JPH01212278A - Production of ceramics parts - Google Patents

Production of ceramics parts

Info

Publication number
JPH01212278A
JPH01212278A JP63032844A JP3284488A JPH01212278A JP H01212278 A JPH01212278 A JP H01212278A JP 63032844 A JP63032844 A JP 63032844A JP 3284488 A JP3284488 A JP 3284488A JP H01212278 A JPH01212278 A JP H01212278A
Authority
JP
Japan
Prior art keywords
sintering
molding
powder
impact resistance
zro2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032844A
Other languages
Japanese (ja)
Inventor
Akihide Takami
明秀 高見
Nobuo Sakate
宣夫 坂手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP63032844A priority Critical patent/JPH01212278A/en
Publication of JPH01212278A publication Critical patent/JPH01212278A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject parts having excellent impact resistance and reliability at a high yield by presintering an Si3N4 molding contg. Y2O3, CeO2 and ZrO2 as a sintering assistant in an inert gaseous atmosphere of a prescribed temp., then changing temp. conditions and subjecting the molding to a hot isostatic treatment which acts commonly as regular sintering. CONSTITUTION:The molding obtd. by adding 2-30wt.% sintering assistant contg. 30-70wt.% ZrO2 and >=1wt.% Y2O3 and CeO2 to the Si3N4 powder then mixing and molding the mixture is first presintered in the inert gaseous atmosphere kept at 1,370-1,600 deg.C. This molding is then subjected to the hot isostatic treatment which acts commonly as normal sintering in the inert gaseous atmosphere kept at <=1,750 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミック部品の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing ceramic components.

(従来技術) 従来より、セラミックス特に5isN4系セラミツクス
は、高温強度が強くかつ耐衝撃性が他のセラミックスに
比べて優れているという特性を有していることから、例
えば自動車等車両のエンジン部品等のように耐摩耗性が
要求される部品として実用に供されている。そして、こ
のような5i3No系セラミツクスの製造方法として、
例えば特開昭60−122783号公報に開示されてい
るように、5isN*を焼結したのち表面加工を施し、
次いで、N2ガス雰囲気中で熱処理を施すことにより、
機械加工後における強度のばらつきを少なくする方法が
知られている。
(Prior art) Ceramics, especially 5isN4 ceramics, have been used for example in engine parts of vehicles such as automobiles because they have strong high-temperature strength and excellent impact resistance compared to other ceramics. It is used in practical applications as parts that require wear resistance, such as As a method for manufacturing such 5i3No ceramics,
For example, as disclosed in JP-A-60-122783, 5isN* is sintered and then surface-treated.
Next, by performing heat treatment in an N2 gas atmosphere,
A method is known to reduce variations in strength after machining.

しかし、5i3Ns系セラミツクスは、上述の如く耐衝
惰性が優れているとはいうものの、セラミックス以外の
金属と比べると耐衝撃性は低く、例えば鋳鉄の115程
度でしかなく、上記の従来例による方法では、得られた
セラミックスの力I’l−L後における強度のばらつき
を少なくすることばで゛きるものの、耐衝撃性に関して
は改善がなされていない。このため、この方法により得
られたセラミックスを例えば自動車等車両のロータリピ
ストンエンジンにおけるロータの頂部に装着されるアペ
ックスシールに適用する場合には、該アペックスシール
は高圧燃焼ガスに晒されるとともに、遊星回転運動に伴
う各種の拘束力を受けることから、これらの過酷な条件
に耐え得ない場合も考えられる。
However, although 5i3Ns ceramics have excellent impact resistance as mentioned above, their impact resistance is lower than that of metals other than ceramics, for example, only about 115 that of cast iron, and the conventional method described above Although it is possible to reduce the variation in the strength of the obtained ceramic after the force I'l-L, no improvement has been made in terms of impact resistance. Therefore, when ceramics obtained by this method are applied to an apex seal attached to the top of a rotor in a rotary piston engine of a vehicle such as an automobile, the apex seal is exposed to high-pressure combustion gas and is exposed to planetary rotation. Since they are subjected to various restraining forces associated with exercise, there may be cases where they cannot withstand these harsh conditions.

このような中、本発明者は、5ilN4粉末に焼結助剤
としてY2O1、Cen2、Zr0tを加え、所定の温
度下で二段焼結した場合、焼結体の耐衝撃値が著しく高
くなることを見出した。
Under these circumstances, the present inventor found that when Y2O1, Cen2, and Zr0t were added as sintering aids to 5ilN4 powder and sintered in two stages at a predetermined temperature, the impact resistance value of the sintered body was significantly increased. I found out.

