JPH01212869A - Multichamber type air conditioner - Google Patents

Multichamber type air conditioner

Info

Publication number
JPH01212869A
JPH01212869A JP63038183A JP3818388A JPH01212869A JP H01212869 A JPH01212869 A JP H01212869A JP 63038183 A JP63038183 A JP 63038183A JP 3818388 A JP3818388 A JP 3818388A JP H01212869 A JPH01212869 A JP H01212869A
Authority
JP
Japan
Prior art keywords
capacity
poles
combination step
pressure
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63038183A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoneda
米田 浩
Akihiro Kino
章宏 城野
Hiroyoshi Yamada
山田 弘喜
Kenji Hirose
広瀬 謙司
Keiji Ogawa
啓司 小川
Hiromi Shibuya
渋谷 浩洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63038183A priority Critical patent/JPH01212869A/en
Publication of JPH01212869A publication Critical patent/JPH01212869A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To improve control stability, energy savingness and reliability, by a method wherein a pressure detector is located in a piping (in an outdoor machine) running between an indoor machine and a 4-way valve, and based on a combination step of the frequency and the number of poles of an inverter, both being predetermined according to a detecting pressure, a capacity combination step is decided. CONSTITUTION:A pressure detector is located in a piping (in an outdoor machine) running between an indoor machine and a 4-way valve, and an operation capacity deciding means is provided for deciding a capacity combination step based on a combination step of the frequency and the number of poles of an inverted, both being predetermined according to a detecting pressure therefrom. A capacity combination step wherein a differential is produced between capacities before and after the starting and the stop of a pole varying type compressor or change of the number of poles when capacity is increased and capacity is decreased is provided. A differential is produced between total capacities of two compressors during the starting and the stop of the pole varying type compressor and change of the number of poles. This constitution causes control of capacity to always improve controllability according to an air conditioning load and a present operation state at a relatively low given interval and without frequent change of the number of poles.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多室形空気調和機の能力制御、特に幅広い能
力制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to capacity control of a multi-room air conditioner, particularly to wide capacity control.

従来の技術 近年、ビル空調において個別空調化が進展しつつあり、
特に多室形空気調和機での個別空調が脚光をあびており
、小容量の室内機が接続できるかどうかは、室外機、即
ち圧縮機の能力制御に依っており、インバータ等が積極
的に採用されるようになってきた。
Conventional technologyIn recent years, individual air conditioning has been progressing in building air conditioning.
In particular, individual air conditioning in multi-room air conditioners is attracting attention, and whether small-capacity indoor units can be connected depends on the ability control of the outdoor unit, that is, the compressor, and inverters are being actively adopted. It has started to be done.

以下図面を参照しながら、上述した従来の多室形空気調
和機の一例について説明する。
An example of the conventional multi-room air conditioner mentioned above will be described below with reference to the drawings.

第2図、第3図は従来の多室形空気調和機の冷凍サイク
ル図、ブロック図を示すものである。第2図において1
はインバータ2によシ能力可変できる能力可変圧縮機、
3は極数変換器4によってモータの極数を変えることに
よって能力可変できる極変圧縮機、5は油分離器、6は
冷暖房サイクルを切換える四方弁、7は室外熱交換器、
8は室外電動膨張弁、9はアキュームレータ、10は前
記室外電動膨張弁8の室外熱交換器7と反対側の配管に
設けた冷媒温度検知器、11は四方弁6と反対側の配管
に設けた圧力検知器、12は前記室外電動膨張弁8を制
御する室外電動膨張弁制御器13などを有する室外コン
トローラーであり、室外機14に備えられている。前記
油分離器5からは減圧器16を設けた油戻し管16にて
アキュームレータ9に接続されている。室内機17A。
FIGS. 2 and 3 show a refrigeration cycle diagram and a block diagram of a conventional multi-room air conditioner. In Figure 2, 1
is a variable capacity compressor whose capacity can be varied by inverter 2,
3 is a pole variable compressor whose capacity can be varied by changing the number of poles of the motor using a pole number converter 4; 5 is an oil separator; 6 is a four-way valve that switches the heating and cooling cycle; 7 is an outdoor heat exchanger;
8 is an outdoor electric expansion valve, 9 is an accumulator, 10 is a refrigerant temperature sensor provided in a pipe on the opposite side of the outdoor heat exchanger 7 of the outdoor electric expansion valve 8, and 11 is provided in a pipe on the opposite side from the four-way valve 6. A pressure sensor 12 is an outdoor controller having an outdoor electric expansion valve controller 13 for controlling the outdoor electric expansion valve 8 and the like, and is provided in the outdoor unit 14. The oil separator 5 is connected to the accumulator 9 through an oil return pipe 16 equipped with a pressure reducer 16. Indoor unit 17A.

