JPH01212272A - High-alumina insulator for ignition plug - Google Patents

High-alumina insulator for ignition plug

Info

Publication number
JPH01212272A
JPH01212272A JP63035024A JP3502488A JPH01212272A JP H01212272 A JPH01212272 A JP H01212272A JP 63035024 A JP63035024 A JP 63035024A JP 3502488 A JP3502488 A JP 3502488A JP H01212272 A JPH01212272 A JP H01212272A
Authority
JP
Japan
Prior art keywords
alumina
sintering
weight
insulator
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63035024A
Other languages
Japanese (ja)
Other versions
JP2857639B2 (en
Inventor
Makoto Sugimoto
誠 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63035024A priority Critical patent/JP2857639B2/en
Priority to BR898900770A priority patent/BR8900770A/en
Publication of JPH01212272A publication Critical patent/JPH01212272A/en
Application granted granted Critical
Publication of JP2857639B2 publication Critical patent/JP2857639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Spark Plugs (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide the subject insulator which is low in sintering temp., is less deformed, is inexpensive and has excellent mass productivity by compounding fine particles of alumina as an essential component and specific 3 kinds of oxides as an auxiliary component at prescribed ratios and calcining and sintering the mixture. CONSTITUTION:(A) 85-97.5wt.% fine particles of the alumina as the essential component and the auxiliary component consisting of (B) 0.5-15wt.% >=1 kinds selected from SiO2, MgO, CaO, BaO, ZnO, and SrO, (C) 0.55-9wt.% B2O3, and (D) 0.3-6wt.% >=1 kinds selected from TiO2, HfO2, ZrO2, NiO, Cr2O3, CaF2, and As2O3 are compounded. The resulted powder raw material is then molded and the molding is calcined and sintered, by which the high-alumina insulator for an ignition plug is produced. The glassy material formed in the initial calcination stage is thereby phase-split to increase the high-temp. viscosity and to restrain the movement of the sintered particles of the alumina; therefore, the generation of bending, warpage, etc., in the calcination is suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野 この発明は、内燃機関に使用される点火プラグの絶縁碍
子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an insulator for a spark plug used in an internal combustion engine.

(従来の技術) 近年、自動車用内燃機関の高出力化に伴い、内燃機関の
燃焼室内における吸気及び排気バルブの占有する面積が
拡大してきている。そのため、混合気に点火する点火プ
ラグにおいては、その小型化が必要とされている上、タ
ーボチャージャー等の過給装置等により、燃焼室内の燃
焼温度も上昇しているから、点火プラグの高耐熱性も要
求され高アルミナ質絶縁碍子が一般的に使用されるに至
っている。
(Prior Art) In recent years, as the output of internal combustion engines for automobiles has increased, the area occupied by intake and exhaust valves in the combustion chamber of the internal combustion engine has been expanding. Therefore, spark plugs that ignite the air-fuel mixture need to be made smaller, and the combustion temperature inside the combustion chamber is also rising due to supercharging devices such as turbochargers, so spark plugs have high heat resistance. High alumina insulators have come to be commonly used due to the high performance requirements.

(発明が解決しようとする課題) しかしながら、上記従来のものにおいて、高アルミナ質
からなる絶縁碍子の場合、その多くはアルミナ85〜9
5重量%と残部をSiO工1Mgo、CaOから成るも
のとして高温焼結させた酸化物であるため、その焼結温
度はl、600℃以上になり、より低い焼成温度でしか
も短時間で焼成できるものが要求されている。それに対
して上記成分に対し−BBO,を加えることで、強度、
化学的耐食性及び電気的絶縁性に優れ、従来よりも焼結
温度′を5θ〜!00℃低くすることの可能な絶縁碍子
が提案されているが、5iOL* MgO,CaO等に
より形成されるガラス質により、径を細く、長い絶縁碍
子を製造しようとすると、焼成中絶縁碍子に曲がりが発
生し寸法精度の低いものが生産される欠点がある。
(Problem to be Solved by the Invention) However, in the conventional insulators described above, in the case of insulators made of high alumina, most of them are made of alumina 85 to 9
Since it is an oxide that is sintered at a high temperature with 5% by weight of SiO, 1Mgo, and CaO as the balance, the sintering temperature is 1,600℃ or higher, and it can be fired at a lower firing temperature and in a shorter time. something is required. On the other hand, by adding -BBO, to the above components, the strength,
It has excellent chemical corrosion resistance and electrical insulation, and the sintering temperature is 5θ~ lower than before! Insulators that can be heated to temperatures as low as 00°C have been proposed, but due to the glassy properties of 5iOL* MgO, CaO, etc., when attempting to manufacture long insulators with a narrower diameter, the insulators bend during firing. This has the disadvantage of producing products with low dimensional accuracy.

