JPH01208389A - Growth of single crystal of compound semiconductor - Google Patents

Growth of single crystal of compound semiconductor

Info

Publication number
JPH01208389A
JPH01208389A JP3367688A JP3367688A JPH01208389A JP H01208389 A JPH01208389 A JP H01208389A JP 3367688 A JP3367688 A JP 3367688A JP 3367688 A JP3367688 A JP 3367688A JP H01208389 A JPH01208389 A JP H01208389A
Authority
JP
Japan
Prior art keywords
crucible
melt
inner crucible
raw material
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3367688A
Other languages
Japanese (ja)
Inventor
Masashi Yamashita
正史 山下
Kazuhisa Matsumoto
和久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3367688A priority Critical patent/JPH01208389A/en
Publication of JPH01208389A publication Critical patent/JPH01208389A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control impurity concentration ratio at starting of crystal growth in high accuracy, by charging a specific double crucible with impurity-containing raw material melt, further adding impurity to an inner crucible having a circulation hole, instantly dropping the inner crucible to make the height of melt level of the inner and outer crucibles coincident and growing crystal. CONSTITUTION:A double crucible having an inner crucible 1 with a circulation hole 1a supported by an auxiliary shaft 6 in an outer crucible 2 is charged with impurity- containing raw material melts 3 and 4 and a layer of a liquid-encapsulating agent 5 is formed on the melts. Then the inner crucible 1 is pulled up only by a given distance by the auxiliary shaft 6, height of the inner crucible 1 from the bottom to the melt level is changed from A to B and a seed crystal 7 is immersed in the melt 3. Then an impurity is added only to the inner crucible 1, the height of the melt level is returned to A, before the melt 3 flows from the circulation hole 1a to the outer crucible 2 by difference of the melt level, instantly the inner crucible 1 is dropped, melt levels of both the crucibles 1 and 2 are returned to the same height, both the levels of the melts 3 and 4 are made into the same height while maintaining the volume of the melt 3 in the inner crucible constant and the impurity in both the crucibles 1 and 2 is controlled in high accuracy. The seed crystal 7 is pulled up to grow crystal.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、化合物半導体の単結晶をチョクラルスキ法
により成長させる成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a growth method for growing a single crystal of a compound semiconductor by the Czochralski method.

[従来の技術] 化合物半導体単結晶を成長させる方法としては、チョク
ラルスキ法が最も広く用いられている。■−V族化合物
半導体またはII−Vl族化合物半導体等の多元系化合
物の成長の場合には、解離蒸発しやすい成分を含み結晶
の化学量論的組成にずれを生じやすいので、これを防止
する方法として、酸化硼素等の融液で結晶融液表面を覆
い、融液からの解離蒸発を抑える液体封止チョクラルス
キ法(LEC法)がある。
[Prior Art] The Czochralski method is the most widely used method for growing compound semiconductor single crystals. - In the case of growth of multi-component compounds such as group V compound semiconductors or group II-Vl compound semiconductors, they contain components that easily dissociate and evaporate, which tends to cause deviations in the stoichiometric composition of the crystal, so this should be prevented. One method is the liquid-enclosed Czochralski method (LEC method), in which the surface of the crystal melt is covered with a melt of boron oxide or the like to suppress dissociation and evaporation from the melt.

このようなチョクラルスキ法において、不純物をドーピ
ングした単結晶を成長させる場合がある。
In such a Czochralski method, a single crystal doped with impurities may be grown.

このような場合、結晶成長に従って、不純物が偏析する
ため、るつぼ内の不純物濃度が変化し、成長方向の不拘
濃度分布が不均一となり、通常の方法では均一な濃度分
布を持つ単結晶を得ることができない。
In such cases, impurities segregate as the crystal grows, resulting in changes in the impurity concentration within the crucible, resulting in uneven concentration distribution in the growth direction, making it impossible to obtain a single crystal with a uniform concentration distribution using normal methods. I can't.

このような問題を解消するため、二重るつぼ法等が提案
されている。二重るつぼ法をGeに応用した例としては
、Journal of’ Applied Phys
ics。
In order to solve these problems, a double crucible method and the like have been proposed. An example of applying the double crucible method to Ge is the Journal of Applied Phys.
ics.

第29巻、No、8.1958.1241〜1244頁
がある。
Volume 29, No. 8.1958, pages 1241-1244.

