JPH01208410A - Smelting reduction method for iron oxide raw material - Google Patents

Smelting reduction method for iron oxide raw material

Info

Publication number
JPH01208410A
JPH01208410A JP63031222A JP3122288A JPH01208410A JP H01208410 A JPH01208410 A JP H01208410A JP 63031222 A JP63031222 A JP 63031222A JP 3122288 A JP3122288 A JP 3122288A JP H01208410 A JPH01208410 A JP H01208410A
Authority
JP
Japan
Prior art keywords
reduction furnace
iron
slag
smelting reduction
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031222A
Other languages
Japanese (ja)
Inventor
Akihide Hikosaka
彦坂 明秀
Shuzo Ito
修三 伊東
Hironobu Sako
迫 博信
Takeshi Mimura
毅 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63031222A priority Critical patent/JPH01208410A/en
Publication of JPH01208410A publication Critical patent/JPH01208410A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

PURPOSE:To reduce unit consumption of slag making material and producing quantity of slag and also to strengthen reducing capacity by blowing gaseous carbonic material into molten metal in a smelting reduction furnace to reduce iron oxide raw material and conducting reaction heat into the molten metal. CONSTITUTION:The iron oxide raw material is supplied into the smelting reduction furnace together with the gaseous carbonic material of LNG, etc., and oxygen. Then, a part, desirably >=10% of the gaseous carbonic material is directly blown into the molten metal to execute heat decomposition, and the iron oxide is sufficiently reduced. The reaction heat at this time is conducted to the molten steel almost 100% to raise the molten temp. CO and H2 generated from the molten metal are secondarily burnt with oxygen or preheated air separately blown and these reaction heats are absorbed into the molten metal at high efficiency. By this method, the molten iron having low S content, etc., and high quality can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、鉄鉱石等の酸化鉄原料を炭素質物質、酸素含
有物質および造滓剤とともに溶融還元炉に供給して溶銑
を製造する方法に関し、詳細には炭素質物質として例え
ば天然ガス(以下LNGという)の様なガス状炭素質物
質を使用することによって造滓剤使用量やスラグ生成量
を大幅に低減することに成功した酸化鉄原料の溶融還元
方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for producing hot metal by supplying iron oxide raw materials such as iron ore to a smelting reduction furnace together with carbonaceous substances, oxygen-containing substances, and slag-forming agents. Regarding iron oxide, we have succeeded in significantly reducing the amount of slag-forming agent used and the amount of slag produced by using a gaseous carbonaceous material such as natural gas (hereinafter referred to as LNG) as the carbonaceous material. This invention relates to a method for melting and reducing raw materials.

[従来の技術] 高炉性以外の銑鉄製造技術として、いわゆる溶融還元製
鉄法が脚光を浴びつつあり、これまでC0REX法、X
R法、SC法、C0IN法等、多くのプロセスが開発さ
れてきた。
[Prior art] The so-called smelting reduction method is attracting attention as a pig iron manufacturing technology other than blast furnace.
Many processes have been developed, such as the R method, the SC method, and the C0IN method.

溶融還元製鉄法の1般的プロセスは、溶融還元炉で発生
したCo主体の高温ガスを熱源および還元剤として予備
還元炉に供給し鉄鉱石の一部または必要によりその大部
分を還元して予備還元鉄を製造する一方、溶融還元炉に
は炭素質物質および酸素含有ガスを吹と込んで熱源およ
び還元ガスの供給を行ないつつ、前記予備還元炉から導
入されてくる予備還元鉄の溶融並びに最終還元を実施し
て銑鉄を製造するものである。
The general process of the smelting reduction iron manufacturing process is to supply high-temperature gas mainly composed of Co generated in a smelting reduction furnace to a pre-reduction furnace as a heat source and reducing agent, and reduce some or, if necessary, most of the iron ore, to prepare a preliminary reduction. While producing reduced iron, carbonaceous material and oxygen-containing gas are blown into the smelting reduction furnace to supply a heat source and reducing gas. Pig iron is produced by reduction.

この様な溶融還元製鉄法の公知技術としては、例えば、
(1)予備還元炉で得られた予備還元鉄を溶融還元炉へ
装入し、該溶融還元炉に形成された鉄浴に石炭および酸
素を吹込み、発生ガスの一部を浴上で燃焼(ポストコン
パッション)させつつ鉄鉱石を溶融還元し、ここから導
出されるガスを改質して予備還元炉に導入する方法(特
開昭59−222508号)、(2)鉄鉱石を予熱し、
さらに予備還元炉で予備還元した後、炭素質物質、酸素
、造滓剤とともに溶融還元炉に供給してさらに一部を二
次燃焼させ、溶融還元炉にて生成した鉄浴を加熱すると
ともに同時に生成した還元ガスを熱回収並びに脱炭酸す
ることによって酸化度を調整し、予備還元炉に導入して
予備還元率を制御する方法(特開昭60−145307
号)、さらには上記2つの公知技術とは若干原理が異な
るが、(3)予備還元炉を有しない転炉(鉄浴式溶融還
元炉)内に鉄鉱石および炭素源から成る団鉱および生石
灰を加えつつ酸素吹錬を行なって銑鉄を得る方法(特公
昭57−40883号)等を挙げることができる。
Known techniques for such smelting reduction iron manufacturing methods include, for example,
(1) Charge the pre-reduced iron obtained in the pre-reduction furnace to the smelting-reduction furnace, blow coal and oxygen into the iron bath formed in the smelting-reduction furnace, and burn part of the generated gas on the bath. (2) Preheating the iron ore (Japanese Patent Application Laid-open No. 59-222508), in which the iron ore is melted down while being subjected to post-compassion, and the gas extracted from this is reformed and introduced into a pre-reduction furnace. ,
Furthermore, after being pre-reduced in a pre-reduction furnace, it is supplied to a smelting-reduction furnace along with carbonaceous substances, oxygen, and a slag-forming agent, and a portion is further burned for secondary combustion, and the iron bath produced in the smelting-reduction furnace is heated and simultaneously A method of adjusting the degree of oxidation by recovering heat and decarboxylating the generated reducing gas, and introducing it into a preliminary reduction furnace to control the preliminary reduction rate (Japanese Patent Laid-Open No. 60-145307
(3) Although the principle is slightly different from the above two known techniques, (3) briquette and quicklime consisting of iron ore and carbon sources are placed in a converter (iron bath type smelting reduction furnace) without a preliminary reduction furnace. Examples include a method of obtaining pig iron by oxygen blowing while adding (Japanese Patent Publication No. 57-40883).