そこで、この発明は上記従来のもののもつ欠点を改善す
るものであり、焼成温度を低くした上、焼成時における
曲がりやそり等の変形を抑制しようとするものである。
Therefore, the present invention aims to improve the drawbacks of the above-mentioned conventional products by lowering the firing temperature and suppressing deformations such as bending and warping during firing.

(課題を解決するための手段) そのために、アルミナ微粒子85〜37.5%重量%を
主成分とし、残部の副成分をsio、。
(Means for solving the problem) For this purpose, the main component is 85 to 37.5% by weight of alumina fine particles, and the remaining subcomponent is sio.

MgO,Cab、BaO+ ZnO,SrOを単独又は
2成分以上の組合せを0.5〜15重量%とBOを0.
55〜9重量%、さらにT iOz sユ   3 HfO* ZrOt N1ps Cr、O,t CL a−F+AsユO1のうち少なくとも1成分を0.3〜
6重量%含有する粉末原料を焼成、焼結してなるもので
ある。
0.5 to 15% by weight of MgO, Cab, BaO + ZnO, SrO alone or a combination of two or more components and 0.5% by weight of BO.
55 to 9% by weight, and 0.3 to 9% of at least one component of TiOzs3HfO*ZrOtN1ps Cr, O, t CL a-F+As
It is made by firing and sintering a powder raw material containing 6% by weight.

(作 用) 上記構成を具えるので、初期焼成段階で生成するガラス
質が分相することにより、高温粘性が増大し、アルミナ
焼結粒子の移動を拘束するので、焼成における曲がりや
そり等の変形の発生を抑制することができる。
(Function) With the above configuration, the vitreous substance generated in the initial firing stage undergoes phase separation, increasing high temperature viscosity and restricting the movement of the alumina sintered particles, thereby preventing bending, warping, etc. during firing. The occurrence of deformation can be suppressed.

(実施例) この発生を実施例により更に説明する。まず水酸化アル
ミニウムをt、ooo℃で仮焼し、得られたAl、LO
J純度99.3重量%以上の試料を湿式粉砕することに
より粒径を2.5μ−以下とし、90重量%のA1ユO
jの主成分とした。これに、S iO,s M g O
s Ca O* B a Ox Z n 0sSrOを
単独又は2成分以上の組合せとする副成分、1とBユO
5を副成分、2とし、さらにT t O,t Hf O
z * Z r O,L + N t Oe Crz 
Os t Ca F、L * A S 、L O3のう
ちの少なくとも1成分を副成分、3として、これを別表
に示すよう秤量調合し、アルミナボールで約10時間湿
式混合し、さらにバインダーとしてメチルセルローズを
乾燥原料に対し約2重量%となるように添加し、約1時
間溝式混合を行なう。−方、副成分は各成分を乾式で、
アルミナボールで混合し、電気炉中所定の温度で1時間
保持し、炉外に取り出しステンレス製ローラーで急冷。
(Example) This occurrence will be further explained using an example. First, aluminum hydroxide is calcined at t, ooo℃, and the resulting Al, LO
A sample with J purity of 99.3% by weight or more is wet-milled to have a particle size of 2.5μ or less, and 90% by weight of A1
It was taken as the main component of j. To this, S iO,s M g O
s Ca O * B a Ox Z n 0s Subcomponent containing SrO alone or in combination of two or more components, 1 and B
5 as a subcomponent and 2, and further T t O, t Hf O
z * Z r O, L + N t Oe Crz
At least one component of Os t Ca F, L*A S, and L O3 was used as a subcomponent 3, and this was weighed and prepared as shown in the attached table, wet-mixed for about 10 hours using an alumina ball, and then methyl cellulose was added as a binder. was added in an amount of about 2% by weight based on the dry raw materials, and groove-mixing was performed for about 1 hour. - On the other hand, for the subcomponents, each component is dry-processed.
The mixture was mixed using an alumina ball, kept at the specified temperature for 1 hour in an electric furnace, and then taken out of the furnace and rapidly cooled using stainless steel rollers.

圧延を行なう。この副成分溶解物を湿式で約50時間ア
ルミナポールで粉砕し、2.5μm以下の粒度とする。
Perform rolling. This subcomponent melt is wet-pulverized using an alumina pole for about 50 hours to obtain a particle size of 2.5 μm or less.

