JPS6347307A - Smelting and reducing method - Google Patents

Smelting and reducing method

Info

Publication number
JPS6347307A
JPS6347307A JP18968886A JP18968886A JPS6347307A JP S6347307 A JPS6347307 A JP S6347307A JP 18968886 A JP18968886 A JP 18968886A JP 18968886 A JP18968886 A JP 18968886A JP S6347307 A JPS6347307 A JP S6347307A
Authority
JP
Japan
Prior art keywords
furnace
exhaust gas
preheating
smelting
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18968886A
Other languages
Japanese (ja)
Inventor
Kenzo Yamada
健三 山田
Tsutomu Usui
碓井 務
Katsuhiro Iwasaki
克博 岩崎
Shigeru Inoue
茂 井上
Haruyoshi Tanabe
治良 田辺
Masahiro Kawakami
川上 正弘
Junichi Fukumi
純一 福味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18968886A priority Critical patent/JPS6347307A/en
Publication of JPS6347307A publication Critical patent/JPS6347307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To produce a molten iron at a low cost by controlling the degree of oxidation of the exhaust gas of a smelting and reducing furnace to a specific value and utilizing the same to preheating and prereducing of raw materials such as iron ore at the time of producing the molten iron by using the iron ore and coal which is a reducing agent in common use as fuel in a converter type smelting and reducing furnace. CONSTITUTION:The molten iron is produced by supplying the coal and gaseous oxygen to the smelting and reducing furnace 1 of a converter type to burn the coal, supplying the raw materials such as iron ore which are preheated to 700-1,100 deg.C and having about 0.1% prereducibility from the preheating and prereducing furnace 2 of a fluidized bed type and lime as a slag forming agent to the smelting and reducing furnace and reducing the materials with molten CO. The exhaust gas from the smelting and reducing furnace 1 is controlled to have 0.5-0.99 degree of oxidation (OD ratio) and is mixed with the cooled exhaust gas 7 past a steam recovering device 3 and a scrubber 4 from the preheating and prereducing furnace 2. The gaseous mixture is supplied to the preheating and prereducing furnace 2. The molten iron is thus produced with high thermal efficiency at a low cost by using inexpensive coal as the reducing agent as well as fuel and utilizing the preheating and prereducing furnace.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、石炭を燃料および還元剤として用い、鉄鉱
石を転炉型炉内において溶融状態で還元する溶融還元法
、特にそのプロセスフローの簡素化およびその制御の容
易化に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a smelting reduction method in which iron ore is reduced in a molten state in a converter type furnace using coal as a fuel and a reducing agent, and particularly to the process flow thereof. It concerns simplification and ease of control.

〔従来の技術〕[Conventional technology]

この種の溶融還元法としては、例えば、特公昭45−1
7046号公報に示された方法が知られている。
As this type of melt reduction method, for example,
A method disclosed in Japanese Patent No. 7046 is known.

これは、溶融還元炉に炭化水素流体と酸素とを、該溶融
還元炉の排ガスと熱交換器を介して熱交換させながら供
給し、該炭化水素流体を該溶融還元炉内で燃焼させろと
共に、また、該溶融還元炉外においては、脱炭酸、脱水
処理したガスと該1容融還元炉の排ガスとの混合ガスで
鉄鉱石を予熱予備還元した該鉄鉱石を該溶融還元炉に装
入し、該鉄鉱石を該溶融還元炉内のCOガスで還元する
ものである。
This involves supplying a hydrocarbon fluid and oxygen to a smelting reduction furnace while exchanging heat with the exhaust gas of the smelting reduction furnace through a heat exchanger, and combusting the hydrocarbon fluid within the smelting reduction furnace. In addition, outside the smelting reduction furnace, the iron ore is preheated and pre-reduced using a mixed gas of decarbonated and dehydrated gas and the exhaust gas of the one-volume smelting reduction furnace, and then the iron ore is charged into the smelting reduction furnace. , the iron ore is reduced with CO gas in the smelting reduction furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の溶融還元法では、還元剤として炭化
水素系流体を使用しているため、製造コストが高くなる
という問題を有している。
The conventional smelting reduction method described above uses a hydrocarbon fluid as a reducing agent, and therefore has the problem of high manufacturing costs.