[発明が解決しようとする課題] この様な鉄浴式溶融還元炉操業においては、炭素質物質
(特にこれらの方法においては経済性を重視することか
らエネルギーの乏しい低品位石炭等の安価な燃料が使用
される)によって持ち込まれる大量の硫黄分の除去、ス
ラグフォーミングの抑制及び炉体耐火物の保護等を目的
として石灰石や生石灰等からなる造滓剤を多量に添加し
なければならない。即ちこれら造滓剤は脱硫剤並びにス
ラグフォーミング防止の為の冷却剤として機能するもの
であり、さらに耐火物の保護という観点からすればスラ
グを塩基性に富んだものとすることが要求されるので、
前記造滓剤は塩基度調整剤としての側面も重視される。
[Problem to be solved by the invention] In the operation of such an iron bath type smelting reduction furnace, it is necessary to use carbonaceous materials (particularly in these methods, since economic efficiency is emphasized, cheap fuels such as energy-poor low-grade coal) are used. A large amount of slag forming agent such as limestone or quicklime must be added for the purpose of removing the large amount of sulfur content brought in by the furnace, suppressing slag foaming, and protecting the furnace refractories. In other words, these slag-forming agents function as desulfurization agents and coolants to prevent slag foaming, and from the viewpoint of protecting refractories, it is required that the slag be highly basic. ,
The aspect of the slag-forming agent as a basicity regulator is also important.

しかるに鉄鉱石等の酸化鉄原料中に含まれる3〜15%
の脈石分、及び炭素質物質中に含まれる5〜15%の灰
分は、銘柄によって若干相違するもののその殆んどが酸
性成分である珪石分で構成されており、塩基性成分は掻
く僅かである。その為、スラグは酸性側に偏る傾向にあ
り、こうした傾向を相殺して塩基性スラグを形成する為
には大量の塩基性造滓剤の没入が必要となり、その結果
スラグ量も増加して溶融還元炉操業に対する負荷を著し
く増大させる結果となっている。
However, 3 to 15% of iron oxide raw materials such as iron ore
The gangue content and the 5 to 15% ash content contained in carbonaceous materials vary slightly depending on the brand, but most of it is composed of silica, which is an acidic component, and there is only a very small amount of basic components. It is. Therefore, slag tends to be biased toward the acidic side, and in order to offset this tendency and form basic slag, it is necessary to immerse a large amount of basic slag, and as a result, the amount of slag increases and melts. This results in a significant increase in the load on the reduction furnace operation.

第8図はある鉄浴式溶融還元炉における二次燃焼率と石
炭原単位、石灰原単位およびスラグ量の関係を示したグ
ラフであり、後工程の溶銑脱硫及び精錬における負荷軽
減を考慮して溶銑中[5]濃度を0,15%以下に保持
し得るように塩基度を調整した場合の値である。同図か
ら明らかなように、二次燃焼率の増加と共に石炭原単位
は低下し、これに伴ってインプットSおよび灰分も減少
するので石灰原単位及びスラグ量も低下する。しかし例
えば同図中の*印(スラグ、f、=70)で示す曲線に
見られる如く、予備還元鉄の金属化率70%、二次燃焼
率25%という溶融還元炉操業としては比較的負荷の低
い条件下においてもスラグ量は200 kg/Tにも達
しており、通常の転炉操業に比較して著しく高いスラグ
量となっている。
Figure 8 is a graph showing the relationship between the secondary combustion rate, coal consumption rate, lime consumption rate, and slag amount in a certain iron bath type smelting reduction furnace. This is the value when the basicity is adjusted so that the [5] concentration in hot metal can be maintained at 0.15% or less. As is clear from the figure, as the secondary combustion rate increases, the coal consumption rate decreases, and as the input S and ash content also decrease, the lime consumption rate and slag amount also decrease. However, as can be seen in the curve marked * (slag, f, = 70) in the same figure, the operating load of the smelting reduction furnace is relatively high, with a metallization rate of pre-reduced iron of 70% and a secondary combustion rate of 25%. Even under conditions of low slag, the amount of slag reached 200 kg/T, which is significantly higher than that in normal converter operation.