このような二重るつぼ法において、不純物の偏析係数を
kとしたとき、内るつぼ内の融液中の不純物濃度と、外
るつぼ内の融液中の不純物濃度との比は、ににである必
要がある。したがって、内るつぼ内の融液中の不純物濃
度と外るつぼ内の融液中の不純物濃度とを異ならせなけ
ればならず、このための方法として、原料の多結晶を内
るつぼおよび外るつぼに入れる段階で、異なる量の不純
物をそれぞれ内るつぼと外るつぼに入れ、不純物濃度を
異ならせる方法や、原料の多結晶を内るつぼおよび外る
つぼ内で溶融した後、内るつぼにのみ不純物を添加する
方法などが従来から採用されている。原料の多結晶を溶
融した後に、内るつぼのみに不純物を添加する例として
は、特開昭61−266389号公報などがある。
In such a double crucible method, when the segregation coefficient of impurities is k, the ratio of the impurity concentration in the melt in the inner crucible to the impurity concentration in the melt in the outer crucible is There is a need. Therefore, it is necessary to make the impurity concentration in the melt in the inner crucible different from the impurity concentration in the melt in the outer crucible, and to do this, polycrystalline raw materials are placed in the inner and outer crucibles. Methods include adding different amounts of impurities to the inner and outer crucibles at different stages to make the impurity concentrations different, or methods of melting raw material polycrystals in the inner and outer crucibles and then adding impurities only to the inner crucible. etc. have been traditionally adopted. An example of adding impurities only to the inner crucible after melting the polycrystalline raw material is disclosed in Japanese Patent Laid-Open No. 61-266389.

[発明が解決しようとする課題] 原料の多結晶を入れる際に不純物をそれぞれ異なる濃度
で入れる方法では、原料の多結晶を溶融してから成長を
開始するまでの間に、内るつぼ内の融液と外るつぼの融
液との間で流通孔を通して不純物の拡散が生じ、成長開
始の際に不純物濃度の比がにkからずれてしまうという
問題があった。
[Problems to be Solved by the Invention] In the method of adding impurities at different concentrations when adding raw material polycrystals, the melt in the inner crucible is There is a problem in that impurity diffusion occurs between the liquid and the melt in the outer crucible through the communication holes, and the impurity concentration ratio deviates from k at the start of growth.

また、原料の多結晶を溶融した後に内るつぼのみに不純
物を入れる方法では、不純物の添加により内るつぼ内の
融液の液面の高さが外るつぼの融液の液面の高さよりも
高くなるため、内るつぼ内の融液が流通孔を通して外る
つぼに流出し、この結果、不純物濃度比が1:kからず
れてしまうという問題があった。
In addition, in the method of adding impurities only to the inner crucible after melting the polycrystalline raw material, the level of the melt in the inner crucible becomes higher than the level of the melt in the outer crucible due to the addition of impurities. Therefore, there was a problem in that the melt in the inner crucible flows out into the outer crucible through the flow hole, and as a result, the impurity concentration ratio deviates from 1:k.

この発明の目的は、結晶成長開始の際の内るつぼと外る
つぼとの不純物濃度比を精度良く制御することのできる
化合物半導体単結晶の成長方法を提供することにある。
An object of the present invention is to provide a method for growing a compound semiconductor single crystal that can accurately control the impurity concentration ratio between an inner crucible and an outer crucible at the start of crystal growth.

[課題を解決するための手段] この発明の成長方法では、外るつぼと流通孔を有する内
るつぼからなる二重るつぼに不純物を含んだ原料融液を
満たし、内るつぼのみに不純物をさらに添加した後、内
るつぼ内の融液の体積を一定に保ちながら、内るつぼ内
の融液の液面の高さを外るつぼの融液の液面の高さと一
致させるように内るつぼを下方に移動させ、直ちに結晶
成長を開始している。
[Means for Solving the Problems] In the growth method of the present invention, a double crucible consisting of an outer crucible and an inner crucible having a flow hole is filled with a raw material melt containing impurities, and impurities are further added only to the inner crucible. After that, while keeping the volume of the melt in the inner crucible constant, move the inner crucible downward so that the height of the melt level in the inner crucible matches the height of the melt level in the outer crucible. crystal growth begins immediately.

