JPH0121110B2 - - Google Patents

Info

Publication number
JPH0121110B2
JPH0121110B2 JP59213900A JP21390084A JPH0121110B2 JP H0121110 B2 JPH0121110 B2 JP H0121110B2 JP 59213900 A JP59213900 A JP 59213900A JP 21390084 A JP21390084 A JP 21390084A JP H0121110 B2 JPH0121110 B2 JP H0121110B2
Authority
JP
Japan
Prior art keywords
constant
temperature
value
thermistor
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59213900A
Other languages
Japanese (ja)
Other versions
JPS6191060A (en
Inventor
Yasuhisa Taguma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP59213900A priority Critical patent/JPS6191060A/en
Publication of JPS6191060A publication Critical patent/JPS6191060A/en
Publication of JPH0121110B2 publication Critical patent/JPH0121110B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、400〜1100℃の高温度域で使用で
きる高温用サーミスタに関する。 (従来の技術) 一般に、抵抗値が負の温度係数をもつNTCサ
ーミスタ(Negative Temperature Coefficient
Thermistor)の比抵抗と温度との間には ρ=ρ0exp B(1/T−1/T0) という関係がある。ここで、ρ,ρ0は温度T,
T0(k)k)における比抵抗値、BはB定数あるい
はサーミスタ定数と呼ばれる定数で、lnρを1/
Tに対してプロツトしたときの直線の傾きを表す
値である。 サーミスタの抵抗値の変化から温度を測定しよ
うとする場合、上記式からもわかる通り、B定数
が大きい程ある温度での温度変化に対する抵抗値
の変化の割合は大きく、従つて感度よく温度変化
を検知することができる。また、上記式において
1/Tの値は、Tの値が大きくなる程、すなわち
温度が高くなる程急激に小さくなつていくため、
特に高温域での温度を精度よく検出するために
は、B定数の大きな材料をサーミスタとして選ぶ
必要がある。こうしたサーミスタとしては特開昭
48−61984号が提案されている。これは酸化アン
チモンと酸化コバルトの所定量を含む酸化亜鉛焼
結体であるが、そのB定数は7000程度のものであ
る。 しかし、一方ではB定数が大きいということは
B定数の小さいものに比して設計上の使用可能な
温度範囲が狭くなるという問題点も存在する。そ
のため、実際の使用に際してはその目的、用途に
応じて適切な抵抗値とB定数をもつサーミスタを
選択しなければならない。 従来、スピネル型の結晶構造を有する高温用サ
ーミスタとしては、Mg(Al,Cr,Fe)2O4,Co
(Al,Cr,Fe)2O4,Co(Al,Cr)2O4とLaCrO3
混合組成のものが知られているが、これらは高温
域で使用するサーミスタとしてはB定数が小さい
か、或いはB定数はある程度大きいものでも抵抗
値も著るしく大きく実用上満足すべきものとはい
えなかつた。 (発明が解決しようとする問題点) (CoxMg1-x)Al2O4なる組成のスピネル型固
溶体において、実際の使用目的、用途に応じた種
種の抵抗値とB定数をもつたサーミスタを得るこ
とにある。即ち、CoとMgの比を変えることによ
つて、大きいB定数の値を維持したままで種々の
比抵抗値を示すようにした(Co,Mg)Al2O4
固溶体の、アルミニウムをアンチモンで置き換え
ることにより、比抵抗値をさらに小さくしB定数
の値も比較的大きな値の範囲で種々に変えられる
ようにしたサーミスタを得ようとするものであ
る。 (問題点を解決するための手段) この発明は、(CoxMg1-x)Al2O4(ただし0.1≦
x≦0.95)なる組成のスピネル型固溶体におい
て、アルミニウムをスピネル固溶体に対しSb2O3
に換算して5〜90モル%のアンチモンで置き換え
たことを特徴とする高温用サーミスタである。 MgAl2O4は、一般に1000℃において107〜108Ω
cmの高い比抵抗を有し、またCoAl2O4は、102Ω
cm程度の低い比抵抗を有する。それ故に、(Cox
Mg1-x)Al2O4の比抵抗は、xの値を0から1ま
で変化していくことによつて、MgAl2O4の比抵
抗値からCoAl2O4の比抵抗値まで順次減少させて
ゆくことができる。しかもその場合のB定数の値
は、20000以上、具体的には22000附近でほとんど
変化がみられない。 しかしながら、各種の目的、用途に向けられる
実用的なサーミスタを提供するためには、比抵抗
値のみならずB定数をも要求に応じて容易に変化
出来るようになつていなければならない。発明者
はこの要求に応えるべく研究した結果、上記固溶
体のアルミニウムをアンチモンで置換することに
よつてこの目的を達成できることを見出しこの発
明を完成したものである。 まず発明者は、スピネル型固溶体 (CoxMg1-x)Al2O4においてその比抵抗の変
化について研究した結果、そのxの値は、0.1〜
0.95の範囲で実施出来ることを確認した。xの値
が0.1未満であるとほとんど効果なく、即ちアン
チモンの置換によるB定数の変更が充分に現れな
い。またxの値が0.95を超えると焼結体にそりや
ゆがみが生ずるので好ましくない。 良好な焼結体が得られて、しかもアンチモン置
換によつてB定数が任意に変えられるようにする
には、上記固溶体の化学式においてxの値は0.1
〜0.95の範囲がよい。 また、B定数の変化のためには、スピネル型固
溶体のアルミニウムを、Sb2O3に換算して5〜90
モル%のアンチモンで置換すればよいことを見出
した。Sb2O3が5モル%未満であると、B定数の
低下はほとんどみられない。またSb2O3が90モル
%を超えると、仮焼の段階で溶融するので不適切
である。以下に実施例をあげてさらに説明する。 実施例 1 Al(OH)3,Mg(OH)2,CoO,Sb2O3の各試薬
粉末を第1表に示す割合で配合して焼結体を得
た。製法は上記試薬粉末を、アルミナ自動乳鉢で
1時間乾式混合し、次いで2時間エタノールを分
散媒として湿式混合し、最後に1時間乾式混合し
たのちアルミナルツボに入れ、1200〜1400℃の温
度で4時間仮焼した。この仮焼粉末をアルミナ自
動乳鉢で2時間乾式粉砕し、これはバインダーと
してポリビニルアルコール6重量%の水溶液を粉
末1gに対し0.05mlの割合で加え混合した。混合
物を径10mm×厚さ2mmの円板状に1ton/cm2の圧力
で加圧成形し、1450〜1600℃の温度で2時間電気
炉で焼成し焼結体を造つた。次にこの焼結体の両
平面に白金電極を焼き付けた。このようにして得
た素子の比抵抗―温度特性を、直流安定化電源と
エレクトロメータを用いて200〜1100℃の温度範
囲で測定した。結果を第1図に示す。 なお、第1表に示した配合組成において、Mg
(OH)2,Al(OH)3はそれぞれMgO,Al2O3に換
算した値で示し、またCoOとMgOの合量は100モ
ル%、Al2O3とSb2O3の合量は100モル%、かつ