また、上述した溶融還元炉の多くの例では、大量の石炭
粉を鉄浴中にインジェクションしているが、その為には
塊状石炭の乾燥、破砕1粒度調整の各工程が不可欠であ
り、又底吹き羽口、配管、羽口周辺耐火物等の底吹き関
連設備のメンテナンス負荷も極めて大きいものとなって
いる。
Furthermore, in many examples of the above-mentioned smelting reduction furnaces, a large amount of coal powder is injected into the iron bath, but for this purpose, the steps of drying the lump coal, crushing, and adjusting the particle size are essential. The maintenance load on bottom blowing-related equipment such as bottom blowing tuyeres, piping, and refractories around the tuyeres is also extremely large.

他方、前記熔融還元炉操業は、予備還元工程と組み合せ
て行なうものが殆んどであり、もし予備還元工程を省略
することができれば、設備コストひいては生産コストを
低減する上で有利であるが、溶融還元炉単独プロセスの
提案はみられなかった。その理由は、溶融還元炉単独で
酸化鉄原料を溶融し、且つ十分に還元しようとすれば、
溶融炉に過大な負荷がかかり、特に還元力を顕著に高め
る手段が開発されていないからといえる。そこで−数的
には予備還元炉において酸化鉄原料をある程度還元し且
つ予熱した後溶融還元炉に導入する方式が採用されてい
る。尚こうした溶融還元炉における還元能力の不足は使
用される炭素質物質の特性に由来するところが大きいと
考えることができる。
On the other hand, most of the smelting reduction furnace operations are performed in combination with a pre-reduction step, and if the pre-reduction step can be omitted, it would be advantageous to reduce equipment costs and ultimately production costs. There were no proposals for a process using only a smelting reduction furnace. The reason is that if you try to melt the iron oxide raw material and reduce it sufficiently in the smelting reduction furnace alone,
This can be said to be because an excessive load is placed on the melting furnace, and no means have been developed to significantly increase the reducing power. Therefore, numerically, a method has been adopted in which the iron oxide raw material is reduced to some extent in a preliminary reduction furnace, preheated, and then introduced into a smelting reduction furnace. It can be considered that the lack of reducing ability in the smelting reduction furnace is largely due to the characteristics of the carbonaceous material used.

本発明はこうした事情に着目してなされたものであって
、溶融還元炉操業における造滓剤原単位並びにスラグ生
成量を大幅に減少させて操業コストを低減すると共に、
溶融還元炉における還元能力を強化して予備還元なしで
も酸化鉄原料を一気に溶融還元し得る様な方法を確立す
ることによフて溶銑を経済的に製造しようとするもので
ある。
The present invention has been made with attention to these circumstances, and it significantly reduces the slag forming agent consumption rate and the amount of slag produced in the operation of a smelting reduction furnace, thereby reducing operating costs.
The aim is to economically produce hot metal by strengthening the reducing capacity in a smelting reduction furnace and establishing a method that can melt and reduce iron oxide raw materials all at once without preliminary reduction.

[課題を解決するための手段] しかして上記目的を達成した本発明方法は、鉄鉱石等の
酸化鉄原料をガス状炭素質物質及び酸素含有物質と共に
溶融還元炉に供給し、且つ該ガス状炭素質物質の一部は
溶湯内へ吹込むことにより酸化鉄原料を還元すると共に
、ガス状炭素質物質あるいはその熱分解物等の燃焼熱を
溶湯に着熱して銑鉄を製造する点に要旨を有するもので
ある。
[Means for Solving the Problems] The method of the present invention, which has achieved the above object, supplies an iron oxide raw material such as iron ore to a smelting reduction furnace together with a gaseous carbonaceous material and an oxygen-containing material, and The main point is that some of the carbonaceous material is blown into the molten metal to reduce the iron oxide raw material, and the heat of combustion of the gaseous carbonaceous material or its thermal decomposition product is transferred to the molten metal to produce pig iron. It is something that you have.

[作用] 第1図は、溶鉄中のC濃度とスラグ中のFeO濃度の関
係を示すグラフであり、スラグ中のFeO濃度は溶鉄中
のC濃度の低下と共に上昇しCが2%以下になるとFe
O濃度は急激に増大する。溶鉄中のFeO濃度は鉄歩留
りの向上やスラグフォーミング防止の観点からは低い方
が望ましく、一方溶融還元炉において高い還元効率並び
に二次燃焼率を得る為には溶鉄中のC濃度が高い方が望
ましい。ただし耐火物保護の観点からは比較的低い操業
温度が望まれるので溶鉄中のCm度を高め過ぎることは
好ましいことではない。こうした要請を満たす為には溶
鉄中のC濃度をおよそ2〜5%に制御することが望まれ
る訳であるが、従来使用されていた粉末状炭素質物質の
場合、溶鉄中への浸炭速度が小さく、たとえインジェク
ション法を採用しても溶銑中のCta度を上記レベルに
制御することは難しかった。
[Operation] Figure 1 is a graph showing the relationship between the C concentration in molten iron and the FeO concentration in slag.The FeO concentration in slag increases as the C concentration in molten iron decreases, and when C becomes 2% or less Fe
O concentration increases rapidly. It is desirable that the FeO concentration in the molten iron be low from the viewpoint of improving iron yield and preventing slag foaming. On the other hand, in order to obtain high reduction efficiency and secondary combustion rate in the smelting reduction furnace, the C concentration in the molten iron should be high. desirable. However, from the viewpoint of protecting refractories, a relatively low operating temperature is desired, so it is not preferable to increase the Cm degree in the molten iron too much. In order to meet these requirements, it is desirable to control the C concentration in molten iron to approximately 2 to 5%, but in the case of the powdered carbonaceous material used conventionally, the carburization rate into molten iron is slow. Even if the injection method was adopted, it was difficult to control the Cta degree in hot metal to the above level.