17B 、 17Cそれぞれには、室内熱交換器18A
Each of 17B and 17C has an indoor heat exchanger 18A.
.

1sB、18C,室内電動膨張弁19A、19B。1sB, 18C, indoor electric expansion valve 19A, 19B.

19C1前記室内電動膨張弁19A、19B。19C1 The indoor electric expansion valves 19A and 19B.

19Gを制御する室内電動膨張弁制御器21A。Indoor electric expansion valve controller 21A that controls 19G.

21B、2IC,設定室温検知器22A 、22B。21B, 2IC, set room temperature detector 22A, 22B.

22C1吸込空気温度検知器23A 、23B 。22C1 Suction air temperature sensor 23A, 23B.

23C1空調負荷検出器24A 、24B 、24Cな
どを有する室内コントローラ25A、25B 。
Indoor controllers 25A, 25B having 23C1 air conditioning load detectors 24A, 24B, 24C, etc.

25C1リモコン26A 、26B 、26Cを備えて
いる。
It is equipped with 25C1 remote controllers 26A, 26B, and 26C.

以上のように構成された多室形空気調和機について、以
下その動作について説明する。
The operation of the multi-room air conditioner configured as described above will be described below.

まず、冷房運転では、並列に設けられた能力可変圧縮機
1、極変圧縮機3から吐出された高温高圧ガス冷媒は、
油分離器5と四方弁6を介して室外熱交換器7に流入し
、凝縮液化し、室外電動膨張弁8を介して、並列に接続
された各室内機17A。
First, during cooling operation, the high-temperature, high-pressure gas refrigerant discharged from the variable capacity compressor 1 and extremely variable compressor 3, which are installed in parallel, is
The indoor units 17A flow into the outdoor heat exchanger 7 via the oil separator 5 and the four-way valve 6, are condensed and liquefied, and are connected in parallel via the outdoor electric expansion valve 8.

17B 、 17Cの室内電動膨張弁2OA、20B。17B, 17C indoor electric expansion valves 2OA, 20B.

20Cで減圧され、室内熱交換器1sA、1sB。Depressurized at 20C, indoor heat exchanger 1sA, 1sB.

18Cで蒸発気化して、四方弁6、アキュームレータ9
を介して能力可変圧縮機1及び極変圧縮機3にもどる。
Evaporate at 18C, four-way valve 6, accumulator 9
It returns to the variable capacity compressor 1 and the extremely variable compressor 3 via.

又暖房運転では、能力可変圧縮機1及び極変圧縮機3か
ら吐出された高温高圧ガス冷媒は、油分離器5と四方弁
6を介して室内熱交換器1sA、1sB、1scに流入
し凝縮液化し、室内電動膨張弁2OA、20B 、20
Cを介して室外電動膨張弁8で減圧され、室外熱交換器
7で蒸発気化し、四方弁6、アキュームレータ9を介し
て能力可変圧縮機1及び極変圧縮器3にもどる。
In addition, during heating operation, the high-temperature, high-pressure gas refrigerant discharged from the variable capacity compressor 1 and the extremely variable compressor 3 flows into the indoor heat exchangers 1sA, 1sB, and 1sc via the oil separator 5 and the four-way valve 6, and is condensed. Liquefied, indoor electric expansion valve 2OA, 20B, 20
C, the pressure is reduced by the outdoor electric expansion valve 8, evaporated by the outdoor heat exchanger 7, and returned to the variable capacity compressor 1 and the polar variable compressor 3 via the four-way valve 6 and accumulator 9.