すべてのスラリーはバインダー混合後、約10分間泡抜
きを行い、静かに撹拌しながら約100℃に保つ恒温槽
中で乾燥させるものである。この塊状乾燥物は、さらに
粉砕され粒度150〜350μmとし試験粉末とした。
After mixing the binder, all slurries were degassed for about 10 minutes, and then dried in a constant temperature bath kept at about 100° C. while being gently stirred. This dry lump was further crushed to obtain a test powder with a particle size of 150 to 350 μm.

この試験粉末を金型に入れ、600kg/cIIi′で
加圧し、7XIOX70mmの四角柱成形体を得た。こ
の四角柱成形体を300℃/hrで昇温し、所定温度で
1時間保持することにより焼結体とした。この焼結体の
焼結度は、アルキメデス法により見掛は比重が変化しな
くなった時を100%として、各温度での焼結度を算出
し、変形は成形体の長辺からの曲がりを測定し変形量と
した。その結果を第1図に示す。図中各数字は実施例の
番号を示す。この図において、従来のものはt 、so
o℃の温度で完全に焼結するものの、初期焼結段階にお
いてアルミナ結晶粒間の粒界相で発生するガラス質相が
焼結の開始となる1 、000〜1,200℃において
、極めて低粘性となり、アルミナ結晶粒がこれにより移
動しやすくなり焼結体の自重によって著しく変形するも
のである。一方、この発明の実施例においては、従来品
と同等又はそれ以上の焼結性を示し、特にN009は1
.500℃て焼結が完了するものである。又第2図に示
す焼結段階における変形は、従来品にくらべてその変形
量を1/2以下とすることができる。これは第3図に示
すように初期段階において、副成分、1が副成分、2の
Bユ0.により溶解しガラス化(A)L、副成分、3の
作用によりこのガラス質(A)内に極めて細い粒子(C
)が分相により形成され、これらの分相粒子(C)は、
成分系により異るが5iO1* Ba5s CaOある
いは複数成分もしくは、T iOL+ Z r O裏。
This test powder was put into a mold and pressed at 600 kg/cIIi' to obtain a square prism molded product of 7XIOX70mm. This rectangular prism molded body was heated at a rate of 300° C./hr and held at a predetermined temperature for 1 hour to obtain a sintered body. The degree of sintering of this sintered body is determined by calculating the degree of sintering at each temperature using the Archimedes method, with the time when the apparent specific gravity no longer changes as 100%. The amount of deformation was measured. The results are shown in FIG. Each number in the figure indicates the number of an example. In this figure, the conventional one is t, so
Although complete sintering occurs at a temperature of 1,000°C to 1,200°C, the glassy phase generated at the grain boundary phase between alumina grains in the initial sintering stage initiates sintering. The sintered body becomes viscous, and the alumina crystal grains move easily and are significantly deformed by the weight of the sintered body. On the other hand, the examples of the present invention showed sinterability equal to or better than the conventional products, and in particular, N009 showed sinterability of 1
.. Sintering is completed at 500°C. Further, the amount of deformation during the sintering stage shown in FIG. 2 can be reduced to 1/2 or less of that of conventional products. As shown in FIG. 3, in the initial stage, the subcomponent, 1 is the subcomponent, and B of 2 is 0. (A) Due to the action of L, subcomponents, and 3, extremely fine particles (C
) are formed by phase separation, and these phase separation particles (C) are
Depending on the component system, 5iO1* Ba5s CaO or multiple components, or T iOL + Z r O back.

NiOであり、これらが上記ガラス質(A)内に分散し
てその粘性を高め、変形を抑制するものと考えられる。
It is considered that NiO is dispersed in the glassy material (A) to increase its viscosity and suppress deformation.

さらに、副成分、1〜3とそれらとアルミナを予め溶解
した副成分を使用したもの(No、9.10.12.1
3.14)  (第1表参照)においても同様に変形を
抑制できる効果が認められる。
Furthermore, those using subcomponents 1 to 3 and subcomponents prepared by dissolving them and alumina in advance (No. 9.10.12.1)
3.14) (see Table 1) also has the same effect of suppressing deformation.