これに対し本発明では、炭素質物質としてLNGの様な
ガス状物質を採用し、且つガス状物質の一部(好ましく
は10%以上で100%でもよい)は溶湯内へ直接吹込
むという構成を採用している。即ちLNGの様なガス状
炭素質物質は、溶湯中へ吹込まれると直ちに熱分解し、
生成したCが溶湯中に速やかに浸炭する為に溶鉄中のC
濃度を迅速に制御することができ、その結果スラグ中の
FeO濃度を低い値に抑えることができる。
In contrast, in the present invention, a gaseous substance such as LNG is used as the carbonaceous substance, and a part of the gaseous substance (preferably 10% or more and may be 100%) is directly blown into the molten metal. is adopted. In other words, gaseous carbonaceous substances such as LNG are immediately thermally decomposed when blown into the molten metal.
In order for the generated C to quickly carburize into the molten metal, C in the molten iron is
The concentration can be quickly controlled, and as a result, the FeO concentration in the slag can be kept to a low value.

又溶鉄中に十分な量のCが確保されるので溶融還元炉内
で酸化鉄原料を十分に還元することができ、COを生成
すると共に反応熱が発生する。尚溶融還元炉内に同時に
純酸素や空気等の酸素含有物質を吹込むと、溶鉄中のC
が酸素含有物質中の酸素と反応してcoとなり、このと
きの反応熱はほぼ100%溶湯に着熱するので溶湯温度
を高めるのに極めて有効である。モして溶湯から発生し
たCOおよびH2は溶湯面上に別途吹込まれた酸素や予
熱空気により二次燃焼し、この反応熱は高い効率で溶湯
に吸収される。従ってこれらの燃焼熱に見合うだけの酸
化鉄原料を連続あるいは半連続的に没入すると、これら
を速やかに溶融することができ、且つ前述の如く溶鉄中
のC濃度を十分に高めることによって溶鉄を還元するこ
とができる。
Furthermore, since a sufficient amount of C is ensured in the molten iron, the iron oxide raw material can be sufficiently reduced in the smelting reduction furnace, producing CO and reaction heat. If oxygen-containing substances such as pure oxygen or air are simultaneously blown into the smelting reduction furnace, C in the molten iron will
reacts with oxygen in the oxygen-containing substance to form co, and almost 100% of the heat of reaction at this time is transferred to the molten metal, so it is extremely effective in raising the temperature of the molten metal. The CO and H2 generated from the molten metal are subjected to secondary combustion by oxygen and preheated air that are separately blown onto the surface of the molten metal, and this reaction heat is absorbed into the molten metal with high efficiency. Therefore, by continuously or semi-continuously immersing iron oxide raw materials in an amount corresponding to the heat of combustion, these can be rapidly melted, and as mentioned above, by sufficiently increasing the C concentration in the molten iron, the molten iron can be reduced. can do.

他方上述の如く機能するガス状炭素質物質は、従来の固
体状炭素質物質と異なり3分並びに灰分の含有量が少な
いので、脱硫剤及び塩基性調整剤としでも機能させるべ
き炭酸カルシウムや生石灰等の造滓剤の使用量が少なく
て済み、スラグ生成量も低減することができる。
On the other hand, unlike conventional solid carbonaceous substances, gaseous carbonaceous substances that function as described above have a low content of 30% and ash, so calcium carbonate, quicklime, etc., which also function as desulfurization agents and basicity regulators, are used. The amount of sludge forming agent used can be reduced, and the amount of slag produced can also be reduced.

即ち前記ガス状炭素質物質および酸素含有物質の供給と
同時に、耐火物保護、スラグフォーミングの防止、排滓
性等を考慮した最適スラグ性状の保持等を目的として、
且つスラグ塩基度を0.8〜2に保持することを目的と
して適量の造滓剤を添加することによってS含有量等の
低い高品質の溶銑を経済的に得ることができる。
That is, at the same time as supplying the gaseous carbonaceous substance and oxygen-containing substance, for the purpose of protecting refractories, preventing slag foaming, maintaining optimal slag properties in consideration of slag drainage, etc.
In addition, by adding an appropriate amount of slag forming agent for the purpose of maintaining the slag basicity at 0.8 to 2, high quality hot metal with low S content etc. can be obtained economically.

ちなみに天然ガスのようなガス状の炭素質物質を使用す
ることによるきわめて大きい利点の1つとして銑鉄品質
の向上が挙げられる。即ち石炭を使用した場合、100
kg/T以上の石灰原単位の操業においても溶銑Sは0
.15%以上であるが、本発明方法では8i端な例とし
てCaO原単位が0でも0.15%未満の溶aSを達成
することが可能である。但し炉体耐火物の保護や適切な
スラグ性状の保持も重要であるので、現実の問題として
は、塩基度調整用にCaOを添加することは避けること
ができない。例えばスラグ塩基度を1.4 とした後述
の実施例1では石灰原単位42kg/T、スラグ量96
kg/Tの操業で溶銑Sは僅か0.016%であり、且
つP濃度も0.036%と極めて高純度の銑鉄が得られ
ている。更に塩基度1.8の操業ではSをQ、012%
以下、Pを0,02%以下にすることも可能であり、高
P鉱石においては有力な製造法となる。この様に高純度
の銑鉄が得られる為、溶銑予備F!錬を行なうことなく
、同一容器内で且つ排滓することなくそのまま脱C精錬
に移行し、鋼を製造することも可能である。
Incidentally, one of the most significant advantages of using gaseous carbonaceous substances such as natural gas is improved pig iron quality. That is, if coal is used, 100
Hot metal S is 0 even in operations with lime consumption of kg/T or more.
.. However, in the method of the present invention, as an extreme example of 8i, it is possible to achieve molten CaS of less than 0.15% even when the CaO basic unit is 0. However, since it is also important to protect the furnace refractories and maintain appropriate slag properties, as a practical matter, it is unavoidable to add CaO for basicity adjustment. For example, in Example 1 described below where the slag basicity is 1.4, the lime consumption rate is 42 kg/T, and the slag amount is 96 kg/T.
kg/T operation, the hot metal S content is only 0.016%, and the P concentration is also 0.036%, making it possible to obtain extremely high purity pig iron. Furthermore, in operations with a basicity of 1.8, S is changed to Q, 012%.
Hereinafter, it is possible to reduce the P content to 0.02% or less, and this is an effective manufacturing method for high-P ores. Because high-purity pig iron can be obtained in this way, hot metal reserve F! It is also possible to produce steel by directly proceeding to carbon-free refining in the same container without conducting slag.

本発明の基本構成は上記の通りであり、予備還元工程な
しに溶融還元炉のみで酸化鉄原料の溶融還元が達成され
、且つこのときの造滓剤使用量や操業負荷を低減できる
ものであるが、本発明は予熱炉や予備還元炉の併用を排
除する訳ではなく、あくまでも溶融還元炉において優れ
た溶融・還元性能を確保することができることを主旨と
するものである。従って予熱炉や予備還元炉と組合せる
ことによって一層効率の良い溶融還元システムを構成す
ることは本発明を何ら逸脱するものではない。事実溶融
還元炉からは高温の排ガスが放出されるのでこれを有効
利用することは省エネルギーの観点から当然なことであ
り、該排ガスの一部をホットストーブあるいはそれに類
するものに導入して空気等を予熱し、さらにレキュペレ
ータ−に導入してLNG等の予熱に使用すること等がで
きることは言う迄もない。又別途予熱炉を設けて酸化鉄
原料の予熱に利用したり、あるいは該排ガスにLNG等
のガス状炭素質物質を作用させて冷却及び改質し、これ
を予備還元炉に導入して酸化鉄原料の予熱並びに予備還
元に利用することも可能である。
The basic configuration of the present invention is as described above, and smelting reduction of iron oxide raw materials is achieved only in a smelting reduction furnace without a preliminary reduction step, and the amount of slag-forming agent used and operational load at this time can be reduced. However, the present invention does not exclude the combined use of a preheating furnace or a prereduction furnace, and the main purpose of the present invention is to ensure excellent melting and reduction performance in the melting and reduction furnace. Therefore, it does not deviate from the present invention to construct a more efficient melting reduction system by combining it with a preheating furnace or a prereduction furnace. In fact, high-temperature exhaust gas is emitted from a smelting reduction furnace, so it is natural to make effective use of this from an energy-saving perspective. Needless to say, it can be used for preheating LNG, etc. by introducing it into a recuperator. In addition, a preheating furnace may be installed separately and used to preheat the iron oxide raw material, or the exhaust gas may be cooled and reformed by acting on a gaseous carbonaceous material such as LNG, and then introduced into a pre-reduction furnace to produce iron oxide. It can also be used for preheating and preliminary reduction of raw materials.

又本発明では溶融還元炉における還元が終了すると、通
常は炉を傾動させて出銑並びに出滓を行なうが、これら
の操作を行なわずに、溶融還元炉内へ吹込むガスをガス
状炭素質物質から酸素に切り換えて引続き脱C精錬を実
施することにより溶鋼を製造することもできる。この場
合は炉体の予熱が省略でき、且つ待機中の放熱も避けら
れるので熱経済的にも有利である。
In addition, in the present invention, when the reduction in the smelting reduction furnace is completed, the furnace is normally tilted to tap the iron and slag, but without performing these operations, the gas blown into the smelting reduction furnace is replaced with gaseous carbonaceous material. Molten steel can also be produced by switching the substance to oxygen and subsequently carrying out decarbonization refining. In this case, preheating of the furnace body can be omitted, and heat radiation during standby can also be avoided, which is advantageous in terms of thermoeconomics.

その他、本発明の実施に際して溶融還元炉底部から溶湯
内にLNG等を吹込むと、LNGの熱分解反応が吸熱反
応である為に吹込みノズル先端にマツシュルームが生成
するが、マツシュルームの形成状態如何によっては通気
孔が閉塞して吹込みが阻害されることもあり得る。こう
した不都合を回避する為に、中心部に耐火材製芯体を配
したリング状ガス吹込みノズルを使用することが推奨さ
れ、これによって長時間に亘りガス状炭素質物質の吹込
みを安定して実施することができる。
In addition, when implementing the present invention, when LNG or the like is injected into the molten metal from the bottom of the smelting reduction furnace, since the thermal decomposition reaction of LNG is an endothermic reaction, a pine mushroom is formed at the tip of the injection nozzle, but how is the formation of the pine mushroom? Depending on the situation, the ventilation holes may become clogged and blowing may be inhibited. To avoid these inconveniences, it is recommended to use a ring-shaped gas injection nozzle with a core made of refractory material in the center, which stabilizes the injection of gaseous carbonaceous substances over a long period of time. It can be implemented by

[実施例] 本発明の実施例を以下に図面を参照しながら説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

本実施例で使用した鉄鉱石の組成は第1表に示した通り
である。また実施例および比較例フローシート内の各主
要地点におけるガス組成およびガス温度を第2表にまと
めて示す。
The composition of the iron ore used in this example is shown in Table 1. Further, the gas composition and gas temperature at each main point in the flow sheets of Examples and Comparative Examples are summarized in Table 2.

第  2  表 注)SRV:溶融還元炉、 DRF:予備還元炉実施例
1 第2図は、実施例のフローシートを示す。溶融還元炉に
は天然ガス(523kg/T)、高温(1200℃)予
熱空気(289Nm3/ T)、石灰(42kg/T)
が装入されて銑鉄が製造される。その時の生成スラグ量
は98kg/Tである。
Table 2 Note) SRV: Smelting reduction furnace, DRF: Preliminary reduction furnace Example 1 FIG. 2 shows a flow sheet of the example. The smelting reduction furnace uses natural gas (523kg/T), high temperature (1200℃) preheated air (289Nm3/T), and lime (42kg/T).
is charged to produce pig iron. The amount of slag produced at that time was 98 kg/T.

溶融還元炉排ガスは冷却後予熱炉に導かれ、該排ガスで
予熱された鉄鉱石(1596kg/T、700℃)は溶
融還元炉に装入される。尚天然ガスは全量を底吹きとし
た。
The smelting reduction furnace exhaust gas is led to a preheating furnace after being cooled, and the iron ore (1596 kg/T, 700° C.) preheated with the exhaust gas is charged into the smelting reduction furnace. The entire amount of natural gas was assumed to be bottom blown.

実施例2 第3図は、他の実施例を示すフローシートである。溶融
還元炉には天然ガス(519kg/T)、酸素(611
Nm’/T) 、石灰(42kg/T)を装入して銑鉄
を製造する。その時の生成スラグ量は96kg/Tであ
る。溶融還元炉排ガスは冷却後予熱炉に導かれ、該排ガ
スで予熱された鉄鉱石(1559kg/T、 700℃
)は溶融還元炉に装入される。尚天然ガスは全量を底吹
きとした。
Example 2 FIG. 3 is a flow sheet showing another example. The melting reduction furnace is equipped with natural gas (519 kg/T) and oxygen (611 kg/T).
Nm'/T) and lime (42 kg/T) are charged to produce pig iron. The amount of slag produced at that time was 96 kg/T. The exhaust gas from the smelting reduction furnace is led to the preheating furnace after being cooled, and the iron ore (1559 kg/T, 700℃) is preheated by the exhaust gas.
) is charged into a smelting reduction furnace. The entire amount of natural gas was assumed to be bottom blown.

実施例3 第4図はワンスル一方式の実施例を示すフローシートで
ある。溶融還元炉には天然ガス(717kg/ T )
 、高温(1200℃)の予熱空気(3493Nm3/
T) 、石灰(43kg/T)を装入して銑鉄を製造す
る。その時の生成スラグ量は104kg/Tである。溶
融還元炉排ガスは天然ガスの予熱に使用してそれ自身は
予備還元に適した温度まで冷却された後、予備還元炉に
導かれ、該排ガスで一部還元された還元鉄[f、(予備
還元率) =0.505 、1303kg/T、 70
0℃]は溶融還元炉に装入される。予備還元炉により排
出された排ガスの一部(2160Nm3/T)はホット
ストーブに導かれ空気の予熱に使用される。尚天然ガス
は全量を底吹きとした。
Embodiment 3 FIG. 4 is a flow sheet showing an embodiment of the one-through method. Natural gas (717kg/T) is used in the melting reduction furnace.
, high temperature (1200℃) preheated air (3493Nm3/
T), lime (43 kg/T) is charged to produce pig iron. The amount of slag produced at that time was 104 kg/T. The exhaust gas from the smelting reduction furnace is used to preheat natural gas, and after being cooled to a temperature suitable for preliminary reduction, it is led to the preliminary reduction furnace, where the reduced iron [f, (preliminary Reduction rate) =0.505, 1303kg/T, 70
0° C.] is charged into a melting reduction furnace. A part of the exhaust gas (2160 Nm3/T) discharged from the pre-reducing furnace is led to a hot stove and used for preheating the air. The entire amount of natural gas was assumed to be bottom blown.

第5図は石炭を使用した比較例のフローシートを示す。FIG. 5 shows a flow sheet of a comparative example using coal.

溶融還元炉には石炭(994kg/T)、石灰(180
kg/T)、高温予熱空気(3052Nm3/T)を吹
込み、I Tonの銑鉄を製造する。
Coal (994 kg/T) and lime (180 kg/T) are used in the smelting reduction furnace.
kg/T) and high-temperature preheated air (3052Nm3/T) to produce I Ton pig iron.

この時のスラグ量は334kg/Tにものぼる。溶融還
元炉排ガスは実施例3と同様、冷却後予備還元炉に導か
れ、該還元ガスで一部還元された還元鉄(fI11=0
.241.1376kg/T、 700℃)は溶融還元
炉に装入される。
The amount of slag at this time was as high as 334 kg/T. As in Example 3, the smelting reduction furnace exhaust gas is led to the preliminary reduction furnace after being cooled, and reduced iron (fI11=0) is partially reduced with the reducing gas.
.. 241.1376 kg/T, 700°C) is charged into the melting reduction furnace.

実施例4 第6図はワンスル一方式で、溶融還元炉における二次燃
焼率を55%まで高め予備還元をウスタイト組成までに
ととめた場合の実施例フローシートを示す。溶融還元炉
には天然ガス(366kg/T)、高温(1200℃)
予熱空気(2037Nm3/T)、石灰(zkg/T)
を装入して銑鉄を製造する。尚天然ガスの80%を底吹
きとした。その時の生成スラグ量は100kg/Tであ
る。溶融還元炉排ガスは冷却、天然ガスの予熱の後、予
備還元炉に導かれ、該排ガスで極めてわずか還元された
還元鉄(f、=0.0.1397kg/T、700℃)
は溶融還元炉に装入される。予備還元炉より排出された
排ガスの一部(26788m3/T)はホットストーブ
に導かれ空気の予熱に使用される。余剰ガスエネルギー
は0.1746cal/Tと実施例1ど比較して極めて
低く自己完結型プロセスの1つの例である。
Example 4 FIG. 6 shows a flow sheet of an example in which the secondary combustion rate in the smelting reduction furnace was increased to 55% and the preliminary reduction was limited to the wustite composition using a one-single method. The melting reduction furnace uses natural gas (366 kg/T) and high temperature (1200°C).
Preheated air (2037Nm3/T), lime (zkg/T)
is charged to produce pig iron. In addition, 80% of the natural gas was bottom blown. The amount of slag produced at that time was 100 kg/T. After cooling the smelting reduction furnace exhaust gas and preheating the natural gas, it is led to the pre-reduction furnace, where the reduced iron (f, = 0.0.1397 kg/T, 700°C) is extremely slightly reduced with the exhaust gas.
is charged into a smelting reduction furnace. A part of the exhaust gas (26,788 m3/T) discharged from the preliminary reduction furnace is led to a hot stove and used to preheat the air. The surplus gas energy was 0.1746 cal/T, which is extremely low compared to Example 1, and is an example of a self-contained process.

実施例5 第7図は、ワンスルーリフオーマ一方式の実施例フロー
シートを示す。溶融還元炉には天然ガス(365kg/
T) 、高温(1200℃)予熱空気(18288m’
/T)、石灰(38kg/T)を装入して銑鉄を製造す
る。尚天然ガスの80%を底吹きとした。その時の生成
スラグ量は98kg/Tである。溶融還元炉排ガスはり
フォーマ−においてメタン(145Nm’/T)で冷却
(1659℃−1100℃)、改質後(還元ガスの酸化
度量0.252−0.119 ’) 、予備還元炉に導
かれ、該排ガスで一部還元された還元鉄(f、=0.9
0.1121kg/T、 700℃)は溶融還元炉に装
入される。予備還元炉より排出された排ガスの一部(1
02ONm’/T)はホットストーブに導かれ空気の予
熱に使用される。−溶融還元炉排ガス顕然の有効利用に
より実施例3と比較して低い天然ガス原単位での操業が
可能となる。
Embodiment 5 FIG. 7 shows an embodiment flow sheet of a one-through re-former. Natural gas (365 kg/
T), high temperature (1200℃) preheated air (18288m'
/T), lime (38kg/T) is charged to produce pig iron. In addition, 80% of the natural gas was bottom blown. The amount of slag produced at that time was 98 kg/T. After being cooled (1659°C-1100°C) with methane (145Nm'/T) in the melting reduction furnace exhaust gas beam former and reformed (degree of oxidation of reducing gas 0.252-0.119'), it is led to the pre-reduction furnace. , reduced iron (f, = 0.9
0.1121 kg/T, 700°C) is charged into the melting reduction furnace. Part of the exhaust gas discharged from the preliminary reduction furnace (1
02ONm'/T) is led to a hot stove and used to preheat the air. - By effectively utilizing the smelting reduction furnace exhaust gas, it becomes possible to operate with a lower natural gas consumption rate than in Example 3.

[発明の効果コ 本発明は以上の様に構成されており、以下要約する効果
を得ることができる。
[Effects of the Invention] The present invention is configured as described above, and can obtain the effects summarized below.

(1)固体状炭素質物質に比べて3分および灰分の少な
いガス状炭素質物質を使用することにより溶融還元炉に
装入する造滓剤原単位及び生成スラグ量を大幅に低減す
ることができ、溶融還元炉の操業負荷ならびにスラグ処
理の問題を著しく軽減することができる。
(1) By using a gaseous carbonaceous material with a lower ash content than a solid carbonaceous material, it is possible to significantly reduce the unit consumption of slag-forming agent charged into the smelting reduction furnace and the amount of slag produced. It is possible to significantly reduce the operational load of the smelting reduction furnace and the problems of slag treatment.

(2)溶湯中へのガス状炭素質物質の吹込みにより溶湯
中のC?!4度を効率良く速やかに増大させることがで
き、溶融還元炉内での還元性能を飛躍的に高めることが
できる。その結果予備還元工程を経ることなく酸化鉄原
料を溶融還元することができ、工程の簡素化によって生
産コストを大幅に下げることができる。
(2) By blowing a gaseous carbonaceous substance into the molten metal, C? ! 4 degrees can be efficiently and quickly increased, and the reduction performance in the melting reduction furnace can be dramatically improved. As a result, the iron oxide raw material can be melted and reduced without going through a preliminary reduction process, and the production cost can be significantly reduced by simplifying the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶鉄中CtIA度とスラグ中FeO濃度の関係
を示すグラフ、第2〜7図は実施例を示すフロー図、第
8図は鉄浴式溶融還元炉における二次燃焼率と石炭原単
位1石灰原車位およびスラグ量の関係を示すグラフであ
る。 第1図 0   /   2  3   弘   ダシ登録すの
Cj處X   (%う 第3図
Figure 1 is a graph showing the relationship between CtIA degree in molten iron and FeO concentration in slag, Figures 2 to 7 are flow diagrams showing examples, and Figure 8 is a graph showing the relationship between the secondary combustion rate and coal raw material in an iron bath type smelting reduction furnace. It is a graph showing the relationship between unit 1 limestone wheel position and slag amount. Figure 1 0 / 2 3 Hiro Dashi Registration Sun Cj

Claims (1)

【特許請求の範囲】[Claims] 鉄鉱石等の酸化鉄原料をガス状炭素質物質及び酸素含有
物質と共に溶融還元炉に供給し、且つ該ガス状炭素質物
質の一部は溶湯内へ吹込むことにより酸化鉄原料を還元
すると共に、ガス状炭素質物質あるいはその熱分解物等
の燃焼熱を溶湯に着熱して銑鉄を製造することを特徴と
する酸化鉄原料の溶融還元方法。
An iron oxide raw material such as iron ore is supplied to a smelting reduction furnace together with a gaseous carbonaceous substance and an oxygen-containing substance, and a part of the gaseous carbonaceous substance is blown into the molten metal to reduce the iron oxide raw material and at the same time A method for melting and reducing iron oxide raw materials, characterized in that pig iron is produced by applying combustion heat of a gaseous carbonaceous material or its thermal decomposition product to a molten metal.
JP63031222A 1988-02-13 1988-02-13 Smelting reduction method for iron oxide raw material Pending JPH01208410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031222A JPH01208410A (en) 1988-02-13 1988-02-13 Smelting reduction method for iron oxide raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031222A JPH01208410A (en) 1988-02-13 1988-02-13 Smelting reduction method for iron oxide raw material

Publications (1)

Publication Number Publication Date
JPH01208410A true JPH01208410A (en) 1989-08-22

Family

ID=12325405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031222A Pending JPH01208410A (en) 1988-02-13 1988-02-13 Smelting reduction method for iron oxide raw material

Country Status (1)

Country Link
JP (1) JPH01208410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506570A (en) * 1999-08-05 2003-02-18 テクノロジカル リソーシズ プロプライエタリー リミテッド Direct smelting method
JP2006328519A (en) * 2005-05-30 2006-12-07 Daido Steel Co Ltd Method for producing steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003506570A (en) * 1999-08-05 2003-02-18 テクノロジカル リソーシズ プロプライエタリー リミテッド Direct smelting method
JP4837856B2 (en) * 1999-08-05 2011-12-14 テクノロジカル リソーシズ プロプライエタリー リミテッド Direct smelting method
JP2006328519A (en) * 2005-05-30 2006-12-07 Daido Steel Co Ltd Method for producing steel

Similar Documents

Publication Publication Date Title
CA1286113C (en) Method for the melt reduction of iron ores
EP0862657B1 (en) Duplex procedure for the production of metals and metal alloys from oxidic metal ores
JPH07216426A (en) Converter iron manufacture
JPH01195226A (en) Smelting reduction method
WO2003062474A1 (en) Process for producing molten iron
JPS6123245B2 (en)
CA1284274C (en) Melt-reductive iron making method from iron ore
JPH0414162B2 (en)
JPH01208410A (en) Smelting reduction method for iron oxide raw material
JP4060986B2 (en) How to use dust in converter steelmaking.
JPS62290841A (en) Manufacture of chromium-containing iron
RU2005126707A (en) IMPROVED METHOD OF Smelting for iron production
CN116529395A (en) Production of steel from iron melts
JP2004176170A (en) Method for producing molten iron
JPH01252714A (en) Mixed agglomerating briquette for smelting reduction furnace and smelting reduction method for mixed agglomerating briquette
EP0950117B1 (en) A method for producing metals and metal alloys
JP2803528B2 (en) Converter steelmaking method
JPH03130314A (en) Production of iron by smelting reduction method
JPS6143406B2 (en)
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium
JPS62230923A (en) Manufacture of iron by smelting and reduction
JPH01162711A (en) Smelting reduction method
JPS6342351A (en) Manufacture of chromium-containing molten iron
JPH032933B2 (en)