また、脱炭酸、脱水処理をしたガスを溶融通元炉ガスと
混ぜて吹き込むために、予備還元率は上がり溶融還元炉
の負担は軽くなるが、プロセスが複雑になり、かつ製造
コストが高くなるという問題点を別に有している。
In addition, since the decarbonated and dehydrated gas is mixed with the melting furnace gas and blown in, the preliminary reduction rate increases and the load on the melting reduction furnace is reduced, but the process becomes complicated and the manufacturing cost increases. There is another problem.

さらに、酸素および炭化水素流体の吹き込み前に排ガス
との熱交換器を設けているので、設備費がかかるばかり
でなく、実用上配管の損耗や炭化水素の分解による配管
づまり等を生ずるという問題点があった。
Furthermore, a heat exchanger with the exhaust gas is installed before the oxygen and hydrocarbon fluids are blown in, which not only increases equipment costs, but also causes problems such as wear and tear on the pipes and clogging of the pipes due to hydrocarbon decomposition. was there.

この発明は、かかる問題点を解決するためになされたも
ので、プロセスが簡単で設備費がかからず、設備トラブ
ルを生じない溶融還元法を確立することを目的としてい
るものである。
This invention was made in order to solve these problems, and aims to establish a melting reduction method that is a simple process, does not require equipment costs, and does not cause equipment trouble.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上述の目的を達成するために検討の結果完
成したものであって、溶融還元炉内に石炭と酸素とを供
給してこれ等を燃焼させつつ、該溶融還元炉の外で予熱
予備還元した原料鉱石(鉄鉱石)を該溶融還元炉内に装
入して、該溶融還元炉内の炭酸ガスでこれを溶融還元す
るプロセスからなり、該溶融還元炉から発生する排ガス
の酸化度(OD比)を0.5〜0.99となるように調
節し、該排ガスに予熱予Wijz元に使用した後の冷却
排ガスを混合してこの混合排ガスを所定昌度にし、該混
合排ガスで該鉄鉱石を予熱予備還元することからなる溶
融還元法、に関するものである。
This invention was completed as a result of studies to achieve the above-mentioned object, and while supplying coal and oxygen into a smelting reduction furnace and burning them, preheating is carried out outside the smelting reduction furnace. The process consists of charging pre-reduced raw material ore (iron ore) into the smelting reduction furnace and melting and reducing it with carbon dioxide gas in the smelting reduction furnace, and the degree of oxidation of the exhaust gas generated from the smelting reduction furnace (OD ratio) is adjusted to 0.5 to 0.99, and the cooled exhaust gas that has been used as a preheating source is mixed with the exhaust gas to make the mixed exhaust gas a predetermined degree. The present invention relates to a smelting reduction method comprising preheating and pre-reducing the iron ore.

なお、OD比とは、 OD = (CzO”HtO) / (CO+CO1+
I[2+H,O)で表される値である。
In addition, the OD ratio is OD = (CzO”HtO) / (CO+CO1+
It is a value expressed as I[2+H,O).

〔作 用〕[For production]

溶融還元炉を制御するための主たるパラメーターとして
は、 ■ 反応の系に投入する炭材と鉱石(媒溶剤、石灰、ド
四マイトなどを含む)の比率、■ 反応系に吹き込む酸
素の流量(すなわち、OD比の調節)、 ■ 予熱予!/lj還元用ガス量およびガス温度の調節
、 ■ 余熱エネルギー量の調節、 の4項目に大きく分類することができる。
The main parameters for controlling a smelting reduction furnace are: ■ The ratio of carbonaceous material and ore (including solvent, lime, dotemite, etc.) introduced into the reaction system, ■ The flow rate of oxygen blown into the reaction system (i.e. , OD ratio adjustment), ■ Preheating! /lj Adjustment of the amount of reducing gas and gas temperature; (1) Adjustment of the amount of residual heat energy.