[作用] この発明の成長方法では、内るつぼへの不純物の添加後
、内るつぼ内の融液の体積を一定に保ちながら、内るつ
ぼを下方に移動させて、内るつぼ内の融液の液面の高さ
を外るつぼの融液の液面の高さと一致させている。した
がって、従来の方法のように内るつぼへの不純物の添加
後に内るつぼから外るつぼへ融液が流出することはない
[Operation] In the growth method of the present invention, after impurities are added to the inner crucible, the inner crucible is moved downward while keeping the volume of the melt in the inner crucible constant. The height of the surface is made to match the height of the melt level in the outer crucible. Therefore, the melt does not flow out from the inner crucible to the outer crucible after adding impurities to the inner crucible as in the conventional method.

[実施例] 第1図〜第4図は、この発明の一実施例を説明するため
の装置を示す断面図である。
[Embodiment] FIGS. 1 to 4 are cross-sectional views showing an apparatus for explaining an embodiment of the present invention.

第1図は、内るつぼおよび外るつぼに原料融液が満たさ
れた状態を示している。外るつぼ2内には、内るつぼ1
が設けられており、内るつぼ1は副軸6により支持され
ている。外るつぼ2内には、原料融液4が満たされてお
り、内るつぼ1内には原料融液3が満たされている。原
料融液3と原料融液4とは、内るつぼ1の底部に形成さ
れた流通孔1aを通して流出あるいは流入可能にされて
いる。原料融液3および原料融液4の上には、液体封止
剤5の層が形成されている。第1図に示す状態では、内
るつぼ1の底部からの原料融液3の液面の高さが、Aと
なるように内るつぼ1が位置決めされている。
FIG. 1 shows a state in which the inner crucible and the outer crucible are filled with raw material melt. Inside the outer crucible 2 is the inner crucible 1.
is provided, and the inner crucible 1 is supported by a subshaft 6. The outer crucible 2 is filled with a raw material melt 4, and the inner crucible 1 is filled with a raw material melt 3. The raw material melt 3 and the raw material melt 4 are allowed to flow out or flow in through a communication hole 1a formed at the bottom of the inner crucible 1. A layer of liquid sealant 5 is formed on the raw material melt 3 and the raw material melt 4. In the state shown in FIG. 1, the inner crucible 1 is positioned so that the height of the liquid level of the raw material melt 3 from the bottom of the inner crucible 1 is A.

第2図は、内るつぼへの不純物の添加前の状態を示して
いる。この実施例では、内るつぼ1の位置が副軸6によ
り上方に移動される。これは、不純物添加後の内るつぼ
1内の融液の体積が、第1図に示す状態における内るつ
ぼ1内の原料融液の体積と同じになるようにするためで
ある。第2図に示す状態では、内るつぼ1の底部からの
原料融1ff13の液面の高さは、Bとなっている。な
お、第2図には、第1図における内るつぼ1の状態を−
点鎖線で図示している。また、不純物の添加前、種結晶
7が、内るつぼ1内の原料融液3に浸されている。これ
は、不純物の添加直後に結晶成長を開始することができ
るようにするためである。
FIG. 2 shows the state before impurities are added to the inner crucible. In this embodiment, the position of the inner crucible 1 is moved upward by the countershaft 6. This is to ensure that the volume of the melt in the inner crucible 1 after addition of impurities is the same as the volume of the raw material melt in the inner crucible 1 in the state shown in FIG. In the state shown in FIG. 2, the height of the liquid level of the raw material melt 1ff13 from the bottom of the inner crucible 1 is B. In addition, in FIG. 2, the state of the inner crucible 1 in FIG.
Illustrated with dashed dotted lines. Further, before addition of impurities, the seed crystal 7 is immersed in the raw material melt 3 in the inner crucible 1. This is to enable crystal growth to start immediately after addition of impurities.

第3図は、内るつぼへの不純物の添加直後の状態を示し
ている。不純物の添加により、内るつぼ1内の原料融液
3の体積は増加し、内るつぼ1の底部からの原料融液3
の液面の高さは、第1図と同じAとなる。この結果、原
料融液3の液面が、外るつぼ2の原料融液4の液面より
も高くなる。
FIG. 3 shows the state immediately after the addition of impurities to the inner crucible. Due to the addition of impurities, the volume of the raw material melt 3 in the inner crucible 1 increases, and the raw material melt 3 from the bottom of the inner crucible 1 increases.
The height of the liquid level is A, which is the same as in Fig. 1. As a result, the liquid level of the raw material melt 3 becomes higher than the liquid level of the raw material melt 4 in the outer crucible 2.