(発明が解決しようとする問題点) しかし、−F記焼結方法にあっては、焼結体の中に微細
空孔が残存することになり、その焼結体は、耐衝撃性の
ばらつきが大きくなった。そこで、焼結体の微細空孔な
除去するために熱静水圧処理(以1’、HTP処理とい
う)を施した。しかし、耐衝撃性は、逆に低下してしま
った。
(Problems to be Solved by the Invention) However, in the -F sintering method, micropores remain in the sintered body, and the sintered body has uneven impact resistance. has grown larger. Therefore, a thermostatic pressure treatment (hereinafter referred to as 1', HTP treatment) was performed in order to remove fine pores in the sintered body. However, the impact resistance deteriorated.

本発明は下記実情に鑑みてなされたもので、その目的は
、耐衝撃性の優れたセラミック部品の信頼性を高めるこ
とにある。
The present invention was made in view of the following circumstances, and its purpose is to improve the reliability of ceramic components with excellent impact resistance.

(問題点を解決するための手段、作用)かかる目的を達
成するために本発明にあっては、焼結助剤としてYt 
Os 、Cent 、ZrO2を含有する5ilN4成
形体を1370〜1600℃の不活性ガス雰囲気中で前
段焼結し、次いで、1750℃以Fの不活性ガス雰囲気
中で本焼結を兼ねて熱間静水圧処理を行う、ことを特徴
とするセラミック部品の製造方法、とした構成としであ
る。
(Means and effects for solving the problem) In order to achieve this object, the present invention uses Yt as a sintering aid.
A 5ilN4 molded body containing Os, Cent, and ZrO2 was first sintered in an inert gas atmosphere at 1370 to 1600°C, and then hot-sintered in an inert gas atmosphere at 1750°C or higher, which also served as main sintering. This is a method of manufacturing a ceramic component characterized by performing a hydraulic treatment.

L述の構成により、前段焼結によって、セラミックス組
織が、該前段焼結の後工程における本焼結を兼ねたHI
P処理に適した緻密さとなり、前段焼結後、本焼結を兼
ねたH I P処理を施すことにより、焼結体中の微細
空孔をなくすことができることになる。このため、セラ
ミック部品は、優れた耐衝撃性を有することになること
は勿論のこと、その信頼性を高めることができることに
なる。
With the configuration described above, the ceramic structure is transformed into HI, which also serves as main sintering in the post-stage sintering process, by the pre-stage sintering.
The density becomes suitable for P treatment, and by performing HIP treatment which also serves as main sintering after the pre-stage sintering, it is possible to eliminate micropores in the sintered body. Therefore, the ceramic component not only has excellent impact resistance but also has improved reliability.

より具体的に説明すると、焼結助剤Y2O3、Ce O
x 、 Z r 02は、混合原料全体中の2〜30虫
量%の範囲に設定するのが好ましい。混合原料中に占め
る焼結助剤の割合が多くなり過ぎると、焼結時における
Si3N、粒子・の異常粒成長を促進して強度低下の原
因となるとともに、粒界層が大きくなってシャルピー値
が低くなる一方、混合原料中に占める焼結助剤の割合が
少なくなり過ぎると焼結が困難になるからである。
To explain more specifically, sintering aid Y2O3, CeO
x and Z r 02 are preferably set in the range of 2 to 30 % of the amount of insects in the entire mixed raw material. If the proportion of the sintering aid in the mixed raw material is too large, it will promote abnormal grain growth of Si3N and particles during sintering, causing a decrease in strength, and the grain boundary layer will become large, resulting in a decrease in the Charpy value. This is because, while the ratio of the sintering aid to the mixed raw material decreases, sintering becomes difficult if the proportion of the sintering aid in the mixed raw material decreases too much.

焼結助剤中に占めるZrO2の割合は30〜70重量%
に設定するのが好ましい。焼結助剤中に占めるZ r 
Otの割合が多くなり過ぎると焼結が妨げられることに
なる一方、焼結助剤中に占めるZrO2の割合が少なく
なり過ぎると焼結が困難になるからである。
The proportion of ZrO2 in the sintering aid is 30 to 70% by weight
It is preferable to set it to . Z r in the sintering aid
This is because if the proportion of Ot becomes too large, sintering will be hindered, while if the proportion of ZrO2 in the sintering aid becomes too small, sintering will become difficult.

焼結助剤中に占めるYzOsおよびCentの割合は、
少なくとも1重量%あることが好ましい。焼結助剤中に
Y2O3およびCeO2が含まれていない場合には、シ
ャルピー値が低くなるからである。
The proportion of YzOs and Cent in the sintering aid is
Preferably it is at least 1% by weight. This is because if the sintering aid does not contain Y2O3 and CeO2, the Charpy value will be low.

