, ljl/win To1□ was introduced as a carrier gas for 1 hour, and then the furnace was cooled. The electrode catalyst 1 taken out from the heat treatment furnace 2 was placed in an inert gas (N2) atmosphere.

1500℃に加熱した状態で30分間熱処理を行う。尚
Heat treatment is performed at 1500° C. for 30 minutes. still.

熱処理後の定量分析試験では白金が全体の70%に対し
、マンガンは1〜3%の結果が得られた。
A quantitative analysis test after heat treatment showed that platinum accounted for 70% of the total, while manganese accounted for 1 to 3%.

このように構成した電極触媒1を用いて負荷電流密度2
20+sA/ aJ、空気極およびN1索極の利用率5
0%、常圧にて発電試験をした結果を第2図に示す。
Using the electrode catalyst 1 configured in this way, the load current density 2
20+sA/aJ, air pole and N1 cable pole utilization 5
Figure 2 shows the results of a power generation test at 0% and normal pressure.

第2図において実線はこの実施例による電極触媒であり
、鎖線は従来の合金化処理を施さない電極触媒を用いた
例であり、合金化処理により資金りか触媒の電解質溶液
への溶解が抑制され、従来に比して高電圧を長期間維持
することが可能になった。
In FIG. 2, the solid line is the electrode catalyst according to this example, and the chain line is an example using an electrode catalyst that is not subjected to conventional alloying treatment.The alloying treatment suppresses the dissolution of the catalyst into the electrolyte solution. This makes it possible to maintain high voltage for a longer period of time than before.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電極触媒を合金化
処理したので貴金属触媒の電解質溶液への溶解を抑制す
ることができ、三相界面を長期間安定して維持すること
が可能となる。
As explained above, according to the present invention, since the electrode catalyst is alloyed, dissolution of the noble metal catalyst into the electrolyte solution can be suppressed, and the three-phase interface can be maintained stably for a long period of time. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すCVD法の構成図、第
2図は本発明の一実施例にもとづく電極触媒と従来のも
のとを比較した電池電圧の特性線図である。 1・・・電極触媒、    2・・・熱処理炉、3・・
・フィルター、    4・・・セラミック皿。 代理人 弁理士 則 近 憲 佑 同  第子丸 健 ■ 第1図 遼 転 叫1’JI  (hrsン 第 2 図
FIG. 1 is a block diagram of a CVD method showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram of battery voltage comparing an electrode catalyst based on an embodiment of the present invention with a conventional one. 1... Electrode catalyst, 2... Heat treatment furnace, 3...
・Filter, 4... Ceramic plate. Agent Patent Attorney Noriyuki Ken Yudo Daishimaru Ken

Claims (1)

【特許請求の範囲】[Claims] 一方の面にガス流通路を形成するとともに、電解質に接
する他方の面に貴金属微粒子を担持して触媒層を形成し
た燃料電池の電極において、触媒層は白金金属にケミカ
ルベーパーデイポジシヨン法によりマンガン金属を蒸着
し、白金金属を主成分とする白金−マンガン合金触媒と
したことを特徴とする燃料電池の電極触媒。
In a fuel cell electrode, a catalyst layer is formed by forming gas flow passages on one side and carrying precious metal fine particles on the other side in contact with the electrolyte. An electrode catalyst for a fuel cell, characterized in that a metal is vapor-deposited to form a platinum-manganese alloy catalyst containing platinum metal as a main component.
JP63037425A 1988-02-22 1988-02-22 Electrode catalyst of fuel battery Pending JPH01213961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037425A JPH01213961A (en) 1988-02-22 1988-02-22 Electrode catalyst of fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037425A JPH01213961A (en) 1988-02-22 1988-02-22 Electrode catalyst of fuel battery

Publications (1)

Publication Number Publication Date
JPH01213961A true JPH01213961A (en) 1989-08-28

Family

ID=12497166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037425A Pending JPH01213961A (en) 1988-02-22 1988-02-22 Electrode catalyst of fuel battery

Country Status (1)

Country Link
JP (1) JPH01213961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098561A1 (en) * 2001-06-01 2002-12-12 Sony Corporation Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098561A1 (en) * 2001-06-01 2002-12-12 Sony Corporation Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
US7988834B2 (en) 2001-06-01 2011-08-02 Sony Corporation Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device

Similar Documents

Publication Publication Date Title
US5183713A (en) Carbon monoxide tolerant platinum-tantalum alloyed catalyst
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
Bron et al. Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3 (CO) 12
JPS59141169A (en) 3-element metal alloy catalyst for fuel battery and method of producing same
EP1773488A2 (en) Catalyst support for an electrochemical fuel cell
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
CN102687320A (en) Electrode catalyst for fuel cell
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
CN102365775A (en) Platinum phosphide as a cathode catalyst for pemfcs and phosphorous treatment of catalysts for fuel cell
JPH06140047A (en) Manufacture of carbon carrier for phosphoric acid type fuel cell catalyst
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JPH0822827A (en) Fuel cell electrode and its manufacture
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JPH01213961A (en) Electrode catalyst of fuel battery
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH03236160A (en) Electrode catalyst layer for fuel cell and manufacture thereof
JP2005310793A (en) Membrane-electrode assembly for fuel cell, and fuel cell system including the same
JP2001015121A (en) Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
JPH01120770A (en) Manufacture of electrode catalyst for fuel cell
JPS63299057A (en) Manufacture of fuel cell electrode
JPH10102273A (en) Water electrolytic cell
JPS62154464A (en) Electrode catalyst layer for fuel cell
JPH0368452A (en) Production of platinum alloy catalyst
JPH03127459A (en) Electrode catalysts for phosphoric acid type fuel cell