前述の■〜■の挙動を定性的に示すと第2図〜第4図と
なるが、このうち第2図は導入酸素量によるOD比の変
化の挙動を、炭材と鉱石の部用量比を変更させた場合に
ついて示したものであり、第3図はOD比と導入炭材量
の関係を示したものであり(実線は炭材供給量kg /
 t%破線は生成ガスmNrn’/ t) 、まtこ、
第4図は、m ml 11における鉱石予熱温度が与え
る炭材消費量への影響を示したものである。
Figures 2 to 4 qualitatively illustrate the behavior of the above-mentioned ■ to ■. Of these, Figure 2 shows the behavior of changes in the OD ratio depending on the amount of introduced oxygen. Fig. 3 shows the relationship between the OD ratio and the amount of carbon material introduced (the solid line is the amount of carbon material supplied kg/kg).
The t% broken line is the generated gas mNrn'/t), Matoko,
FIG. 4 shows the influence of the ore preheating temperature on the carbon material consumption at m ml 11.

これらのグラフの挙動から、OD比の値が、およそ0.
5〜0,99の範囲にあるとき、および、鉱石予熱1度
は、およそ800〜1100℃程度であるときが灯まし
い領域となる。
From the behavior of these graphs, the value of the OD ratio is approximately 0.
When the temperature is in the range of 5 to 0.99 degrees Celsius, and when the ore preheating temperature is about 800 to 1100 degrees Celsius, it becomes a bright region.

これらの予備的知見を利用して構成した1実施例が、第
1図に示したようなものであり、0.5〜1.5Gca
l / L程度の範囲で操業する際に±0.1Gcal
 / tの精度で実施することが可能なように設計して
いるものである。
One example constructed using these preliminary findings is shown in Fig.
±0.1Gcal when operating in the range of l/L
It is designed to be able to be performed with an accuracy of /t.

基本的には、1500〜1650℃程度の溶湯温度と、
予備還元率0.1%程度、余熱温度700〜1100℃
、導入ガス温度最高温度で1350℃である流!!:!
I+層タイプの予熱予備還元炉の運転条件を使用し、そ
の他スクラバー、コンプレッサーキャリアガス、予m還
元炉温度調節用ガスおよび回収ガスのラインなどのシス
テムから構成しているものである。
Basically, the molten metal temperature is about 1500-1650℃,
Preliminary reduction rate approximately 0.1%, residual heat temperature 700-1100℃
, a flow whose maximum temperature of the introduced gas is 1350°C! ! :!
It uses the operating conditions of an I+ layer type preheating pre-reducing furnace, and also consists of systems such as a scrubber, compressor carrier gas, pre-reducing furnace temperature control gas, and recovery gas line.

〔実施例〕〔Example〕

以上に述べた予備的な技術背景を踏まえた上で、さらに
本発明の構成と効果について具体的な実施例を用いて詳
細に説明する。
Based on the preliminary technical background described above, the structure and effects of the present invention will be further explained in detail using specific examples.

実施例 1 第1図は、この発明を実施するための設備の一実施例を
示す説明図であり、1は溶融還元炉(溶湯潤度1500
〜1650℃)、2は流動層タイプの予熱予備還元炉(
予備還元率0.1程度、予熱温度700〜1100℃、
装入ガス温度700〜1100℃(最高で1350℃程
度)、それ以上ではクラッキングなどの問題がある)、
3は蒸気回収装置(ガス顕熱回収)、4はスクラバー、
5はコンプレッサー、6は炭材、石灰等吹き込み用キャ
リアガス、7は予熱予備還元炉吹き込みガス温度調節用
ガス、8は回収ガスである。
Example 1 FIG. 1 is an explanatory diagram showing an example of equipment for carrying out the present invention, and 1 is a melting reduction furnace (molten metal moisture 1500
~1650℃), 2 is a fluidized bed type preheating pre-reduction furnace (
Preliminary reduction rate about 0.1, preheating temperature 700-1100℃,
Charging gas temperature: 700 to 1100°C (maximum 1350°C), above which problems such as cracking may occur)
3 is a steam recovery device (gas sensible heat recovery), 4 is a scrubber,
5 is a compressor, 6 is a carrier gas for blowing carbonaceous material, lime, etc., 7 is a gas for adjusting the temperature of the gas blown into the preheating pre-reducing furnace, and 8 is a recovered gas.