次に能力制御、システム制御について第2図〜第T図に
て説明すると、前記圧力検出器11によって検出された
圧力に応じて、各圧縮機1,3の能力制御を行う。冷房
時には、低圧側圧力を検知し、所定の設定低圧圧力にな
る様に、又、暖房時には高圧側圧力を検知しくPTEP
l)、所定の設定高圧圧力になる様に行うが、それぞれ
検知圧力と設定圧力との差を圧力差算出手段27にて算
出しく5TEP2)、あらかじめ定めた両正縮機1,3
の能力制御組合せ(第1表)の組合せステップを前記圧
力差に応じて第2表の如く変化させる能力変更中決定及
び制御手段28にてインバータ2及び極数切換器4を制
御する(STEP3,5TEP4)。
Next, capacity control and system control will be explained with reference to FIGS. 2 to 2. The capacity control of each compressor 1, 3 is performed according to the pressure detected by the pressure detector 11. During cooling, the low pressure side pressure is detected and the predetermined set low pressure is set, and during heating the high pressure side pressure is detected.
l), the pressure is set to a predetermined set high pressure, and the difference between the detected pressure and the set pressure is calculated by the pressure difference calculation means 27.
The inverter 2 and the pole number switch 4 are controlled by the capacity change determination and control means 28 which changes the combination steps of the capacity control combinations (Table 1) according to the pressure difference as shown in Table 2 (STEP 3, 5TEP4).

(第2表)圧力差−能力変更幅対応表 この時、第1表の能力制御組合せを基に、両正縮機1,
3の合計能力の関係をグラフに示すと第4図の如くにな
υ、合計能力として重複する所はなく一見無駄のない使
い方をしているが、検知圧力によシ頻繁に極変式圧縮機
3の極数が切り換わると制御みだれが大きくなるため、
ステップ切換えの制御時間インターバρジディフルンシ
ャ〃を持たせる様にしている。
(Table 2) Correspondence table between pressure difference and capacity change width At this time, based on the capacity control combinations in Table 1, both normal compressors 1,
The relationship between the total capacities of 3 is shown in Figure 4 as υ.There is no overlap in the total capacity and at first glance the usage is efficient, but depending on the detection pressure, polar transformation compression is frequently observed. When the number of poles of machine 3 is changed, the control sag increases.
It is designed to have a control time interval ρ diffluence for step switching.

各室内機17A、17B、17Cにおいては室内コント
ローラー25A 、25B 、25Cにて、吸込空気温
度を吸込空気温度検知器23A、23B。
In each of the indoor units 17A, 17B, and 17C, indoor controllers 25A, 25B, and 25C measure the intake air temperature using intake air temperature detectors 23A and 23B.

23Cで検知しく5TEP11)、リモ’:j :’ 
26 A+26B 、26Cにて設定されたそれぞれの
室温設定値を設定室温検知器22A 、22B 、22
Cで検知しく5TEP12) 、前記室温設定値と吸込
空気温度から空調負荷を空調負荷算出器24A、24B
23C detects 5TEP11), remote ':j:'
26A+26B, 26C set the respective room temperature set values Room temperature detectors 22A, 22B, 22
5TEP12), the air conditioning load is calculated from the room temperature set value and the intake air temperature by the air conditioning load calculators 24A and 24B.
.

24Cにて算出しく5TEP1s)、この空調負荷に応
じて第3表の如く変化させる電動膨張弁の弁開度の変更
中を弁開度変更中決定手段29A、29B。
24C (calculated at 5TEP1s), the valve opening degree changing determining means 29A, 29B determines that the valve opening degree of the electric expansion valve is being changed as shown in Table 3 according to the air conditioning load.

29Cにより決め(STEP14)、室内電動膨張弁制
御器21A、21B、2ICを制御する( 5TEP1
s )。
29C (STEP14), and control the indoor electric expansion valve controllers 21A, 21B, 2IC (5TEP1)
s).

室外電動膨張弁8については、冷房運転時は弁開度を室
外電動膨張弁制御器13にて全開とし、暖房運転時は、
(STEP21)で前記冷媒温度検知器1oにて検知し
た室外電動膨張弁8前の過冷却液冷媒温度と所定設定冷
媒温度との差温を冷媒差温算出手段30にて算出し、第
4表の如く変化させる室外電動膨張弁8の弁開度変更中
を室外弁開度変更中決定手段31にて決定しく5TEP
22)、室外電動膨張弁制御器13にて弁開度の制御を
行う(STEP23)。
Regarding the outdoor electric expansion valve 8, the valve opening degree is set to full open by the outdoor electric expansion valve controller 13 during cooling operation, and during heating operation,
In (STEP 21), the difference in temperature between the supercooled liquid refrigerant temperature in front of the outdoor electric expansion valve 8 detected by the refrigerant temperature detector 1o and the predetermined set refrigerant temperature is calculated by the refrigerant difference temperature calculation means 30, and is shown in Table 4. The outdoor valve opening changing determining means 31 determines when the outdoor electric expansion valve 8 is changing its opening as shown in FIG. 5TEP.
22) The outdoor electric expansion valve controller 13 controls the valve opening (STEP 23).