MgOとCoOの和とAl2O3とSb2O3の和が1対1と
なるようにした。
(Industrial Application Field) The present invention relates to a high temperature thermistor that can be used in a high temperature range of 400 to 1100°C. (Prior art) In general, an NTC thermistor whose resistance value has a negative temperature coefficient
There is a relationship between the specific resistance of the thermostor and the temperature: ρ=ρ 0 exp B (1/T−1/T 0 ). Here, ρ, ρ 0 are temperature T,
The specific resistance value at T 0 (k)k), B is a constant called the B constant or thermistor constant, and lnρ is 1/
This value represents the slope of a straight line when plotted against T. When trying to measure temperature from changes in the resistance value of a thermistor, as can be seen from the above equation, the larger the B constant, the greater the rate of change in resistance value with respect to temperature change at a certain temperature. Can be detected. In addition, in the above formula, the value of 1/T decreases rapidly as the value of T increases, that is, as the temperature increases,
In order to accurately detect temperature particularly in a high temperature range, it is necessary to select a material with a large B constant for the thermistor. As such a thermistor, JP-A-Sho
No. 48-61984 is proposed. This is a zinc oxide sintered body containing predetermined amounts of antimony oxide and cobalt oxide, and its B constant is about 7,000. However, on the other hand, there is also the problem that a large B constant means that the design usable temperature range becomes narrower than one with a small B constant. Therefore, in actual use, it is necessary to select a thermistor with an appropriate resistance value and B constant depending on the purpose and application. Conventionally, high-temperature thermistors with a spinel crystal structure have been made using Mg(Al, Cr, Fe) 2 O 4 , Co
Mixed compositions of (Al, Cr, Fe) 2 O 4 , Co (Al, Cr) 2 O 4 and LaCrO 3 are known, but these have a small B constant for use in high temperature ranges. , or even if the B constant was large to some extent, the resistance value was also significantly large and could not be said to be practically satisfactory. (Problem to be solved by the invention) A thermistor with various resistance values and B constants depending on the actual purpose and application in a spinel solid solution of the composition (Co x Mg 1-x ) Al 2 O 4 . It's about getting. That is, by changing the ratio of Co and Mg, aluminum was mixed with antimony in a (Co, Mg) Al 2 O 4 solid solution that exhibited various resistivity values while maintaining a large B constant value. By replacing it with , it is intended to obtain a thermistor in which the specific resistance value is further reduced and the value of the B constant can be varied within a relatively large range of values. (Means for solving the problem) The present invention provides (C x Mg 1-x ) Al 2 O 4 (however, 0.1≦
x≦0.95), aluminum is mixed with Sb 2 O 3 in the spinel solid solution.
This is a high-temperature thermistor characterized in that antimony is substituted with 5 to 90 mol% of antimony. MgAl 2 O 4 generally has a resistance of 10 7 to 10 8 Ω at 1000°C
CoAl 2 O 4 has a high resistivity of 10 2 Ω
It has a low resistivity of about cm. Therefore, (C x