前段焼結を行うのは、前述したように、後工程における
本焼結を兼ねたHIP処理が効果的に行われるようにす
るためである。この前段焼結の焼結温度が1370〜1
600℃に設定されているのは、焼結温度が1370℃
未満であると、セラミックス組織が適切に緻密化せず、
焼結温度が1600℃を越えると、本焼結温度が適切で
あっても5isN*粒子の異常粒成長が生じるため機械
特性の向上が望めず1両者共にシャルピー値が低くなる
からである。
The reason why the pre-stage sintering is performed is to ensure that the HIP treatment, which also serves as the main sintering in the post-process, is performed effectively, as described above. The sintering temperature of this first stage sintering is 1370~1
The sintering temperature is set at 600℃, which is 1370℃.
If it is less than that, the ceramic structure will not be properly densified,
This is because if the sintering temperature exceeds 1600° C., even if the main sintering temperature is appropriate, abnormal grain growth of 5isN* particles occurs, and no improvement in mechanical properties can be expected, resulting in a low Charpy value for both.

本焼結の焼結温度が1750℃以下とされているのは、
1750℃以上とすると、異常粒成長が促進されるため
、シャルピー値が低下することになるためである。
The reason why the sintering temperature for main sintering is 1750℃ or less is because
This is because if the temperature is 1750°C or higher, abnormal grain growth is promoted, resulting in a decrease in Charpy value.

上記焼結温度は下記実験により裏付けることができる。The above sintering temperature can be supported by the following experiment.

すなわち、5isN*粉末としてα化率91%、平均粒
径0.5μmに設定されたものを、焼結助剤として平均
粒径0.5μm以下に設定されたYt o2 、C,e
Otおよび7. r Otをそれぞれ用意し、これらを
組成比が表1に示すようになるようにそれぞれ調合した
That is, 5isN* powder with a gelatinization rate of 91% and an average particle size of 0.5 μm was used as a sintering aid with an average particle size of 0.5 μm or less as Yt o2 , C, e
Ot and 7. rOt were respectively prepared, and these were mixed so that the composition ratios were as shown in Table 1.

次に、5isNs製ボールとナイロン樹脂製ポットを用
いて上記調合粉末にエタノールを加えたものを振動ミル
にて25hr混合粉砕した後、この混合粉砕により得ら
れたスラリーを真空乾燥して乾燥粉末となし、この乾燥
粉末の粒度を300μm以下に整えて混合原料を得た。
Next, using a 5isNs ball and a nylon resin pot, the above-mentioned mixed powder with ethanol added was mixed and ground in a vibration mill for 25 hours, and the slurry obtained by this mixed grinding was vacuum-dried to form a dry powder. The particle size of this dry powder was adjusted to 300 μm or less to obtain a mixed raw material.

その後、この混合原料をカーボンダイスにセットしてホ
ットプレスにより200kgf/cm’の圧力を加える
ことにより所定の成形体を成形した。
Thereafter, this mixed raw material was set in a carbon die, and a pressure of 200 kgf/cm' was applied using a hot press to form a predetermined molded product.

しかる後、各成形体をN2ガス雰囲気中で下記の表1に
示す焼結条件の下で1段目の焼結を行ってセラミックス
組織を密度80%以トに緻密化させ、その後、さらに2
段目の本焼結を兼ねたHIP処理をN2雰囲気中200
気圧下で行った。
Thereafter, each molded body was subjected to a first sintering process in an N2 gas atmosphere under the sintering conditions shown in Table 1 below to densify the ceramic structure to a density of 80% or more.
The HIP treatment, which also serves as the final sintering of the stages, was carried out for 200 min in an N2 atmosphere.
It was carried out under atmospheric pressure.

このようにして得られた各焼結体をIOXIOX55m
mのテストピースに加工してシャルピー衝撃試験を行っ
た。そのテストデータは表1に示す。
Each sintered body obtained in this way was
A Charpy impact test was conducted on the test piece. The test data is shown in Table 1.

(以下余白) 1111段焼結の焼結時間は、セラミックス組織の適 
 1切な緻密化を図るために1時間以上とするのが好 
 1ましい。
(Left below) The sintering time for 1111 stage sintering depends on the suitability of the ceramic structure.
It is preferable to leave it for 1 hour or more in order to achieve thorough densification.
1st thing.

本焼結の焼結時間は5i3No粒子の異常粒成長を防止
するために2時間以内に設定するのが好ましい。
The sintering time of the main sintering is preferably set within 2 hours in order to prevent abnormal grain growth of 5i3No particles.