発明が解決しようとする課題 しかしながら上記のような構成では、極変圧縮機の極数
切換えが頻繁にならない様に制御インターバルで調整し
ディファレンシャルの役目を持たせているため、その制
御インターバ〃をかなり大きくとる必要があり、このた
め、制御性が悪くなり、各室内機室温の制御性、省エネ
ルギー性、信頼性を損なうという課題を有していた〇本
発明は上記課題に鑑み、極変圧縮機の極数切換えを伴な
う能力制御運転の制御性を向上し、各室内機室温の制御
安定性、省エネルギー性、信頼性を向上させた多室形空
気調和機を提供するものである〇 課題を解決するだめの手段 上記課題を解決するために本発明の多室形空気調和機は
、室内機と四方弁間の配管(室外機内)に圧力検知器を
設け、この検知圧力に応じてあらかじめ決めておいたイ
ンバータの周波数及び極数の組合せステップに基づき能
力組合せステップを決定する運転能力決定手段を有し、
能力を増加させる場合と能力を減少させる場合で極変式
圧縮機の発停或は極数変換の時の前後の能力にディファ
レンシャルを持たせた能力組合せステップを有するとい
う構成を備えたものである0 作   用 本発明は上記した構成によって、2台の圧縮機の合計能
力(能力組合せステップ)を極変式圧縮機の発停或は極
数変換時にデイフルノンシャρを持たせることにより、
常に能力制御は比較的小さな所定インターバルで空調負
荷や現状の運転状況に応じて、しかも、極数変換の頻繁
に起こることも無く、制御性を向上し、このため、各室
内機の室温の制御安定性、省エネルギー性、信頼性を向
上させることとなる。
Problems to be Solved by the Invention However, in the above configuration, the control interval is adjusted so that the number of poles of the pole variable compressor does not change frequently, and the control interval is made to function as a differential. In view of the above problems, the present invention has developed a highly variable compressor. To provide a multi-room air conditioner that improves the controllability of capacity control operation that involves switching the number of poles, and improves the control stability, energy saving, and reliability of the room temperature of each indoor unit. Means for Solving the Problems In order to solve the above problems, the multi-room air conditioner of the present invention is equipped with a pressure detector in the piping (inside the outdoor unit) between the indoor unit and the four-way valve, and detects pressure in advance according to the detected pressure. It has an operation capability determining means for determining a capability combination step based on a predetermined combination step of the frequency and number of poles of the inverter,
It has a configuration that has a capacity combination step that has a differential in the capacity before and after the time of starting and stopping the pole variable compressor or changing the number of poles when increasing the capacity and when decreasing the capacity. 0 Effect The present invention has the above-described configuration, and by making the total capacity of the two compressors (capacity combination step) have a differential non-sharp ρ when the polar variable compressor starts and stops or changes the number of poles,
Capacity control is always performed at relatively small predetermined intervals according to the air conditioning load and current operating conditions, and there is no frequent change in the number of poles, improving controllability. Therefore, it is possible to control the room temperature of each indoor unit. This will improve stability, energy savings, and reliability.

実施例 以下本発明の一実施例の多室形空気調和機について、図
面を参照しながら説明する◎ システム構成、制御について、従来例と同一のものにつ
いては、同一番号を付すと共に説明を省略する。
EXAMPLE Below, a multi-room air conditioner according to an embodiment of the present invention will be explained with reference to the drawings. ◎ Regarding the system configuration and control, the same numbers will be given to the same parts as in the conventional example, and the explanation will be omitted. .

2台の圧縮機1,3の能力制御の基本的な考え方は同一
であるが、第5表、第1図に示す如く、同圧縮機1.3
の能力制御組合せ、及び、合計能力について、極変式圧
縮機3の極数が切換わる能力の前後でディファレンシャ
pを持たせる様にしている。
The basic concept of capacity control for the two compressors 1 and 3 is the same, but as shown in Table 5 and Figure 1,
Regarding the capacity control combination and the total capacity, a differential p is provided before and after the capacity where the number of poles of the polar variable compressor 3 is switched.

他の構成及び制御及び動作は従来例と同じである。The other configuration, control and operation are the same as the conventional example.