上記のように構成された設備を運転するにあたっては、
先ず、溶融還元Pl内に石炭および工業用純酸素(純度
70%以上)を供給し、供給された該石炭を溶融還元炉
1内で燃焼させ、また、溶融還元炉l外の予熱予備還元
F2において鉄鉱石および/またZよ石灰石と接触せし
めて鉄鉱石を部分的に低級酸化物および遊離の鉄まで予
熱予+!i還元し、石灰石を予熱し、予熱予備還元され
た該鉄鉱石を調節された温度にて溶融還元炉1内に装入
し、装入された該鉄鉱石を溶融還元炉1内のCOガスで
還元することになる。
When operating equipment configured as above,
First, coal and industrial pure oxygen (purity 70% or more) are supplied into the smelting reduction Pl, and the supplied coal is burned in the smelting reduction furnace 1, and the preheating preliminary reduction F2 outside the smelting reduction furnace 1 is Contact with iron ore and/or limestone to partially preheat the iron ore to lower oxides and free iron! The iron ore that has been preheated and pre-reduced is charged into the smelting reduction furnace 1 at a controlled temperature, and the charged iron ore is heated with CO gas in the smelting reduction furnace 1. It will be refunded.

このとき、溶融還元炉1から発生する排ガスのOD比が
0.5〜0.99となるようにコントロールし、該排ガ
スに予熱予備還元に使用した後の冷却排ガスを混合して
この混合排ガス7を所定温度にし、混合排ガス7で該鉄
鉱石を予熱予備還元する。
At this time, the OD ratio of the exhaust gas generated from the melting reduction furnace 1 is controlled to be 0.5 to 0.99, and the exhaust gas is mixed with the cooled exhaust gas after being used for preheating and preliminary reduction, and this mixed exhaust gas 7 is brought to a predetermined temperature, and the iron ore is preheated and pre-reduced using the mixed exhaust gas 7.

上記の方法においては、系内から得られる余剰エネルギ
ー(生成ガス、顕熱、潜熱、y!E、気、回収を力等)
が、−貫製鉄プロセスである高炉・転炉法における、焼
結・コークス炉・高炉より得られる余剰エネルギー(0
、7〜1 、3 G c a l /生成鉄量)とほぼ
同じとなるように操業する。
In the above method, surplus energy obtained from within the system (produced gas, sensible heat, latent heat, y!E, gas, recovered power, etc.)
- Surplus energy (0
, 7-1, 3 G c a /amount of iron produced).

ここで、炉の制御要因としての主なるパラメータとして
は、以下のものがある。
Here, the main parameters as control factors for the furnace include the following.

1、投入、炭材/鉱石比、石炭、鉱石、溶媒剤石灰また
は石灰石、軽ドロマイl−、生ドロマイトの投入速度、
インプットした全エネルギーは石炭史用量によって定ま
り、余剰エネルギーは副生エネルギーとなる。
1. Input, carbonaceous material/ore ratio, coal, ore, solvent lime or limestone, light dolomite l-, raw dolomite input rate,
The total energy input is determined by the historical amount of coal, and the surplus energy becomes by-product energy.

2、吹き込み酸素量、OD比コントロールプロセス全系
のグロスエネルギー、鉱石/石炭比、0□吹き込み景が
OD比と関係してくる。
2. Blowing oxygen amount, OD ratio control The gross energy of the entire process system, ore/coal ratio, and 0□ blowing pattern are related to the OD ratio.

プロセス系内/\のイングツ1−エネルギーは。Ingts 1-energy of /\ in the process system is.

プロセス内で使用したエネルギーと、残りピートロス(
余剰エネルギ〜)との和となる。
The energy used in the process and the remaining peat loss (
surplus energy ~).