このため、原料融液3が流通孔1aを通り外るつぼ2内
へ流出しようとする。このような流出が起こる前に、即
座に内るつぼ1を下方に移動し、第4図に示す状態とす
る。
Therefore, the raw material melt 3 tends to flow out into the crucible 2 through the flow hole 1a. Before such outflow occurs, the inner crucible 1 is immediately moved downward to the state shown in FIG. 4.

第4図は、成長開始の際の状態を示している。FIG. 4 shows the state at the start of growth.

上述のように、内るつぼ1への不純物の添加直後、内る
つぼ1を即座に下方に移動し、内るつぼ1内の原料融液
3の体積を一定に保ちながら、原料融液3の液面と原料
融液4の液面とを一致させる。
As described above, immediately after adding impurities to the inner crucible 1, the inner crucible 1 is immediately moved downward, and the liquid level of the raw material melt 3 is lowered while keeping the volume of the raw material melt 3 in the inner crucible 1 constant. and the liquid level of the raw material melt 4.

これにより、外るつぼ2への原料融液3の流出を防止す
ることができる。第4図の状態となった直後、種結晶7
を引き上げて、結晶成長を開始する。
Thereby, the raw material melt 3 can be prevented from flowing out into the outer crucible 2. Immediately after reaching the state shown in Figure 4, the seed crystal 7
to start crystal growth.

なお、結晶成長開始後は、外るつぼ2の原料融液4が、
連続的に流通孔1aを通して、内るつぼ1内に流入する
ので、原料融液3と原料融液4との間で不純物の拡散は
生じない。
Note that after the start of crystal growth, the raw material melt 4 in the outer crucible 2 is
Since it continuously flows into the inner crucible 1 through the communication hole 1a, no diffusion of impurities occurs between the raw material melt 3 and the raw material melt 4.

以上のように、内るつぼ1への不純物の添加直後は、内
るつぼ1を下方に移動させて、内るつぼ1からの原料融
液3の流出を防止しているので、原料融液3と原料融液
4の不純物濃度比を設定通り1:にとすることができる
。このため、成長結晶全域にわたり均一な不純物濃度を
得ることができる。
As described above, immediately after adding impurities to the inner crucible 1, the inner crucible 1 is moved downward to prevent the raw material melt 3 from flowing out from the inner crucible 1. The impurity concentration ratio of the melt 4 can be set to 1: as set. Therefore, it is possible to obtain a uniform impurity concentration over the entire region of the grown crystal.

第1図〜第4図に示すような装置を用いて、GaAs結
晶を成長させた。外るつぼおよび内るつぼの材質として
はPBNを用い、外るつぼの内径4インチ、内るつぼの
内径3インチとして、直径2インチのGaAs結晶を引
き上げて成長させた。
A GaAs crystal was grown using an apparatus as shown in FIGS. 1 to 4. PBN was used as the material for the outer crucible and the inner crucible, the outer crucible had an inner diameter of 4 inches, the inner crucible had an inner diameter of 3 inches, and a GaAs crystal with a diameter of 2 inches was pulled and grown.

以下、この工程について説明すると、まず外るつぼに高
純度GaAs多結晶約2000gと、十分に脱水処理し
た酸化硼素約200gと、不純物としての高純度1 n
As多結晶11gとを入れ、カーボンヒータにより12
70℃まで加熱して、GaAsと酸化硼素とを溶融させ
た。次に内るつぼを外るつぼ内に入れ、流通孔を通して
内るつぼ内にもGaAs融液を満たした。内るつぼ内の
GaAs融液の高さは10mmであり、その体積は45
.6cm’であった。次に、徐々に温度を1250℃ま
で下げた。内るつぼを0.5mm上方に移動させ第2図
に示すような状態とした後、種結晶を回転させながら酸
化硼素融液層を通してGaAs原料融液に接触させた。
To explain this process below, first, about 2000 g of high-purity GaAs polycrystal, about 200 g of sufficiently dehydrated boron oxide, and high purity 1 n as impurities are placed in an outer crucible.
11g of As polycrystal was added, and heated to 12g with a carbon heater.
It was heated to 70° C. to melt GaAs and boron oxide. Next, the inner crucible was placed in the outer crucible, and the inner crucible was also filled with GaAs melt through the communication hole. The height of the GaAs melt in the inner crucible is 10 mm, and its volume is 45 mm.
.. It was 6 cm'. Next, the temperature was gradually lowered to 1250°C. After the inner crucible was moved upward by 0.5 mm to the state shown in FIG. 2, the seed crystal was brought into contact with the GaAs raw material melt through the boron oxide melt layer while rotating.