以上のように本実施例によれば、室内機と四方弁間の配
管(室外機内)に圧力検知器を設け、この検知圧力に応
じてあらかじめ決めておいたインバータの周波数及び極
数の組合せステップに基づき能力組合せステップを決定
する運転能力決定手段を有している。そして能力を増加
させる場合と能力を減少させる場合で極変式圧縮機の発
停或は極数変換の時の前後の能力にデイフアレンシヤル
を持たせた能力組合せステップを設けることにより、2
台の圧縮機の合計能力(能力組合せステップ)を極変式
圧縮機の発停或は極数変換時にデイフアレンシヤルを持
たせることにより、常に能力制御は比較的小さな所定イ
ンターバルで空調負荷や現状の運転状況に応じて、しか
も、極数変換の頻繁に起こることも無く、制御性を向上
し、このため、各室内機の室温の制御安定性、省エネル
ギー性、信頼性を向上させることができる〇発明の効果 以上のように本発明は、室内機と四方弁間の配管に圧力
検知器を設け、この検知圧力に応じてあらかじめ決めて
おいたインバータの周波数及び極数の組合せステップに
基づき能力組合せステップを決定する運転能力決定手段
を有し、能力を増加させる場合と能力を減少させる場合
で極変式圧縮機の発停或は極数変換の時の前後の能力に
ディファレンシャルを持たせた能力組合せステップを設
けることによシ、2台の圧縮機の合計能力(能力組合せ
ステップ)を極変式圧縮機の発停或は極数変換時にディ
ファレンシャルを持たせることにより、常に能力制御は
比較的小さな所定インターバルで空調負荷や現状の運転
状況に応じて、しかも、極数変換の頻繁に起こることも
無く、制御性を向上し、このため、各室内機の室温の制
御安定性。
As described above, according to this embodiment, a pressure detector is provided in the piping (inside the outdoor unit) between the indoor unit and the four-way valve, and the inverter frequency and number of pole combination steps are predetermined according to the detected pressure. The driving capability determining means determines the capability combination step based on the following. Then, by providing a capacity combination step that has a differential in the capacity before and after the time of starting/stopping the pole variable compressor or changing the number of poles when increasing the capacity and when decreasing the capacity.
By providing a differential for the total capacity (capacity combination step) of the two compressors at the time of turning on/off or changing the number of poles of the polar variable compressor, the capacity can be constantly controlled at relatively small predetermined intervals to adjust the air conditioning load or It is possible to improve controllability according to the current operating conditions and without frequent changes in the number of poles, thereby improving the control stability, energy saving, and reliability of the room temperature of each indoor unit. Possible Effects of the Invention As described above, the present invention provides a pressure detector in the piping between the indoor unit and the four-way valve, and calculates the pressure based on the combination step of the frequency and number of poles of the inverter predetermined according to the detected pressure. It has an operating capacity determination means for determining the capacity combination step, and has a differential between the capacities before and after the time of starting and stopping the polar variable compressor or changing the number of poles when increasing the capacity and decreasing the capacity. By providing a capacity combination step, the total capacity of the two compressors (capacity combination step) can be controlled at all times by providing a differential when the polar variable compressor is turned on/off or when changing the number of poles. Controllability is improved by responding to the air conditioning load and current operating conditions at relatively small predetermined intervals, and without frequent changes in the number of poles, resulting in stable control of the room temperature of each indoor unit.

省エネルギー性、信頼性を向上させることができる0Can improve energy saving and reliability0

【図面の簡単な説明】[Brief explanation of the drawing]

来の多室形空気調和機のシステム構成図、第3図は同ブ
ロック図、第4図は同圧縮機能力組合せステップと合計
能力の図、第6図は室内電動膨張弁制御部のフローチャ
ート図、第6図は同室外機能力制御部のフローチャート
図、第7図は同室外電動膨張弁制御部である。 1・・・・・・能力可変圧縮機、2・・・・・・インパ
ーク、3・・・・・・極変圧縮機、11・・・・・・圧
力検知機。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 坦春亡ヌラヅア 第3図 第4図 訊合tヌテップ 第5図  〈!内磯弼〉 第6図 〈室外a慮丘力合υ4D凋り〉 第7図 <1pHMsts*+n=9
A system configuration diagram of a conventional multi-room air conditioner, Fig. 3 is a block diagram of the same, Fig. 4 is a diagram of the compression function force combination step and total capacity, and Fig. 6 is a flowchart of the indoor electric expansion valve control section. , FIG. 6 is a flowchart of the outdoor functional force control section, and FIG. 7 is the outdoor electric expansion valve control section. 1... Capacity variable compressor, 2... Impark, 3... Extremely variable compressor, 11... Pressure detector. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3, Figure 4, Figure 5, Figure 5, 〈! Uchiiso \〉 Fig. 6〈Outdoor a consideration hill force combination υ4D fall〉 Fig. 7 <1pHMsts*+n=9