3、予熱予備還元炉用ガス量及びガス温度コントロール DRCガス扁度とメタル温度の差が伝熱効率に影響する
3. Preheating Prereduction Furnace Gas Amount and Gas Temperature Control The difference between DRC gas flatness and metal temperature affects heat transfer efficiency.

4、余剰エネルギー量コントロール 実施例 2 第1図に示した構成を有する溶融還元炉装置を(走用し
てつぎのような実験を行った。
4. Surplus Energy Amount Control Example 2 The following experiment was conducted using a melting reduction furnace apparatus having the configuration shown in FIG. 1.

先ず、流動層2の上部から鉱石1470kg(水分3%
外数)および炭酸カルシウム151kgを装入し、流動
層2の下部から1350℃のガスを吹き込ませたところ
、800℃の四三酸化鉄(Fc304)が得られたが、
このときのヒートロスは、30X10’kealであっ
た。
First, 1470 kg of ore (moisture 3%
When 151 kg of calcium carbonate and 151 kg of calcium carbonate were charged and gas at 1350°C was blown from the bottom of the fluidized bed 2, triiron tetroxide (Fc304) at 800°C was obtained.
The heat loss at this time was 30×10'keal.

乙のFe3O4を石炭700kg、酸素490 N n
tと’4 fAl、 504 X 103kcal、C
O30,0%、C0249,1%、)i、12.5%、
H2O7゜0%およびN20,8%からなる副生ガス4
0ON rn’と共に、溶融還元加工に装入して溶融還
元反応を起こさせたが、この時の18融還元炉内を温度
は1789℃であった。
B's Fe3O4 is mixed with 700 kg of coal and 490 N of oxygen.
t and '4 fAl, 504 x 103kcal, C
O30.0%, C0249.1%, )i, 12.5%,
By-product gas 4 consisting of H2O7°0% and N20.8%
0ON rn' was charged into melt reduction processing to cause a melt reduction reaction, and the temperature inside the No. 18 melt reduction furnace at this time was 1789°C.

以上のようにして1りた溶融金属(よ、1500℃の温
度で1000 kgあり、そのうち、鉄i:f り 7
0kg、炭素は30kg、スラグは200kgであった
The molten metal produced as above (1000 kg at a temperature of 1500°C, of which iron i: f 7
0 kg, carbon was 30 kg, and slag was 200 kg.

また、このときの熱の損失量は、50X10’kcal
であった。
Also, the amount of heat loss at this time is 50X10'kcal
Met.

一方、流eJM2を出た排ガス1よ、1905Nm’、
1704℃の状態で取出されるが、これl、を蒸気回収
装置3で水魚% 1035 kgの形で回収され、また
、スクラバー(4)ではゲス)・を除去し副生ガスとし
て貯蔵するラインに導いた。
On the other hand, the exhaust gas 1 that came out of the flow eJM2, 1905 Nm',
It is taken out at a temperature of 1,704°C, but it is recovered in the form of 1,035 kg of aquatic fish in the steam recovery device 3, and in the scrubber (4), it is sent to a line where it is removed and stored as a by-product gas. lead.

この副生ガスは、1199Nm、潜熱1504xio3
1ccal 、CO30,9%、Co249.  。
This by-product gas has a latent heat of 1199Nm and 1504xio3
1 ccal, CO30.9%, Co249. .

1%、I!、12.5%、t[207゜0%、N20゜
8%であった。
1%, I! , 12.5%, t[207°0%, N20°8%.

この副生ガスの一部を、コンプレッサー(5)で圧縮し
、そのうちの40ONm’を溶融還元P(1)の排ガス
に混むして排ガスを1350℃まで冷却し、これを流動
層2に吹き込ませることは前述の通りである。
A part of this by-product gas is compressed by the compressor (5), and 40ONm' of it is mixed with the exhaust gas of the melt reduction P (1), the exhaust gas is cooled to 1350°C, and this is blown into the fluidized bed 2. This is as stated above.

また、石炭装入のために使用するギヤリヤーガスとして
、17ONrri’程度の副生ガスを別途に1東用した
In addition, about 17 ONrri' of by-product gas was separately used as a gear gas for charging coal.