次に、不純物としての高純度1nAs多結晶13gを、
内るつぼ内に入れ、同時に内るつぼを0.2mm下方に
移動させるとともに、種結晶を10mm/hrの速さで
引き上げ、結晶成長を開始した。
Next, 13g of high purity 1nAs polycrystal as an impurity,
It was placed in an inner crucible, and at the same time, the inner crucible was moved 0.2 mm downward, and the seed crystal was pulled up at a speed of 10 mm/hr to start crystal growth.

得られた結晶について、質量分析を行なった結果、結晶
中のIn濃度は、第5図に示すように軸方向に約330
0wt ppmであり、均一な濃度分布であった。
As a result of performing mass spectrometry on the obtained crystal, the In concentration in the crystal was approximately 330% in the axial direction as shown in Figure 5.
The concentration was 0 wt ppm, and the concentration distribution was uniform.

なお、比較として原料の多結晶を内るつぼおよび外るつ
ぼにそれぞれに入れる際、同時に不純物をそれぞれ内る
つぼおよび外るつぼに入れ溶融する従来の方法でもGa
As結晶を成長させた(比較例)。この比較例により得
られた結晶についても、同様に質量分析した。この結果
を第5図に点線で示す。比較例との比較からも明らかな
ように、この発明に従う実施例による結晶は、軸方向に
均一な不純物の濃度分布を有している。なお、結晶の足
部で、In濃度が上昇しているのは、成長の終期に外る
つぼの原料融液が減少して、内るつぼが外るつぼの底部
に接し、二重るつぼ法による効果が失われたためである
As a comparison, Ga
As crystal was grown (comparative example). The crystals obtained in this comparative example were also subjected to mass spectrometry in the same manner. The results are shown in FIG. 5 by dotted lines. As is clear from the comparison with the comparative example, the crystal according to the example according to the present invention has a uniform impurity concentration distribution in the axial direction. The reason why the In concentration increases at the foot of the crystal is because the raw material melt in the outer crucible decreases at the end of the growth, and the inner crucible comes into contact with the bottom of the outer crucible, and the effect of the double crucible method is reduced. Because it was lost.

以上の実施例では、内るつぼを副軸で支持する方式の二
重るつぼ法を例にして説明したが、この発明の方法は、
内るつぼを融液中に浮かせる方式の二重るつぼ法につい
ても適用されるものである。
In the above embodiments, the double crucible method in which the inner crucible is supported by a sub-shaft was explained as an example, but the method of this invention
This also applies to the double crucible method in which the inner crucible is suspended in the melt.

なお、この場合内るつぼへの不純物の添加直後の内るつ
ぼの下方への移動は、内るつぼの自重により行なうこと
ができる。
In this case, the inner crucible can be moved downward by its own weight immediately after the impurity is added to the inner crucible.

[発明の効果]   ′ この発明の成長方法によれば、内るつぼへの不純物の添
加直後、内るつぼをt方に移動基せて、内るつぼから外
るつぼへの融液め流出を防止しているので、内名つぼの
融液と外るつぼの融液の不純物濃度比を精度良く制御す
ることが可能になる。
[Effects of the Invention] ' According to the growth method of the present invention, immediately after adding impurities to the inner crucible, the inner crucible is moved in the t direction to prevent melt from flowing out from the inner crucible to the outer crucible. Therefore, it becomes possible to precisely control the impurity concentration ratio between the melt in the inner crucible and the melt in the outer crucible.