(発明の効果) 以上のとおり、焼結温度を低下させ、かつ変形量を少な
くすることにより、製品の歩留りを向上させ、コストを
低減させるとともに、量産可能である優れた効果をもつ
ものであり、特に小型点火プラグの絶縁碍子として有用
となるものである。
(Effects of the invention) As described above, by lowering the sintering temperature and reducing the amount of deformation, the yield of the product can be improved, the cost can be reduced, and mass production is possible. It is particularly useful as an insulator for small spark plugs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を含め実施例の焼成温度に対する焼結達
成率を示し、第2図は同焼成温度に対する変形量を示す
。第3図は組成の模式図である。 特許出願人 代理人 弁理士   藤木 三幸焼涜#囲
気温j
FIG. 1 shows the sintering achievement rate with respect to the firing temperature of Examples including the conventional example, and FIG. 2 shows the amount of deformation with respect to the same firing temperature. FIG. 3 is a schematic diagram of the composition. Patent Applicant Agent Patent Attorney Fujiki Sanko Yakiniku #Ambient Temperature

Claims (3)

【特許請求の範囲】[Claims] (1)アルミナ微粒子85〜37.5重量%を主成分と
し、残部の副成分をSiO_2,MgO,Ca−O,B
aO,ZnO,SrOを単独または2成分以上の組合せ
で0.5〜15重量%とB_2O_3を0.55〜9重
量%、さらにTiO_2,Hf−O_2,ZrO_2,
NiO,Cr_2O_3,Ca−F_2,As_2O_
3のうち少なくとも1成分を0.3〜6重量%含有する
粉末原料を焼成,焼結してなる点火プラグ用アルミナ質
絶縁碍 子。
(1) The main component is 85 to 37.5% by weight of alumina fine particles, and the remaining subcomponents are SiO_2, MgO, Ca-O, B.
0.5 to 15% by weight of aO, ZnO, SrO alone or in combination of two or more components, 0.55 to 9% by weight of B_2O_3, and further TiO_2, Hf-O_2, ZrO_2,
NiO, Cr_2O_3, Ca-F_2, As_2O_
An alumina insulator for a spark plug, which is obtained by firing and sintering a powder raw material containing 0.3 to 6% by weight of at least one of the following components.
(2)上記残部を構成する副成分を900〜1,500
℃で溶解した後、粉砕することにより粒径を2.5μm
以下とした請求項(1)記載の点火栓用高アルミナ質絶
縁碍子。
(2) 900 to 1,500 subcomponents constituting the remainder above.
After melting at ℃, the particle size is reduced to 2.5 μm by crushing.
A high alumina insulator for a spark plug according to claim (1) as follows.
(3)主成分であるアルミナ微粒子0.15〜3%を、
残部を構成する副成分に対して5〜30重量%溶解して
なる請求項(1),(2)記載の点火プラグ用高アルミ
ナ質絶縁碍子。
(3) 0.15 to 3% of alumina fine particles, which are the main component,
The high alumina insulator for a spark plug according to claim 1 or 2, wherein the high alumina insulator is dissolved in an amount of 5 to 30% by weight based on the remaining subcomponents.
JP63035024A 1988-02-19 1988-02-19 High alumina insulator for spark plug Expired - Fee Related JP2857639B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63035024A JP2857639B2 (en) 1988-02-19 1988-02-19 High alumina insulator for spark plug
BR898900770A BR8900770A (en) 1988-02-19 1989-02-16 HIGH ALUMINUM CERAMIC INSULATOR FOR IGNITION CANDLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035024A JP2857639B2 (en) 1988-02-19 1988-02-19 High alumina insulator for spark plug

Publications (2)

Publication Number Publication Date
JPH01212272A true JPH01212272A (en) 1989-08-25
JP2857639B2 JP2857639B2 (en) 1999-02-17

Family

ID=12430490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035024A Expired - Fee Related JP2857639B2 (en) 1988-02-19 1988-02-19 High alumina insulator for spark plug

Country Status (2)

Country Link
JP (1) JP2857639B2 (en)
BR (1) BR8900770A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044266A1 (en) * 1998-02-27 1999-09-02 Ngk Spark Plug Co., Ltd. Spark plug, alumina insulator for spark plug, and method of manufacturing the same
EP1153899A1 (en) * 2000-05-02 2001-11-14 Michael Cohen Alumina ceramic products
JP2007510617A (en) * 2003-11-12 2007-04-26 フェデラル−モーグル コーポレイション Ceramic with advanced high temperature electrical properties for use as a spark plug insulator
JP2010513217A (en) * 2006-12-20 2010-04-30 フェデラル−モーグル コーポレイション Ceramic with advanced high temperature electrical properties for use as a spark plug insulator
JP2011138771A (en) * 2009-12-30 2011-07-14 Robert Bosch Gmbh Ceramic insulator, especially, ceramic insulator using aluminum oxide as base, and its manufacturing method
US20110251042A1 (en) * 2010-04-08 2011-10-13 Nippon Soken, Inc. Alumina sintered body
JP2014220136A (en) * 2013-05-09 2014-11-20 日本特殊陶業株式会社 Insulator for spark plug and spark plug
US20150136452A1 (en) * 2012-05-31 2015-05-21 Kyocera Corporation High-withstanding-voltage alumina sintered compact and high-withstanding-voltage member
CN109336565A (en) * 2018-12-24 2019-02-15 焦作市德邦科技有限公司 A kind of preparation method of Zirconia reinforced alumina wear-resistant ceramic