実施例 3 第1図における流動層2で予備還元の程度を替え、かつ
OD比の値を変化させた条件下で各種の測定を行い、数
表のその結果をまとめて示したが、それと共にこれらの
挙動を第5図〜第10図にグラフとして示した。
Example 3 Various measurements were carried out under conditions in which the degree of preliminary reduction was changed in the fluidized bed 2 in Fig. 1 and the value of the OD ratio was changed, and the results are summarized in a numerical table. These behaviors are shown as graphs in FIGS. 5 to 10.

なお、表中におけるガス成分として、予(I!還元0%
、室温導入、排ガス温度1500℃の場合を例としてそ
の成分を以下に示す。
In addition, the gas components in the table are preliminarily (I! reduction 0%
The components are shown below, taking as an example the case of room temperature introduction and exhaust gas temperature of 1500°C.

OD比   0.2  0,3  0,5Co  Nゴ
  1512   992   487COa  l/
378   425   4g7H,l/379   
218    86H201343338313 N 、   l/239   209   181合 
 計  1    2849     2181   
  1555〔発明の効果〕 この発明は以上説明したとおり、溶融還元炉から発生す
る排ガスのOD比が0.5〜0.99となるようにコン
トロールし、該排ガスに予熱予備還元に使用した後の冷
却排ガスを混合してこの混合排ガスを所定;帛度にし、
該混合排ガスで該鉄鉱石を予熱予備還元することにより
、設備をコンパクトにし、その制御性を良好にするとい
う効果がある。
OD ratio 0.2 0.3 0.5Co Ngo 1512 992 487COa l/
378 425 4g7H, l/379
218 86H201343338313 N, l/239 209 181
Total 1 2849 2181
1555 [Effect of the Invention] As explained above, this invention controls the OD ratio of the exhaust gas generated from the smelting reduction furnace to be 0.5 to 0.99, and controls the OD ratio of the exhaust gas generated from the smelting reduction furnace to Mixing the cooled exhaust gas and making this mixed exhaust gas a predetermined strength,
Preheating and pre-reducing the iron ore with the mixed exhaust gas has the effect of making the equipment more compact and improving its controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施するための設備の一実施例を示
す説明図、第2図〜第10図はグラフでありそのうち第
2図は導入酸素景によるOD比の変化の挙動、第3図は
OD比と炭材の関係をしめしたものであり、第4図は鉱
石予熱温度と炭材消費量の関係を示したもの、第5図は
OD比と石炭使用量の挙動を示したもの、第6図はOD
比と酸素」lの関係を示したもの、第7図はOD比と生
成スラグ量の関係を示したもの、第8図はOD比と総排
ガス量の関係を示したもの、第9図はOD比と排ガス潜
熱を、第10図はOD比と排ガス顕熱の関係を示したも
のである。 1・・・溶融還元炉、2・・・流rjJJ層タイプの予
熱予備還元炉、3・・蒸気回収装置、4・−スクラバー
、5・・コンプレッサー、6・・炭材、石灰等吹き込み
用キャリアガス、7・・予熱予備還元炉吹き込みガス温
度調節用ガス、8・・・回収ガス。
Fig. 1 is an explanatory diagram showing an example of equipment for carrying out the present invention, Figs. The figure shows the relationship between OD ratio and coal material, Figure 4 shows the relationship between ore preheating temperature and coal consumption, and Figure 5 shows the behavior of OD ratio and coal consumption. Figure 6 is OD
Figure 7 shows the relationship between the OD ratio and the amount of slag produced, Figure 8 shows the relationship between the OD ratio and the total amount of exhaust gas, and Figure 9 shows the relationship between the OD ratio and the total amount of exhaust gas. FIG. 10 shows the relationship between the OD ratio and the exhaust gas latent heat, and FIG. 10 shows the relationship between the OD ratio and the exhaust gas sensible heat. 1... Melting reduction furnace, 2... Flow RJJJ layer type preheating pre-reduction furnace, 3... Steam recovery device, 4... Scrubber, 5... Compressor, 6... Carrier for blowing carbonaceous material, lime, etc. Gas, 7... Gas for preheating and preliminary reduction furnace blowing gas temperature adjustment, 8... Recovery gas.