このため、全域にわたり均一な不純物濃度分布を有する
結晶を成長させることがで曇る。したがって、高品質で
かつ所望の電気特性を有した結晶を、優れた生産性およ
び再現性で製造することが可能になる。
Therefore, it is difficult to grow a crystal having a uniform impurity concentration distribution over the entire region. Therefore, it becomes possible to produce crystals of high quality and desired electrical properties with excellent productivity and reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例において内るつぼおよび
外るつぼ1;原料融液が満たされた状態を示す断面図で
ある。第2図は、同じくこの発明の一実施例において内
るつぼへの不純物の添加前の状態を示す断面図である。 第3図は、同じくこの発明の一実施例において内るつぼ
への不純物の添加直後の状態を示す断面図である。第4
図は、同じくこの発明の一実施例において成長開始の際
の状態を示す断面図である。第5図は、この発明の実施
例により製造された結晶の軸方向のIn濃度分布を系す
図である。 図において、1は内るつぼ、1aは流通孔、2は外るつ
ぼ、3は原料融液、4は原料融液、5は液体封止剤、6
は副軸、7は種結晶を示す。 第1図 第2図 第3図 第4図
FIG. 1 is a sectional view showing an inner crucible and an outer crucible 1 filled with raw material melt in an embodiment of the present invention. FIG. 2 is a sectional view showing a state before impurities are added to the inner crucible in an embodiment of the present invention. FIG. 3 is a sectional view showing a state immediately after the addition of impurities to the inner crucible in an embodiment of the present invention. Fourth
The figure is a cross-sectional view showing the state at the start of growth in an embodiment of the present invention. FIG. 5 is a diagram showing the In concentration distribution in the axial direction of a crystal produced according to an example of the present invention. In the figure, 1 is an inner crucible, 1a is a flow hole, 2 is an outer crucible, 3 is a raw material melt, 4 is a raw material melt, 5 is a liquid sealant, 6
indicates the minor axis, and 7 indicates the seed crystal. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)外るつぼと流通孔を有する内るつぼからなる二重
るつぼに不純物を含んだ原料融液を満たし、前記内るつ
ぼのみに不純物をさらに添加した後、直ちに結晶成長を
開始して、前記不純物をドーピングした単結晶をチョク
ラルスキ法により成長させる、化合物半導体単結晶の成
長方法において、 前記内るつぼへの不純物の添加後、前記内るつぼ内の融
液の体積を一定に保ちながら、前記内るつぼ内の融液の
液面の高さを前記外るつぼの融液の液面の高さと一致さ
せるように前記内るつぼを下方に移動させる、化合物半
導体単結晶の成長方法。
(1) A double crucible consisting of an outer crucible and an inner crucible with a flow hole is filled with a raw material melt containing impurities, and after further adding impurities only to the inner crucible, crystal growth is immediately started to remove the impurities. In a method for growing a compound semiconductor single crystal, in which a single crystal doped with is grown by the Czochralski method, after adding an impurity to the inner crucible, the volume of the melt in the inner crucible is kept constant; A method for growing a compound semiconductor single crystal, wherein the inner crucible is moved downward so that the height of the liquid level of the melt in the outer crucible matches the height of the liquid level of the melt in the outer crucible.
JP3367688A 1988-02-16 1988-02-16 Growth of single crystal of compound semiconductor Pending JPH01208389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3367688A JPH01208389A (en) 1988-02-16 1988-02-16 Growth of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3367688A JPH01208389A (en) 1988-02-16 1988-02-16 Growth of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH01208389A true JPH01208389A (en) 1989-08-22

Family

ID=12393054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3367688A Pending JPH01208389A (en) 1988-02-16 1988-02-16 Growth of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH01208389A (en)

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
JPS61163188A (en) Process for doping impurity in pulling method of silicon single crystal
US4944925A (en) Apparatus for producing single crystals
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
US5256381A (en) Apparatus for growing single crystals of III-V compound semiconductors
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JP2529934B2 (en) Single crystal manufacturing method
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JPH0244798B2 (en)
US6045767A (en) Charge for vertical boat growth process and use thereof
JPH01208389A (en) Growth of single crystal of compound semiconductor
JPH11147785A (en) Production of single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
RU1431391C (en) Process of growing monocrystals of cadmium telluride
KR950013003B1 (en) Growth method of polycrystalline for gaas single-crystal growth
JP2885452B2 (en) Boat growth method for group III-V compound crystals
JPS62197399A (en) Method for growing compound single crystal
JP2000327496A (en) Production of inp single crystal
JPH06329492A (en) Production of gaas compound semiconductor crystal