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170138221A (en) 2016-06-07 2017-12-15 삼성전기주식회사 Insulator composition and manufacturing method using the same
DE102017205794A1 (en) 2017-04-05 2018-10-11 Siemens Aktiengesellschaft Method for sealing an annular gap in a turbine and turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119156A (en) * 1985-11-19 1987-05-30 株式会社デンソー Manufacture of high insulation high alumina base ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119156A (en) * 1985-11-19 1987-05-30 株式会社デンソー Manufacture of high insulation high alumina base ceramic composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044266A1 (en) * 1998-02-27 1999-09-02 Ngk Spark Plug Co., Ltd. Spark plug, alumina insulator for spark plug, and method of manufacturing the same
US6407487B1 (en) 1998-02-27 2002-06-18 Ngk Spark Plug Co., Ltd. Spark plug, alumina insulator for spark plug, and method of manufacturing the same
US6632381B2 (en) 1998-02-27 2003-10-14 Ngk Spark Plug Co., Ltd. Production process for alumina based insulator
EP1153899A1 (en) * 2000-05-02 2001-11-14 Michael Cohen Alumina ceramic products
JP2007510617A (en) * 2003-11-12 2007-04-26 フェデラル−モーグル コーポレイション Ceramic with advanced high temperature electrical properties for use as a spark plug insulator
JP2010513217A (en) * 2006-12-20 2010-04-30 フェデラル−モーグル コーポレイション Ceramic with advanced high temperature electrical properties for use as a spark plug insulator
JP2011138771A (en) * 2009-12-30 2011-07-14 Robert Bosch Gmbh Ceramic insulator, especially, ceramic insulator using aluminum oxide as base, and its manufacturing method
CN102185256A (en) * 2009-12-30 2011-09-14 罗伯特.博世有限公司 Ceramic insulator especially based on aluminum oxide and manufacture method thereof
US20110251042A1 (en) * 2010-04-08 2011-10-13 Nippon Soken, Inc. Alumina sintered body
US20150136452A1 (en) * 2012-05-31 2015-05-21 Kyocera Corporation High-withstanding-voltage alumina sintered compact and high-withstanding-voltage member
US9548142B2 (en) * 2012-05-31 2017-01-17 Kyocera Corporation High-withstanding-voltage alumina sintered compact and high-withstanding-voltage member
JP2014220136A (en) * 2013-05-09 2014-11-20 日本特殊陶業株式会社 Insulator for spark plug and spark plug
CN109336565A (en) * 2018-12-24 2019-02-15 焦作市德邦科技有限公司 A kind of preparation method of Zirconia reinforced alumina wear-resistant ceramic

Also Published As

Publication number Publication date
BR8900770A (en) 1989-10-17
JP2857639B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US4767731A (en) Aluminum titanate-mullite base ceramics
US2776896A (en) Ceramic composition having thermal shock resistance
US3979216A (en) Low thermal expansion coefficient synthetic cordierite-containing ceramic bodies and method for producing same
JPH01212272A (en) High-alumina insulator for ignition plug
US2308115A (en) Ceramic body and method of making
JPH04305054A (en) Aluminum titanate structure and production thereof
EP0260893B1 (en) Heat resisting low expansion zirconyl phosphate-zircon composite bodies and process for producing the same
KR20200078759A (en) Manufacturing method of the aluminum titanate ceramics
US2482580A (en) Method of making fired vitreous
JP2002316866A (en) Member for heat treatment consisting of alumina sintered compact having excellent durability
JPS63201060A (en) Low expansion zrtio4-al2tio5-zro2 base composition
JPH10212158A (en) Refractory for glass fusion furnace
US2308092A (en) Ceramic composition and article made therefrom
US2975145A (en) Semi-conductive ceramic composition
US2414369A (en) Vitreous and vttrifiable composi
JPS647030B2 (en)
JPH0524106B2 (en)
JPH1053459A (en) Alumina porcelain composition
JPS62108766A (en) Zirconia sintered body
JP3043965B2 (en) Method for producing magnesia-based beta-alumina sintered body
JPH0455360A (en) Magnesia-based superhigh temperature refractory
JPH01320264A (en) Production of alumina-series ceramic
JPH02197181A (en) Ferroelectric porcelain body
JPS5833188B2 (en) Alumina-based porcelain composition
JP2727369B2 (en) Manufacturing method of ceramic substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees