JPH03130314A - Production of iron by smelting reduction method - Google Patents

Production of iron by smelting reduction method

Info

Publication number
JPH03130314A
JPH03130314A JP26972289A JP26972289A JPH03130314A JP H03130314 A JPH03130314 A JP H03130314A JP 26972289 A JP26972289 A JP 26972289A JP 26972289 A JP26972289 A JP 26972289A JP H03130314 A JPH03130314 A JP H03130314A
Authority
JP
Japan
Prior art keywords
reduction
fluidized bed
smelting
gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26972289A
Other languages
Japanese (ja)
Other versions
JPH0637661B2 (en
Inventor
Yasushi Takamoto
泰 高本
Yoichi Hayashi
洋一 林
Satoru Suzuki
悟 鈴木
Kazuya Kunitomo
和也 国友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26972289A priority Critical patent/JPH0637661B2/en
Publication of JPH03130314A publication Critical patent/JPH03130314A/en
Publication of JPH0637661B2 publication Critical patent/JPH0637661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce unit consumption of coal and to improve the production efficiency by setting pre-reduction fluidized bed of two steps and adjusting outlet gas oxidizing degree at each step in the fluidized bed, respectively. CONSTITUTION:The outlet gas oxidizing degree at the first step (low pre- reduction ratio side) fluidized bed 2 of raw material ore supplying side in the pre-reduction fluidized bed is set in series and by two steps, and is maintained to a lower value than the equilibrium gas oxidizing degree in Fe-FeOx reduction system by making the pre-reduction ratio at an intermediate term at about 11-25%. The outlet gas oxidizing degree at the second step (high pre-reduction ratio side) fluidized bed 3 of smelting reduction furnace 4 side is maintained to a lower value than the equilibrium gas oxidizing degree in the Fe-FeOx reduction system by controlling the secondary combustion ratio in the smelting reduction furnace 4 or by reforming by the use of the coal or hydrocarbon series fuel utilizing sensible heat of waste gas in the smelting reduction furnace 4. By this method, the pre-reduction ratio is made to >=30%, and molten iron can be efficiently obtd. in the smelting reduction furnace 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粉状の鉄鉱石を流動層からなる予備還元炉に
よって予備還元したのち溶融還元する製鉄法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an iron manufacturing method in which powdered iron ore is pre-reduced in a pre-reduction furnace consisting of a fluidized bed and then melted and reduced.

〔従来の技術〕[Conventional technology]

粉状の鉄鉱石を流動層からなる予備還元炉により還元し
、得られた予備還元鉱石を、例えば鉄浴中の炭素とスラ
グ中の炭材で還元精錬すると同時に上吹酸素により二次
燃焼を行って溶融還元すること自体、例えば特開昭62
−192513号公報に開示されているように本発明の
出願前から公知である。
Powdered iron ore is reduced in a pre-reduction furnace consisting of a fluidized bed, and the pre-reduced ore obtained is reduced and refined using, for example, carbon in an iron bath and carbonaceous material in slag, and at the same time secondary combustion is performed using top-blown oxygen. The process of melting and reduction itself is described in, for example, JP-A-62
As disclosed in Japanese Patent Publication No. 192513, it has been known since before the application of the present invention.

このような溶融還元製鉄法は従来の高炉による製鉄法と
比較して、付帯設備が小設備で済む、使用原料の制約が
少ない等の利点はあるが、この溶融還元製鉄法における
欠点の一つとして、使用する石炭の原単位が大きいとい
うことがある。
This type of smelting reduction iron manufacturing method has advantages over the conventional iron manufacturing method using a blast furnace, such as requiring only a small amount of incidental equipment and fewer restrictions on the raw materials used, but one of the disadvantages of this smelting reduction iron manufacturing method is that As a result, the basic unit of coal used is large.

溶融還元炉に供給される予備還元鉱石の還元率が30%
以下のように低還元率の場合には、溶融還元炉における
二次燃焼率を高くすることによって、システム全体の石
炭原単位の低減が可能である。
The reduction rate of pre-reduced ore supplied to the smelting reduction furnace is 30%.
In the case of a low reduction rate as described below, it is possible to reduce the coal consumption rate of the entire system by increasing the secondary combustion rate in the smelting reduction furnace.

ところが、溶融還元炉における二次燃焼率を高くするこ
とにより溶融還元炉の二次燃焼区域の温度が高くなり、
そのために炉の内張り耐火物の損耗が促進され、炉の寿
命を極端に短くし、システム全体から見て製鉄の生産効
率が低いものとならざるを得ず好ましくない。
However, by increasing the secondary combustion rate in the smelting reduction furnace, the temperature in the secondary combustion zone of the smelting reduction furnace becomes higher.
This accelerates the wear and tear of the refractory lining of the furnace, extremely shortens the life of the furnace, and undesirably lowers the production efficiency of iron manufacturing from the perspective of the entire system.

そのため、例えば、特願昭63−16723号出願明細
書に開示されているような微粉炭の吹き込みによる温度
低下によって解消しようとする試みも提案されたが、吹
き込みに使用した石炭量だけ石炭原単位が増加するとい
う欠点がある。
Therefore, for example, an attempt was proposed to solve the problem by lowering the temperature by blowing pulverized coal as disclosed in the specification of Japanese Patent Application No. 16723/1982, but the amount of coal used for blowing is The disadvantage is that it increases.

一方、溶融還元炉に供給される予備還元鉱石の還元率を
、例えば30%以上のように高い値にすることは、溶融
還元炉で必要とされる還元剤および熱源としての石炭量
が少なくなるという点で有利であり、また、低還元率の
予備還元鉱石の使用の場合のように二次燃焼率を高くす
る必要がなく炉の内張り耐火物の損耗の問題も軽減され
、システム全体として高炉による製鉄法程度あるいはそ
れ以下の石炭原単位となることが期待できる。
On the other hand, increasing the reduction rate of the pre-reduced ore supplied to the smelting reduction furnace to a high value, for example 30% or more, will reduce the amount of coal needed as a reducing agent and heat source in the smelting reduction furnace. In addition, there is no need to increase the secondary combustion rate as in the case of using pre-reduced ore with a low reduction rate, and the problem of wear and tear on the furnace lining refractory is alleviated. It is expected that the coal consumption rate will be on the same level as or lower than that of the steel manufacturing method.

この30%以上の比較的高い還元率を有する予備還元鉱
石を得る流動層からなる予備還元プロセスとして、流動
層を複数段に設けたものも、また、特開昭63−162
803号公報、特開平1−149911号公報等に開示
されている。
As a pre-reduction process using a fluidized bed to obtain a pre-reduced ore with a relatively high reduction rate of 30% or more, a method in which a fluidized bed is provided in multiple stages is also disclosed in Japanese Patent Application Laid-Open No. 63-162.
This method is disclosed in Japanese Patent Publication No. 803, Japanese Unexamined Patent Publication No. 1-149911, and the like.

ところが、かかる従来の多段の流動予備還元炉による溶
融還元製鉄法においては、その段数が2段程度では、最
終流動予備還元炉の出口ガスの酸化度が低くガス還元に
必要なガス量が多く、特開昭62−227020号公報
に記載されているようなガスの改質および循環の装置が
必要となり、溶融還元システム全体の設備を膨大なもの
とする欠点がある。また、3段以上の多段の流動層から
なる予備還元プロセスにおいて最終流動予備還元炉の出
口ガスの酸化度を高くすることは可能だが、予備還元プ
ロセスの設備費が大きくなるという欠点がある。
However, in the conventional smelting reduction iron manufacturing method using a multi-stage fluidized pre-reduction furnace, when the number of stages is about two, the degree of oxidation of the exit gas of the final fluidized pre-reduced furnace is low and the amount of gas required for gas reduction is large. This requires a gas reforming and circulation device as described in Japanese Patent Application Laid-Open No. 62-227020, which has the disadvantage that the entire equipment for the melting reduction system becomes enormous. Furthermore, although it is possible to increase the degree of oxidation of the outlet gas of the final fluidized pre-reduction furnace in a pre-reduction process consisting of three or more stages of fluidized beds, there is a drawback that the equipment cost for the pre-reduction process increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、溶融還元製鉄法における石炭原単位の低減と
高生産効率という目的を実現するうえで、粉状の鉄鉱石
を2段流動層からなる予備還元プロセスにおいて30%
以上の高予備還元率を得るとともに予備還元プロセスか
らの出口ガスの酸化度を高めることにより、30%以下
の低予備還元率において石炭原単位の低減のために必要
な高二次燃焼率において生ずる溶融還元炉の内張り耐火
物の損耗による低生産効率の問題と、従来の多段の流動
層からなる予備還元プロセスを備えた溶融還元製鉄法に
おいて30%以上の高予備還元率を得るために生ずる還
元ガスの脱炭酸と循環の装置の設置もしくは3段以上の
多段の流動層の設置による設備費の上昇の問題とを解消
することにある。
In order to achieve the objectives of reducing coal consumption and high production efficiency in the smelting reduction ironmaking process, the present invention aims to reduce powdered iron ore by 30% in a pre-reduction process consisting of a two-stage fluidized bed.
By obtaining a high pre-reduction rate of 30% or less and increasing the degree of oxidation of the exit gas from the pre-reduction process, the melting that occurs at the high secondary combustion rate necessary for reducing the coal consumption rate at a low pre-reduction rate of 30% or less. The problem of low production efficiency due to wear and tear of the refractory lining of the reduction furnace, and the reduction gas generated in order to obtain a high preliminary reduction rate of 30% or more in the conventional smelting reduction ironmaking process equipped with a preliminary reduction process consisting of multiple stages of fluidized beds. The purpose of the present invention is to solve the problem of increased equipment costs due to the installation of decarboxylation and circulation equipment or the installation of three or more stages of fluidized beds.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、予備還元流動層によって30%以上の還元率
を有する予備還元鉱を得、これを溶融還元炉に供給する
溶融還元製鉄法において、予備還元プロセスを流動層2
段から構成し、この2段の流動層を還元ガスの流れと幹
給原料鉱石の流れが向流且つ直列になるべく配置すると
ともに前記直列且つ2段に配置された予備還元流動層の
原料鉱石供給側の1段目の流動層の出口ガス酸化度をこ
こでの中間の予備還元率を11〜25%とすることによ
りFe−FeOx還元系における平衡ガス酸化度より高
く且つFe0x−Fe304還元系における平衡ガス酸
化度より低い値に維持し、且つ溶融還元炉側の2段目の
流動層の出口ガス酸化度を溶融還元炉の二次燃焼率の制
御によってもしくは溶融還元炉の排ガスのそのU熱を利
用した石炭または炭化水素系燃料を用いた改質によって
同溶融還元炉側の2段目の流動層の入口ガス酸化度を調
整することによりFe−FeOx還元系における平衡ガ
ス酸化度より低い値に維持し予備還元率を30%以上と
することを特徴とする。
The present invention involves a smelting reduction ironmaking process in which pre-reduced ore having a reduction rate of 30% or more is obtained using a pre-reduced fluidized bed and is supplied to a smelting reduction furnace.
The two-stage fluidized bed is arranged so that the flow of the reducing gas and the flow of the main raw material ore are countercurrent and in series, and the raw material ore is supplied to the pre-reduction fluidized bed arranged in series and in the two stages. By setting the intermediate preliminary reduction rate of the exit gas oxidation degree of the first stage fluidized bed on the side to 11 to 25%, it is higher than the equilibrium gas oxidation degree in the Fe-FeOx reduction system, and is higher than the equilibrium gas oxidation degree in the FeOx-Fe304 reduction system. The oxidation degree of the outlet gas of the second stage fluidized bed on the smelting reduction furnace side is maintained at a value lower than the equilibrium gas oxidation degree by controlling the secondary combustion rate of the smelting reduction furnace or by controlling the U heat of the exhaust gas of the smelting reduction furnace. By adjusting the inlet gas oxidation degree of the second stage fluidized bed on the same smelting reduction furnace side by reforming using coal or hydrocarbon fuel, the gas oxidation degree is lower than the equilibrium gas oxidation degree in the Fe-FeOx reduction system. It is characterized by maintaining the preliminary return rate at 30% or more.

〔作用〕[Effect]

予備還元流動層2段が還元ガスの流れと供給原料鉱石の
流れとが向流且つ直列となるように配置された上記予備
還元プロセスにおいて例えば1段目の低予備還元側流動
層の還元温度が800℃で2段目の高予備還元側流動層
の還元温度が900℃であったとする。900℃におけ
るFe−Fe0に還元系における平衡ガス酸化度は35
%であり、800℃におけるFe−Fe0に還元系にお
ける平衡ガス酸化度は37%でPe0X−Fe3ff4
の還元系における平衡ガス酸化度は74%である。
In the above pre-reduction process in which the two stages of the pre-reduction fluidized bed are arranged so that the flow of the reducing gas and the flow of the feedstock ore are countercurrent and in series, for example, the reduction temperature of the low pre-reduction side fluidized bed in the first stage is Assume that the reduction temperature of the second stage high preliminary reduction side fluidized bed is 900°C at 800°C. The equilibrium gas oxidation degree in the Fe-Fe0 reduction system at 900°C is 35
%, and the equilibrium gas oxidation degree in the Fe-Fe0 reduction system at 800°C is 37%, which is Pe0X-Fe3ff4.
The equilibrium gas oxidation degree in the reduction system is 74%.

1段目の低予備還元側の流動層における出口ガスの温度
が800℃のとき、同高予備還元側の流動層における中
間予備還元鉱石の還元率を11〜25%に制御する。そ
の制御方法はたとえば特開昭63−162803号公報
に記載されているように流動層内鉱石滞留量の制御によ
り可能である。すなわち、中間予備還元鉱石の還元率が
11〜25%のとき、低予備還元側の流動層の出口ガス
の酸化度は上記条件の37〜74%中にあるように制御
される。
When the temperature of the outlet gas in the fluidized bed on the low pre-reduction side of the first stage is 800°C, the reduction rate of the intermediate pre-reduced ore in the fluidized bed on the same high pre-reduction side is controlled to 11 to 25%. This can be controlled by controlling the amount of ore retained in the fluidized bed, as described in, for example, Japanese Patent Laid-Open No. 162803/1983. That is, when the reduction rate of the intermediate pre-reduced ore is 11 to 25%, the degree of oxidation of the outlet gas of the fluidized bed on the low pre-reduction side is controlled to be within the range of 37 to 74% under the above conditions.

溶融還元炉からの排出ガスをその酸化度を溶融還元炉の
二次燃焼率を制御することまたは改質することによって
調整し2段目の高予備還元側の流動層での還元用のガス
として用いれば、同高予備還元側の流動層出口ガスの酸
化度を、還元率が11〜25%の中間予備還元鉱石を同
高予備還元側の流動層において予備還元率が30%以上
の目標の値まで還元した時に必要とされるガス利用率の
分だけ還元ガスの酸化度が上昇しても、Fe−FeOx
還元系における平衡ガス酸化度以下例えば900℃のと
き35%以下とすることが可能である。
The degree of oxidation of the exhaust gas from the smelting reduction furnace is adjusted by controlling the secondary combustion rate of the smelting reduction furnace or by reforming it, and it is used as a reducing gas in the fluidized bed on the high preliminary reduction side of the second stage. If used, the degree of oxidation of the fluidized bed outlet gas on the same-high pre-reduction side can be changed to the intermediate pre-reduced ore with a reduction rate of 11 to 25% in the fluidized bed on the same-high pre-reduction side with a target pre-reduction rate of 30% or more. Fe-FeOx
The oxidation degree of the equilibrium gas in the reducing system can be set to 35% or less at 900° C., for example.

低予備還元側の流動層の出口ガスの酸化度がFeL−F
erLの還元系における平衡ガス酸化度をこえるとき、
中間予備還元鉱石の還元率は11%以下であり、このよ
うな低還元率の中間予備還元鉱石を2段目の高予備還元
側の流動層においてその出口ガス酸化度がPe−Fen
、還元系における平衡ガス酸化度以下で予備還元率が3
0%以上の目標の値まで還元することは不可能である。
The degree of oxidation of the outlet gas of the fluidized bed on the low preliminary reduction side is FeL-F.
When the equilibrium gas oxidation degree in the reduction system of erL is exceeded,
The reduction rate of the intermediate pre-reduced ore is 11% or less, and the intermediate pre-reduced ore with such a low reduction rate is processed in the fluidized bed on the high pre-reduction side of the second stage so that the outlet gas oxidation degree is Pe-Fen.
, the preliminary reduction rate is 3 below the equilibrium gas oxidation degree in the reduction system.
It is impossible to reduce the amount to a target value of 0% or more.

溶融還元炉に供給される予備還元鉱石の還元率が30%
以下となると、石炭原単位は溶融還元炉での二次燃焼率
を高くしないと上昇する。
The reduction rate of pre-reduced ore supplied to the smelting reduction furnace is 30%.
Below, the coal consumption rate will increase unless the secondary combustion rate in the smelting reduction furnace is increased.

低予備還元側の流動層の出口ガスの酸化度がFe−Fe
Ox還元系における平衡ガス酸化度以下ということは予
備還元プロセスでのガス利用率が低いことを意味し、予
備還元鉱石の還元率を30%以上とするためには、還元
ガスの循環が必須となり関連設備の設置が不可欠となり
設備費の上昇が避けられない。
The degree of oxidation of the outlet gas of the fluidized bed on the low preliminary reduction side is Fe-Fe.
The fact that the degree of oxidation of the gas in the Ox reduction system is below the equilibrium gas means that the gas utilization rate in the pre-reduction process is low, and in order to achieve a reduction rate of 30% or more for the pre-reduced ore, circulation of the reducing gas is essential. The installation of related equipment is essential, and an increase in equipment costs is unavoidable.

このようにして、予備還元プロセスから排出されるガス
の酸化度すなわち1段目の低予備還元側の流動層の出口
ガス酸化度は、溶融還元炉に供給する予備還元鉱石が3
0%以上の高予備還元率となることを確保しつつ、Fe
−Fe0++ 還元系における平衡ガス酸化度を越える
ことが可能となり予備還元プロセス全体でのガス利用率
を高めることができるので、溶融還元炉において適当な
二次燃焼率を設定すれば設備費の上昇と生産効率の低下
を回避しつつ高炉による製鉄法程度あるいはそれ以下の
石炭原単位が可能である。
In this way, the degree of oxidation of the gas discharged from the pre-reduction process, that is, the degree of oxidation of the gas at the outlet of the fluidized bed on the low pre-reduction side of the first stage, is set to 3.
While ensuring a high preliminary return rate of 0% or more,
-Fe0++ It is possible to exceed the equilibrium gas oxidation degree in the reduction system and increase the gas utilization rate in the entire preliminary reduction process, so if an appropriate secondary combustion rate is set in the smelting reduction furnace, equipment costs will increase. It is possible to achieve a coal consumption rate comparable to or lower than that of the blast furnace steel manufacturing method while avoiding a decrease in production efficiency.

〔実施例〕〔Example〕

第1図は本発明の方法を実施するための溶融還元プロセ
スを示す。
FIG. 1 shows a melt reduction process for carrying out the method of the invention.

同図を参照して、本発明の溶融還元方法は粉鉱石の予備
還元プロセス1と溶融還元プロセスとからなる。
Referring to the figure, the smelting reduction method of the present invention includes a preliminary reduction process 1 of fine ore and a smelting reduction process.

粉鉱石の予備還元プロセス1は流動層2段からなり、1
段目の低予備還元側流動層2と2段目の高予備還元側流
動層3とからなる。この低予備還元側流動層2と高予備
還元側流動層3は、低予備還元側流動層、2に供給され
溶融還元炉4に到る太線で示された原料鉱石の流れと、
溶融還元炉4のガス出口付近で改質され、各流動層2.
3を経て排出される細線で示す還元ガスの流れとが直列
且つ向流するように配置されている。
Pre-reduction process 1 of fine ore consists of two stages of fluidized bed, 1
It consists of a low preliminary reduction side fluidized bed 2 in the first stage and a high preliminary reduction side fluidized bed 3 in the second stage. The low preliminary reduction side fluidized bed 2 and the high preliminary reduction side fluidized bed 3 are connected to the flow of raw material ore shown by the thick line, which is supplied to the low preliminary reduction side fluidized bed 2 and reaches the smelting reduction furnace 4.
The gas is reformed near the gas outlet of the melting reduction furnace 4, and each fluidized bed 2.
The flow of the reducing gas shown by the thin line discharged through 3 is arranged in series and in counterflow.

低予備還元側流動層2に供給される原料鉱石5は、同高
予備還元側流動層2において初期還元され、中間予備還
元鉱石6として高予備還元側流動層3に供給され、さら
に同高予備還元側流動層3において少なくとも30%に
還元された予備還元鉱石7として溶融還元炉4に連続し
て供給される鉱石の流れとなる。この予備還元鉱石7は
、チャーのような炭素材、精錬材および酸素ガス8と共
に溶融還元炉4に供給され、最終的に100%還元され
た溶融鉄を懲戒する。
The raw material ore 5 supplied to the low preliminary reduction side fluidized bed 2 is initially reduced in the high preliminary reduction side fluidized bed 2, and is supplied to the high preliminary reduction side fluidized bed 3 as intermediate preliminary reduction ore 6, and then further reduced to the high preliminary reduction side fluidized bed 3. This is a stream of ore that is continuously supplied to the smelting reduction furnace 4 as the pre-reduced ore 7 reduced to at least 30% in the reduction side fluidized bed 3. This pre-reduced ore 7 is supplied to the smelting reduction furnace 4 together with a carbon material such as char, a refining material, and an oxygen gas 8, and finally the 100% reduced molten iron is refined.

この溶融還元プロセスで生成された溶融還元炉4の出口
ガス9は、ガス改質装置lOを経て還元ガス11を懲戒
し、高予備還元側流動層3に供給される。この還元ガス
11は、高予備還元側流動層3内に供給される中間予備
還元鉱石6を目標とする30%以上の還元率まで還元す
る。さらに、高予備還元側流動層3より排出される中間
還元ガス12は低予備還元側流動層2に供給され、出発
原料鉱石5を11〜25%の還元率まで還元したのち、
予備還元プロセス1からの排ガス13として排出する。
The outlet gas 9 of the smelting reduction furnace 4 generated in this smelting reduction process is supplied to the high pre-reduction side fluidized bed 3 after passing through the gas reformer 1O to convert the reducing gas 11. This reducing gas 11 reduces the intermediate pre-reduced ore 6 supplied into the high pre-reduction side fluidized bed 3 to a target reduction rate of 30% or more. Further, the intermediate reducing gas 12 discharged from the high preliminary reduction side fluidized bed 3 is supplied to the low preliminary reduction side fluidized bed 2, and after reducing the starting raw material ore 5 to a reduction rate of 11 to 25%,
It is discharged as exhaust gas 13 from the preliminary reduction process 1.

上記、添付図に示すプロセスにおいて、溶融還元炉4に
おける二次燃焼率を35%に設定した。
In the process shown in the attached diagram above, the secondary combustion rate in the melting reduction furnace 4 was set to 35%.

このとき、溶融還元炉4からの出口ガス9の組成は、N
2: 10%、H,0:17%、CO:54%、CO2
:17%、N2:2%であって、その酸化度は35%で
あった。
At this time, the composition of the outlet gas 9 from the melting reduction furnace 4 is N
2: 10%, H, 0: 17%, CO: 54%, CO2
:17%, N2:2%, and the degree of oxidation was 35%.

この出口ガス9が溶融還元炉4から導かれる煙道内にノ
ズルによって微粉炭を吹き込む構造を有するガス改質装
置10を用いて、出口ガス9のガス組成をN2:21%
、)120:10%、CO:56%、CO2:11%、
N2:2%の組成をもつ還元ガス11に改質し、その酸
化度を21%に低下せしめ、予備還元プロセス1に導入
した。
The gas composition of the outlet gas 9 is changed to N2:21% using a gas reformer 10 having a structure in which pulverized coal is injected by a nozzle into a flue through which the outlet gas 9 is guided from the smelting reduction furnace 4.
)120:10%, CO:56%, CO2:11%,
It was reformed into reducing gas 11 having a composition of N2:2%, its oxidation degree was lowered to 21%, and it was introduced into preliminary reduction process 1.

原料鉱石5は、乾揉・予熱したのち低予備還元側流動層
2に装入した。
The raw material ore 5 was dry-milled and preheated, and then charged into the low preliminary reduction side fluidized bed 2.

低予備還元側流動層2から排出される中間予備還元鉱石
6の還元率を19%として同高予備還元側流動層2の排
ガス13の組成をFe−PeOx還元系における平衡ガ
ス酸化度より高(且つFe0x−Fe304の還元系に
おける平衡ガス酸化度より低い41%に設定し、且つ高
予備還元側流動層3の出側の中間還元ガス12の組成を
Pe−FeOx 還元系における平衡ガス酸化度より低
い33%で同高予備還元側流動層3から排出される予備
還元鉱石7の還元率を50%に設定し、これをガス改質
装置10によって制御した。
Assuming that the reduction rate of the intermediate pre-reduced ore 6 discharged from the low pre-reduction fluidized bed 2 is 19%, the composition of the exhaust gas 13 of the same high pre-reduction fluidized bed 2 is set to be higher than the equilibrium gas oxidation degree in the Fe-PeOx reduction system ( In addition, the composition of the intermediate reducing gas 12 on the outlet side of the high preliminary reduction side fluidized bed 3 is set to 41%, which is lower than the equilibrium gas oxidation degree in the Fe0x-Fe304 reduction system, and the composition is set to 41%, which is lower than the equilibrium gas oxidation degree in the Pe-FeOx reduction system. The reduction rate of the pre-reduced ore 7 discharged from the same-high pre-reduction side fluidized bed 3 at a low level of 33% was set to 50%, and this was controlled by the gas reformer 10.

これによって、使用した一般炭の原単位は製造した溶鉄
1トン当たり850kgであって、略従来の高炉法と比
較できる程度まで低下した。
As a result, the basic unit of steam coal used was 850 kg per ton of molten iron produced, which was reduced to a level comparable to that of the conventional blast furnace method.

〔発明の効果〕〔Effect of the invention〕

本発明の溶融還元法によって以下の効果を奏することが
できる。
The following effects can be achieved by the melt reduction method of the present invention.

(1)  予備還元率30%以上で且つ高ガス利用率を
得ることか可能となり、溶融還元システム全体での石炭
原単位を低減し、且つ生産効率を高くすることができる
(1) It is possible to obtain a preliminary reduction rate of 30% or more and a high gas utilization rate, thereby reducing the coal consumption rate of the entire smelting reduction system and increasing production efficiency.

(2)溶融還元炉の排ガスを比較的簡単な改質装置によ
って酸化度を下げるだけで、直列した流動層に導入され
るものであるので、ガス循環装置その他の巨大設備を必
要としない。
(2) Since the exhaust gas from the smelting reduction furnace is introduced into the series fluidized bed by simply lowering the degree of oxidation using a relatively simple reformer, there is no need for a gas circulation device or other huge equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の溶融還元製鉄法のプロセスフローの実
施例を示す図である。 1:予備還元プロセス 2:低予備還元側流動層3:高
予備還元側流動層 4;溶融還元炉    5:原料鉱石 6:中間予備還元鉱石 7:予備還元鉱石8:酸素ガス
     9:溶融還元炉出口ガス10:ガス改質装置 11:還元ガス 12:高予備還元側流動層出側の中間還元ガス13:予
備還元プロセス排ガス 慎 図
FIG. 1 is a diagram showing an example of the process flow of the smelting reduction iron manufacturing method of the present invention. 1: Pre-reduction process 2: Low pre-reduction side fluidized bed 3: High pre-reduction side fluidized bed 4; Smelting reduction furnace 5: Raw material ore 6: Intermediate pre-reduction ore 7: Pre-reduction ore 8: Oxygen gas 9: Smelting reduction furnace Outlet gas 10: Gas reformer 11: Reducing gas 12: Intermediate reducing gas on the high preliminary reduction side fluidized bed outlet side 13: Preliminary reduction process exhaust gas diagram

Claims (1)

【特許請求の範囲】[Claims] 1、予備還元流動層2段が還元ガスの流れと供給原料鉱
石の流れとが向流かつ直列となるように配置された予備
還元プロセスによって30%以上の還元率を有する予備
還元鉱石を得、これを溶融還元炉にて溶融還元し溶融鉄
を得る溶融還元製鉄法において、前記予備還元プロセス
の直列且つ2段に配置された予備還元流動層の原料鉱石
供給側の1段目(低予備還元率側)の流動層の出口ガス
酸化度を鉄Fe−ウスタイトFeO_xの還元平衡ガス
酸化度より高く且つウスタイトFeO_x−マグネタイ
トFe_2O_4の還元平衡ガス酸化度より低い値に維
持し、また溶融還元炉側の2段目(高予備還元率側)の
流動層の入口ガス酸化度を鉄Fe−ウスタイトFeO_
xの還元平衡ガス酸化度より低い値に維持する予備還元
プロセスを備えた溶融還元製鉄法。
1. Obtain pre-reduced ore with a reduction rate of 30% or more through a pre-reduction process in which two stages of pre-reduced fluidized beds are arranged so that the flow of reducing gas and the flow of feedstock ore are countercurrent and in series; In the smelting reduction iron making method in which molten iron is obtained by smelting and reducing this in a smelting reduction furnace, the first stage on the raw material ore supply side of the pre-reduction fluidized bed (low pre-reduction The exit gas oxidation degree of the fluidized bed on the side of the melting reduction furnace is maintained at a value higher than the reduction equilibrium gas oxidation degree of iron Fe-wustite FeO_x and lower than the reduction equilibrium gas oxidation degree of wustite FeO_x-magnetite Fe_2O_4. The inlet gas oxidation degree of the second stage (high preliminary reduction rate side)
A smelting reduction ironmaking process with a pre-reduction process that maintains the reduction equilibrium gas oxidation degree of x below a value.
JP26972289A 1989-10-16 1989-10-16 Smelting reduction ironmaking method Expired - Lifetime JPH0637661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26972289A JPH0637661B2 (en) 1989-10-16 1989-10-16 Smelting reduction ironmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26972289A JPH0637661B2 (en) 1989-10-16 1989-10-16 Smelting reduction ironmaking method

Publications (2)

Publication Number Publication Date
JPH03130314A true JPH03130314A (en) 1991-06-04
JPH0637661B2 JPH0637661B2 (en) 1994-05-18

Family

ID=17476255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26972289A Expired - Lifetime JPH0637661B2 (en) 1989-10-16 1989-10-16 Smelting reduction ironmaking method

Country Status (1)

Country Link
JP (1) JPH0637661B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089007A (en) * 2001-09-12 2003-03-25 Mitsubishi Materials Corp Boring tool
JP2007331042A (en) * 2006-06-13 2007-12-27 Tokuden Co Ltd Deep hole machining device
JP2015078403A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Direct reduction method
US10005138B2 (en) 2013-05-28 2018-06-26 Allied Machine & Engineering Corp. Vacuum drilling system and methods
CN114538569A (en) * 2022-02-25 2022-05-27 中国科学技术大学 Fe coated with chitosan-derived carbon shell0/FeOxGranular electro-Fenton cathode and preparation and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089007A (en) * 2001-09-12 2003-03-25 Mitsubishi Materials Corp Boring tool
JP2007331042A (en) * 2006-06-13 2007-12-27 Tokuden Co Ltd Deep hole machining device
US10005138B2 (en) 2013-05-28 2018-06-26 Allied Machine & Engineering Corp. Vacuum drilling system and methods
JP2015078403A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Direct reduction method
CN114538569A (en) * 2022-02-25 2022-05-27 中国科学技术大学 Fe coated with chitosan-derived carbon shell0/FeOxGranular electro-Fenton cathode and preparation and application thereof
CN114538569B (en) * 2022-02-25 2023-03-10 中国科学技术大学 Fe coated with chitosan-derived carbon shell 0 /FeO X Granular electro-Fenton cathode and preparation and application thereof

Also Published As

Publication number Publication date
JPH0637661B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
JP2698525B2 (en) Smelting reduction method of metal ore
CA2236587C (en) Duplex procedure for the production of metals and metal alloys from oxidic metal ores
US4340420A (en) Method of manufacturing stainless steel
CN210215430U (en) Zero-carbon-emission steelmaking equipment
CN101906501A (en) Direct steelmaking process by using fine ores, coal and oxygen
JPH10251720A (en) Method for refining iron
KR100769794B1 (en) Process and plant for producing pig iron or liquid primary steel products in a blast furnace
JPH03130314A (en) Production of iron by smelting reduction method
US6200522B1 (en) Method and apparatus for smelting iron ore
US6149708A (en) Process for producing sponge iron
RU2143006C1 (en) Method of mounting aggregate for reduction melting process at producing conversion cast iron, aggregate for performing reduction melting process, method for producing conversion cast iron
EP0950117B1 (en) A method for producing metals and metal alloys
JP2600732B2 (en) Smelting reduction method and equipment
KR940008446B1 (en) Making method & device of iron
RU2319749C2 (en) Method of the direct production of iron, in particular steels, and installation for its implementation
KR940008448B1 (en) Making method & device of iron
JPS62230923A (en) Manufacture of iron by smelting and reduction
JPH01162711A (en) Smelting reduction method
CN116769995A (en) Iron-making process for preparing liquid metal by smelting iron ore with full hydrogen
AU725946B2 (en) A method and an apparatus for producing metals and metal alloys
JPH01208410A (en) Smelting reduction method for iron oxide raw material
JPH01188612A (en) Molten iron runner-type smelting reduction iron manufacturing method
JPS6347307A (en) Smelting and reducing method
JPS60218407A (en) Method for operating melt reducing system
JPH032933B2 (en)