Claims (1)

【特許請求の範囲】[Claims] 溶融還元炉内に石炭と酸素とを供給してこれ等を燃焼さ
せつつ、該溶融還元炉の外で予熱予備還元した原料鉱石
(鉄鉱石)を該溶融還元炉内に装入して、該溶融還元炉
内の炭酸ガスでこれを溶融還元するプロセスからなり、
該溶融還元炉から発生する排ガスの酸化度(OD比)を
0.5〜0.99となるように調節し、該排ガスに予熱
予備還元に使用した後の冷却排ガスを混合してこの混合
排ガスを所定温度にし、該混合排ガスで該鉄鉱石を予熱
予備還元することからなる溶融還元法。
While supplying coal and oxygen into the smelting reduction furnace and burning them, raw material ore (iron ore) that has been preheated and pre-reduced outside the smelting reduction furnace is charged into the smelting reduction furnace. It consists of a process of melting and reducing it with carbon dioxide gas in a melting reduction furnace.
The degree of oxidation (OD ratio) of the exhaust gas generated from the smelting reduction furnace is adjusted to 0.5 to 0.99, and the cooled exhaust gas after being used for preheating and preliminary reduction is mixed with the exhaust gas to produce this mixed exhaust gas. A smelting reduction method comprising bringing the iron ore to a predetermined temperature and preheating and pre-reducing the iron ore with the mixed exhaust gas.
JP18968886A 1986-08-14 1986-08-14 Smelting and reducing method Pending JPS6347307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18968886A JPS6347307A (en) 1986-08-14 1986-08-14 Smelting and reducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18968886A JPS6347307A (en) 1986-08-14 1986-08-14 Smelting and reducing method

Publications (1)

Publication Number Publication Date
JPS6347307A true JPS6347307A (en) 1988-02-29

Family

ID=16245516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18968886A Pending JPS6347307A (en) 1986-08-14 1986-08-14 Smelting and reducing method

Country Status (1)

Country Link
JP (1) JPS6347307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183495A (en) * 1989-12-04 1993-02-02 Nkk Corporation Method for controlling a flow rate of gas for prereducing ore and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183495A (en) * 1989-12-04 1993-02-02 Nkk Corporation Method for controlling a flow rate of gas for prereducing ore and apparatus therefor

Similar Documents

Publication Publication Date Title
JP2698525B2 (en) Smelting reduction method of metal ore
JPH0635613B2 (en) Pig iron manufacturing method
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
JPS622602B2 (en)
JPH0471963B2 (en)
CA2408720C (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
US1742750A (en) Production and utilization of carbon monoxide
JPS6247921B2 (en)
JPS6347307A (en) Smelting and reducing method
US1447071A (en) Process of agglomerating mixtures of fine ore and fuel in shaft furnaces
JPH01252714A (en) Mixed agglomerating briquette for smelting reduction furnace and smelting reduction method for mixed agglomerating briquette
EP0319966B1 (en) Method of smelting reduction of ores containing metal oxides
KR100236193B1 (en) Production system of molten iron or direct reduced iron using fluidized bed reactors and production method of molten iron
JPH03130314A (en) Production of iron by smelting reduction method
US4412862A (en) Method for the production of ferrochromium
JPS63171807A (en) Operation method for oxygen blast furnace
US3157490A (en) Method for refining of metals
JPS62230923A (en) Manufacture of iron by smelting and reduction
JPH01162711A (en) Smelting reduction method
GB2281311A (en) Metallurgical processes and apparatus
JPS60145307A (en) Reducing method of iron ore by melting
JPH01149911A (en) Smelting reduction process
JP2623269B2 (en) Method of adjusting gas properties for preliminary reduction in smelting reduction
US3591155A (en) Rotary furnace for difficult to reduce oxides
JPS63176407A (en) Production of molten iron