本焼結を兼ねてHI P処理を施すこととしたのは、]
l;1段焼結と協働して、耐衝撃値を低下させることな
く、微細空孔ななくすようにするためである。このH[
P処理はN2雰囲気下200気圧以上で行うことが好ま
しい。
The reason why we decided to perform HIP treatment as well as the main sintering was as follows.]
1; This is to eliminate fine pores in cooperation with the first-stage sintering without reducing the impact resistance value. This H [
It is preferable that the P treatment be performed in an N2 atmosphere at a pressure of 200 atmospheres or more.

(実施例) 以F、本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail.

火胤■ニュ 市販の5isN*粉末に焼結助剤としてY20x粉末2
.4%、Cen2粉末3.6%、Z「02扮末6%をそ
れぞれ添加し、これを有機溶媒中で振動ミルを用いて2
5時間混合し、続いて得られたスラリーを乾燥造粒した
後、粒度調整したものを原料とした。それを表2に示す
条件で焼結、た後、各試験片寸法に加工し各特性を調べ
S。
Add Y20x powder 2 as a sintering aid to the commercially available 5isN* powder
.. 4% of Cen2 powder, 3.6% of Z'02 powder, and 6% of Z'02 powder were added, and this was mixed in an organic solvent using a vibrating mill.
After mixing for 5 hours, the resulting slurry was dried and granulated, and the particle size was adjusted and used as a raw material. After sintering it under the conditions shown in Table 2, it was processed into each specimen size and its characteristics were examined.

(以下余白) この結果、本例1.2については1本発明の条件を満た
ずため、安定し1つ優れた耐衝撃性を得ることができた
(The following is a blank space) As a result, since Example 1.2 did not meet the conditions of the present invention, it was possible to obtain stable and superior impact resistance.

これに対して、比較例1のように、5isO*−Yt 
Ox −Cent−ZrOt系を特定な条件(1500
〜1600℃で緻密化後!750℃以ドで焼結)で焼結
したものは、良い特性値を有した。しかし、比較例1の
プロセスでは部品に加工する場合歩留まりが大変悪かっ
た。また、このようにして得られた材料は強度のバラツ
キが大きく、強度の下限のものについて、電子顕微鏡(
SF、M)IQ察すると、破壊起点には微細空孔が存在
していた。このため、この空孔を除去するため、比較例
2のようにHI P処理を施したところ、特性は明らか
に劣化した(表2参照)。
On the other hand, as in Comparative Example 1, 5isO*-Yt
Ox -Cent-ZrOt system under specific conditions (1500
After densification at ~1600℃! Those sintered at temperatures higher than 750°C had good characteristic values. However, in the process of Comparative Example 1, the yield was very poor when processing into parts. In addition, the strength of the materials obtained in this way varies widely, and the materials at the lower limit of strength were examined under an electron microscope.
SF, M) IQ analysis revealed that micropores were present at the fracture origin. Therefore, when HIP treatment was performed as in Comparative Example 2 to remove these pores, the characteristics clearly deteriorated (see Table 2).

また、比較例1の焼結体を再加熱処理(1350℃、N
2中)した。この場合にも、特性は劣化した。
In addition, the sintered body of Comparative Example 1 was reheated (1350°C, N
2) did. In this case as well, the characteristics deteriorated.

また、比較例3の場合には、表2に示すように良い特性
を得ることができず、この比較例3の焼結体を比較例4
に示すように、HIP処理しても、比較例3のプロセス
で前段焼結温度が所定の焼結温度を越えていることから
、良い結果を得ることができなかった。
In addition, in the case of Comparative Example 3, good characteristics could not be obtained as shown in Table 2, and the sintered body of Comparative Example 3 was used as the sintered body of Comparative Example 4.
As shown in the figure, even with the HIP treatment, good results could not be obtained because the pre-stage sintering temperature exceeded the predetermined sintering temperature in the process of Comparative Example 3.