Mg 1-x ) The specific resistance of Al 2 O 4 can be changed sequentially from the specific resistance value of MgAl 2 O 4 to the specific resistance value of CoAl 2 O 4 by changing the value of x from 0 to 1. It can be decreased. Moreover, the value of the B constant in that case shows almost no change at 20,000 or more, specifically around 22,000. However, in order to provide a practical thermistor for various purposes and uses, it is necessary to be able to easily change not only the specific resistance value but also the B constant according to requirements. As a result of research to meet this demand, the inventors discovered that this object could be achieved by replacing aluminum in the solid solution with antimony, thereby completing the present invention. First, the inventor studied the change in resistivity in a spinel-type solid solution (C x Mg 1-x ) Al 2 O 4 and found that the value of x was 0.1 to
We confirmed that it can be implemented within the range of 0.95. When the value of x is less than 0.1, there is almost no effect, that is, the change in the B constant due to the substitution of antimony does not appear sufficiently. Moreover, if the value of x exceeds 0.95, warpage or distortion will occur in the sintered body, which is not preferable. In order to obtain a good sintered body and to be able to arbitrarily change the B constant by antimony substitution, the value of x in the chemical formula of the solid solution above should be 0.1.
A range of ~0.95 is good. In addition, in order to change the B constant, aluminum in the spinel type solid solution must be converted to Sb 2 O 3 by 5 to 90
It has been found that it is sufficient to substitute with mol % of antimony. When Sb 2 O 3 is less than 5 mol %, the B constant hardly decreases. Moreover, if Sb 2 O 3 exceeds 90 mol %, it is inappropriate because it will melt during the calcination stage. Further explanation will be given below with reference to Examples. Example 1 A sintered body was obtained by blending reagent powders of Al(OH) 3 , Mg(OH) 2 , CoO, and Sb 2 O 3 in the proportions shown in Table 1. The manufacturing method is to dry mix the above reagent powder in an alumina automatic mortar for 1 hour, then wet mix for 2 hours using ethanol as a dispersion medium, and finally dry mix for 1 hour, then put it in an alumina crucible and mix at a temperature of 1200 to 1400℃ for 4 hours. Calcined for an hour. This calcined powder was dry-pulverized for 2 hours in an automatic alumina mortar, and mixed with an aqueous solution of 6% by weight polyvinyl alcohol as a binder at a ratio of 0.05 ml per 1 g of powder. The mixture was press-molded into a disk shape with a diameter of 10 mm and a thickness of 2 mm at a pressure of 1 ton/cm 2 and fired in an electric furnace at a temperature of 1450 to 1600° C. for 2 hours to produce a sintered body. Next, platinum electrodes were baked on both surfaces of this sintered body. The resistivity-temperature characteristics of the element thus obtained were measured in a temperature range of 200 to 1100°C using a DC stabilized power supply and an electrometer. The results are shown in Figure 1. In addition, in the formulation shown in Table 1, Mg
(OH) 2 and Al(OH) 3 are shown as values converted to MgO and Al 2 O 3 , respectively, and the total amount of CoO and MgO is 100 mol%, and the total amount of Al 2 O 3 and Sb 2 O 3 is 100 mol%, and
The ratio of the sum of MgO and CoO to the sum of Al 2 O 3 and Sb 2 O 3 was set to 1:1.