Claims (1)

【特許請求の範囲】[Claims] インバータにより能力可変する圧縮機、極数変換式圧縮
機、油分離器、四方弁、室外熱交換器、室外電動膨張弁
、アキュームレータとを備えた1台の室外機と、室内電
動膨張弁、室内熱交換器とを各々備えた複数台の室内機
を並列的に接続し、前記室内機と四方弁間の室外機内の
配管に圧力検知器を設け、この検知圧力に応じてあらか
じめ決めておいたインバータの周波数及び極数の組合せ
ステップに基づき能力組合せステップを決定する運転能
力決定手段を有し、能力を増加させる場合と能力を減少
させる場合で極変式圧縮機の発停或は極数変換の時の前
後の能力にディフアレンシャルを持たせた能力組合せス
テップを有することを特徴とする多室形空気調和機。
One outdoor unit equipped with a compressor whose capacity can be varied by an inverter, a pole-change compressor, an oil separator, a four-way valve, an outdoor heat exchanger, an outdoor electric expansion valve, and an accumulator, an indoor electric expansion valve, and an indoor electric expansion valve. A plurality of indoor units, each equipped with a heat exchanger, are connected in parallel, a pressure detector is installed in the piping inside the outdoor unit between the indoor unit and the four-way valve, and the pressure is determined in advance according to the detected pressure. It has an operation capacity determination means that determines the capacity combination step based on the frequency and pole number combination step of the inverter, and the pole variable compressor is started and stopped or the pole number is changed when the capacity is increased and when the capacity is decreased. A multi-room air conditioner characterized by having a capacity combination step with a differential in capacity before and after.
JP63038183A 1988-02-19 1988-02-19 Multichamber type air conditioner Pending JPH01212869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038183A JPH01212869A (en) 1988-02-19 1988-02-19 Multichamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038183A JPH01212869A (en) 1988-02-19 1988-02-19 Multichamber type air conditioner

Publications (1)

Publication Number Publication Date
JPH01212869A true JPH01212869A (en) 1989-08-25

Family

ID=12518269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038183A Pending JPH01212869A (en) 1988-02-19 1988-02-19 Multichamber type air conditioner

Country Status (1)

Country Link
JP (1) JPH01212869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159041A (en) * 1994-12-08 1996-06-18 Hatlapa Uetersener Maschinenfabrik Gmbh & Co Compressor device
JPH09209949A (en) * 1996-02-02 1997-08-12 Hitachi Ltd Screw compressor, and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325457A (en) * 1986-07-17 1988-02-02 三洋電機株式会社 Refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325457A (en) * 1986-07-17 1988-02-02 三洋電機株式会社 Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159041A (en) * 1994-12-08 1996-06-18 Hatlapa Uetersener Maschinenfabrik Gmbh & Co Compressor device
JPH09209949A (en) * 1996-02-02 1997-08-12 Hitachi Ltd Screw compressor, and control method thereof

Similar Documents

Publication Publication Date Title
EP0645589B1 (en) Operation control apparatus for air-conditioner
JPH037853A (en) Air conditioner
JP6628911B1 (en) Refrigeration cycle device
JP3849467B2 (en) Air conditioner
JPH06257828A (en) Multi-chamber type air conditioning system
JP3849468B2 (en) Air conditioner
JP2695288B2 (en) Multi-room air conditioner
JPH01212869A (en) Multichamber type air conditioner
JP3760259B2 (en) Air conditioner
CN114322220A (en) Air conditioning device and control method thereof
JP2005016884A (en) Air conditioner
JP2730398B2 (en) Multi-room air conditioning system
JP2003247742A (en) Multi-chamber type air conditioner and control method thereof
JPH06257827A (en) Multi chamber type air conditioning system
JP2001116330A (en) Multi-chamber type air-conditioning system
JPH01212870A (en) Multichamber type air conditioner
JP2002206788A (en) Multi-chamber type air conditioner
JP2541172B2 (en) Operation control device for air conditioner
JP2955278B2 (en) Multi-room air conditioning system
KR101105952B1 (en) A multi type air conditioner and method of controlling the same
JP4390870B2 (en) Air conditioner
JPH06123474A (en) Plural room-type air conditioner
JPH0772647B2 (en) Pressure equalizer for air conditioner
JPH08128747A (en) Controller for air conditioner
JP2003042505A (en) Air conditioner and method of controlling its operation