火1狙二遣 市販の5isN*粉末に焼結助剤としてY2O3粉末3
%、CeO粉末3%、ZrO2粉末6%をそれぞれ添加
し、さらに、繊維状SiC単結晶を外分て15%加えて
材料粉末を調整した。この粉末を、N2ガス中1450
℃X2hr、200kgf/am2で緻密化(相対密度
91%)した後、これを] OX IOX55mmの寸
法のテストピースに加工し、1650℃、2000気圧
(HI P処理したところ、十分緻密化した。このテス
トピースを研削加工した後、シャルピー衝撃テストを実
施したところ、0.27 [kgf・m7cm21であ
った。
Add 3 Y2O3 powder as a sintering aid to the commercially available 5isN* powder.
%, CeO powder 3%, and ZrO2 powder 6%, and further, 15% of fibrous SiC single crystal was added externally to prepare a material powder. This powder was heated to 1450 ml in N2 gas.
After being densified (relative density 91%) at 200 kgf/am2 for 2 hours at ℃, this was processed into a test piece with a size of 55 mm and subjected to HIP treatment at 1650 ℃ and 2000 atm, which resulted in sufficient densification. After grinding the test piece, a Charpy impact test was performed and the impact was 0.27 [kgf·m7cm21].

これに対して、従来法、すなわち1800℃χIhr、
N2ガス中、200kgf/cm’の灯結で製造したテ
ストピースは、同型M材料成分カら本実施例の場合の半
分の数しか加工できず、シャルピー値はO,l 9 [
kg−m/cm2]であった。
On the other hand, the conventional method, namely 1800℃χIhr,
The test pieces manufactured under 200 kgf/cm' in N2 gas could only be processed in half of the number of samples in this example from the same type M material components, and the Charpy value was O, l 9 [
kg-m/cm2].

(発明の効果) 本発明は以上述べたことから明らかなように。(Effect of the invention) As is clear from the above description, the present invention has been made.

耐衝撃性が優れ、且つその信頼性が高いセラミック部品
を歩留まりよく製造できる。
Ceramic parts with excellent impact resistance and high reliability can be manufactured with a high yield.

Claims (1)

【特許請求の範囲】[Claims] (1)焼結助剤としてY_2O_3、CeO_2、Zr
O_2を含有するSi_3N_4成形体を1370〜1
600℃の不活性ガス雰囲気中で前段焼結し、次いで、
1750℃以下の不活性ガス雰囲気中で本焼結を兼ねて
熱間静水圧処理を行う、 ことを特徴とするセラミック部品の製造方法。
(1) Y_2O_3, CeO_2, Zr as sintering aids
1370-1 Si_3N_4 molded body containing O_2
First stage sintering in an inert gas atmosphere at 600°C, then
A method for manufacturing ceramic parts, characterized in that hot isostatic pressure treatment is performed in an inert gas atmosphere at a temperature of 1750° C. or lower, which also serves as main sintering.
JP63032844A 1988-02-17 1988-02-17 Production of ceramics parts Pending JPH01212278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032844A JPH01212278A (en) 1988-02-17 1988-02-17 Production of ceramics parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032844A JPH01212278A (en) 1988-02-17 1988-02-17 Production of ceramics parts

Publications (1)

Publication Number Publication Date
JPH01212278A true JPH01212278A (en) 1989-08-25

Family

ID=12370133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032844A Pending JPH01212278A (en) 1988-02-17 1988-02-17 Production of ceramics parts

Country Status (1)

Country Link
JP (1) JPH01212278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131572A (en) * 1989-07-18 1991-06-05 Sumitomo Electric Ind Ltd Production of sintered silicon nitride having high strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131572A (en) * 1989-07-18 1991-06-05 Sumitomo Electric Ind Ltd Production of sintered silicon nitride having high strength

Similar Documents

Publication Publication Date Title
US3953221A (en) Fully dense ceramic article and process employing magnesium oxide as a sintering aid
US4425141A (en) Composite ceramic cutting tool
JPH01188454A (en) High strength composite ceramic sintered body
KR100395685B1 (en) Silicon Carbide Ceramic Materials with Improved High-Temperature-Strength and Process of Making the Same
JPH01212278A (en) Production of ceramics parts
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JPS6152110B2 (en)
JP2742619B2 (en) Silicon nitride sintered body
EP0095129B1 (en) Composite ceramic cutting tool and process for making same
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH11139874A (en) Silicon nitride-base ceramics and its production
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH1129361A (en) Silicon nitride sintered product and its production
DE4126509A1 (en) Silicon nitride ceramic for high strength, hardness and fracture toughness - contg. titanium- or carbon nitride grains with small internal pore dia. for cutting and machine tool wear parts
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPH0375505B2 (en)
JPS6241773A (en) Manufacture of composite ceramics
JPH01119562A (en) Production of ceramic
JPS61122167A (en) High strength silicon nitride base sintered body and manufacture
JPH092875A (en) Silicon carbide-based ceramic sintered compact
JPH07115932B2 (en) Homogeneous silicon nitride sintered body and method for producing the same
JPH0669905B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH0477363A (en) Manufacture of high strength silicon nitride sintered body in high temperature
JPH06166569A (en) Production of sintered silicon nitride