【表】 また、第2表に上記各素子の1000℃、700℃、
500℃における各比抵抗とB定数の値を示した。
[Table] Table 2 also shows the 1000°C, 700°C,
The values of each specific resistance and B constant at 500°C are shown.

【表】 第1図と第2表から(CoxMg1-x)Al2O4のア
ルミニウムをアンチモンで置換することによりB
定数は22000からその半分近くの11500まで変化さ
せることができる(AないしF参照)。しかもそ
の低下の割合はSb2O3の量が多くなるに従つて大
となる傾向にある。また、比抵抗は1000℃、700
℃、500℃のいづれでも低下していることがわか
る。さらに第1表のC,G,Hから、CoOの割合
(x)が多くなればSb2O3による比抵抗の低下と
B定数の低下の効果は、Sb2O3が同じ20モル%で
もCoOの割合(x)を増大しないものと対比して
大きいことがわかる。 実施例 2 Sb2O3を用いず、Al(OH)3,Mg(OH)2,CoO
の各試薬を用いて実施例1と同様にして(Cox
Mg1-x)Al2O4系焼結体を得た。ただし、xの値
は第3表の通り種々変えた。得られた焼結体を実
施例1と同様にして素子とし、200〜1100℃の温
度範囲で比抵抗−温度特性を測定した。その結果
を第2図に示した。また、この素子の1000℃、
700℃における各比抵抗値とB定数を第3表に示
した。
[Table] From Figure 1 and Table 2, by replacing aluminum in (Co x Mg 1-x ) Al 2 O 4 with antimony, B
The constant can be varied from 22,000 to nearly half that value, 11,500 (see A to F). Moreover, the rate of decrease tends to increase as the amount of Sb 2 O 3 increases. Also, the specific resistance is 1000℃, 700
It can be seen that the temperature decreases both at ℃ and 500℃. Furthermore, from C, G, and H in Table 1, as the proportion (x) of CoO increases, the effect of lowering the resistivity and lowering the B constant due to Sb 2 O 3 will decrease even if Sb 2 O 3 is the same at 20 mol%. It can be seen that the CoO ratio (x) is larger compared to that without increasing it. Example 2 Al(OH) 3 , Mg(OH) 2 , CoO without using Sb 2 O 3
(C x
A Mg 1-x ) Al 2 O 4 based sintered body was obtained. However, the value of x was varied as shown in Table 3. The obtained sintered body was made into an element in the same manner as in Example 1, and its resistivity-temperature characteristics were measured in the temperature range of 200 to 1100°C. The results are shown in Figure 2. In addition, this element's 1000℃,
Table 3 shows each specific resistance value and B constant at 700°C.

【表】 第2図および第3表から明らかなように、xの
値を増大していくと、即ちCoを増大しMgを減じ
ていつても、1000℃、700℃のいづれの場合比抵
抗は低下するが、B定数は20000以上で特にxが
0.1以上ではほとんど変化しない。 (発明の効果) 以上説明したように、本発明になるサーミスタ
は(CoxMg1-x)Al2O4型固溶体において、Coと
Mgの比率及びAlとSbの比率を変えることによつ
てその比抵抗とB定数の値を種々変化したサーミ
スタを容易に得ることができる。そしてここに得
られたサーミスタは高感度でしかも実用的なもの
とすることができる。
[Table] As is clear from Figure 2 and Table 3, as the value of x increases, that is, even if Co is increased and Mg is decreased, the specific resistance increases at both 1000℃ and 700℃. However, the B constant is over 20000, especially when x
Above 0.1, there is almost no change. (Effects of the Invention) As explained above, the thermistor of the present invention combines Co and
By changing the ratio of Mg and the ratio of Al to Sb, it is possible to easily obtain thermistors with various resistivity and B constant values. The thermistor thus obtained can be highly sensitive and practical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になるサーミスタの比抵抗−温
度特性を示す線図。第2図は(CoxMg1-x
Al2O4系焼結体のxを変化させた場合の比抵抗−
温度特性を示す線図。
FIG. 1 is a diagram showing the resistivity-temperature characteristics of the thermistor according to the present invention. Figure 2 is (Co x Mg 1-x )
Specific resistance when changing x of Al 2 O 4 based sintered body -
Diagram showing temperature characteristics.

Claims (1)

【特許請求の範囲】[Claims] 1 (CoxMg1-x)Al2O4(ただし0.1≦x≦0.95)
なる組成のスピネル型固溶体において、アルミニ
ウムをスピネル固溶体に対しSb2O3に換算して5
〜90モル%のアンチモンで置き換えたことを特徴
とする高温用サーミスタ。
1 (Co x Mg 1-x ) Al 2 O 4 (0.1≦x≦0.95)
In a spinel solid solution with a composition of
A high-temperature thermistor characterized by replacing ~90 mol% of antimony.
JP59213900A 1984-10-12 1984-10-12 Thermistor for high temperature Granted JPS6191060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213900A JPS6191060A (en) 1984-10-12 1984-10-12 Thermistor for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213900A JPS6191060A (en) 1984-10-12 1984-10-12 Thermistor for high temperature

Publications (2)

Publication Number Publication Date
JPS6191060A JPS6191060A (en) 1986-05-09
JPH0121110B2 true JPH0121110B2 (en) 1989-04-19

Family

ID=16646876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213900A Granted JPS6191060A (en) 1984-10-12 1984-10-12 Thermistor for high temperature

Country Status (1)

Country Link
JP (1) JPS6191060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127612U (en) * 1989-03-28 1990-10-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127612U (en) * 1989-03-28 1990-10-22

Also Published As

Publication number Publication date
JPS6191060A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
EP0207994B1 (en) Oxide semiconductor for thermistor and a method of producing the same
US20190348201A1 (en) Thermistor sintered body and thermistor element
EP0028510B1 (en) Oxide thermistor compositions and thermistors containing them
EP0149681B1 (en) Oxide semiconductor for thermistor
US4647895A (en) Ceramic temperature sensor
JP2841395B2 (en) Method for manufacturing NTC thermistor
US4743881A (en) Ceramic temperature sensor
JPH0121110B2 (en)
JP2894036B2 (en) High temperature thermistor and manufacturing method thereof
JP3569810B2 (en) High temperature thermistor
JPS6143841B2 (en)
JP2588951B2 (en) High temperature PTC thermistor and manufacturing method thereof
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2002193665A (en) Semiconductor ceramic for thermistor and chip type thermistor using it
JP2578805B2 (en) Oxide semiconductor for thermistor
JP3559405B2 (en) Composition for thermistor
JP3213647B2 (en) Negative thermistor composition and negative thermistor
KR100190270B1 (en) Thermister composition of metal oxide system
KR100225501B1 (en) Material of ilimenite system thermistor using for middle temperature
JP2652785B2 (en) Thermistor element
JPH0578921B2 (en)
JPH0722206A (en) Thermistor
JPH0259462A (en) Composition for thermistor
JP2004172640A (en) Sintered body for thermistor element and its manufacturing method, and temperature sensor
JPS589565B2 (en) Manufacturing method of voltage nonlinear resistor