JPH01208370A - Production of highly tough calcined silicon nitride compact - Google Patents

Production of highly tough calcined silicon nitride compact

Info

Publication number
JPH01208370A
JPH01208370A JP63030059A JP3005988A JPH01208370A JP H01208370 A JPH01208370 A JP H01208370A JP 63030059 A JP63030059 A JP 63030059A JP 3005988 A JP3005988 A JP 3005988A JP H01208370 A JPH01208370 A JP H01208370A
Authority
JP
Japan
Prior art keywords
silicon nitride
average particle
dispersed particles
powder
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63030059A
Other languages
Japanese (ja)
Other versions
JPH0653610B2 (en
Inventor
Hiroshi Isozaki
磯崎 啓
Yutaka Hirashima
豊 平島
Yasuo Imamura
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63030059A priority Critical patent/JPH0653610B2/en
Publication of JPH01208370A publication Critical patent/JPH01208370A/en
Publication of JPH0653610B2 publication Critical patent/JPH0653610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To relatively readily obtain a highly tough calcined compact of silicon nitride, by forming and calcining a mixed powder, consisting essentially of silicon nitride powder and containing a calcining assistant containing MgO as a component and specific dispersed particles. CONSTITUTION:A mixed powder, consisting essentially of silicon nitride powder having <=5mu average particle diameter and containing calcining assistant in an amount of 0.2-5vol.% expressed in terms of MgO and 1-50vol.% dispersed particles of one or more of nitrides, carbides of group IVa elements and solid solutions thereof having 1.5-10mu average particle diameter and >=6X10<-6>/ deg.C thermal expansion coefficient is formed and calcined to afford the aimed calcined compact. If the average particle diameter of the silicon nitride powder to be used exceeds 5mu, improvement in toughness is not recognized. The preferred average particle diameter is <=3mu, especially <=1mu. TiN, TiC, ZrN, ZrC, HfN, HfC, etc., are cited as the dispersed particles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、靭性の高い窒化珪素焼結体の製法に関するも
ので、エンジニアリングセラミックスとして各種の機械
部品や自動車部品等に有用なものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a silicon nitride sintered body with high toughness, which is useful as engineering ceramics for various mechanical parts, automobile parts, etc.

〔従来の技術〕[Conventional technology]

セラミックスの本質的な性質である脆さを改善するため
の方法はこれまで幾つか提案されている。
Several methods have been proposed to improve the brittleness, which is an essential property of ceramics.

板台化による方法は代表的なもので、ウィスカー、繊維
、粒子などの混合・分散による破壊靭性の向上がある。
A typical method is to use a plate base, which improves fracture toughness by mixing and dispersing whiskers, fibers, particles, etc.

例えば、焦業協会発行、「特集セラミックスの強靭化に
挑む」セラミックスVO1,21Δl  1986年7
月号に記されている。現在、窒化珪素焼結体の高靭化に
はウィスカー添加が最も有効と見ら几る。
For example, published by Kogyo Association, "Special feature: Challenging the toughening of ceramics" Ceramics VO1, 21Δl, July 1986
It is written in the month issue. Currently, whisker addition is considered to be the most effective way to increase the toughness of silicon nitride sintered bodies.

〔発明が解決しょうとする課題〕[Problem that the invention seeks to solve]

しかしながら、昏合化による強靭化を行うには均一な分
散が要求される。特にウィスカー、繊維は分散が難しく
湿式ボールミル等で長時間混合しなければならないばか
りでなく、完全な均一分散は実質的に不可能に近いっま
た、スリップキャスト、射出成形等の成形方法も困難と
なる。さらには、ウィスカー、繊維を混入したもの全焼
結することは鰺しく、たとえホットプレス法であっても
理論密度近くにするのは容易ではない。
However, uniform dispersion is required for toughening by coagulation. In particular, whiskers and fibers are difficult to disperse, requiring long-term mixing using a wet ball mill, etc., and completely uniform dispersion is virtually impossible, and molding methods such as slip casting and injection molding are also difficult. Become. Furthermore, it is difficult to completely sinter a material containing whiskers and fibers, and it is not easy to achieve a density close to the theoretical density even by hot pressing.

本発明は以上のような問題点上解決し、比較的容易に高
靭性の窒化珪素焼結体を得りうとするものである。
The present invention aims to solve the above-mentioned problems and to relatively easily obtain a silicon nitride sintered body with high toughness.

〔課題?解決するtめの手段〕〔assignment? tth way to solve the problem]

すなわち、本発明は、平均粒径5PL以下の窒化珪素粉
末金主成分としMgOi成分として含有してなる焼結助
剤’i MgO換算で0.2〜5容量係と平均粒径1・
5〜10μ屏でかつ熱膨張係数6×10−’/℃以上の
ffa族元素の窒化物、炭化物及びそれらの固溶体から
選ばn友少なくとも1種以上の分散粒子1〜50容量係
と?含んでなる混合粉末を成形・焼結すること全特徴と
する高靭性窒化珪素焼結体の製法である。
That is, the present invention provides a sintering aid made of silicon nitride powder having an average particle size of 5 PL or less as a main component of gold and containing as an MgOi component, with an average particle size of 1.
Dispersed particles of at least one type selected from nitrides, carbides, and solid solutions of FFA group elements of nitrides, carbides, and solid solutions thereof of elements of the FFA group having a thermal expansion coefficient of 6 x 10-'/°C or more and having a thickness of 5 to 10 μm and a volume of 1 to 50? This is a method for producing a high-toughness silicon nitride sintered body, which is characterized by molding and sintering a mixed powder comprising the following:

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

複合化による破壊靭性向上の主な機構として、クラック
・ディフレクション、マイクロクララ午ング、応力誘起
変態、ゾルアウトなどが鳥見られるが、本発明の方法に
おいては、クラック・デイフレクションとマイクロクラ
ラギングが重要である。クラック・デイフレクションは
、マトリックスと分散相の靭性や熱膨張率などの物性の
相違や両者の界面状態などが原因となってクラックが分
散粒子の同り?ジグザグに折れ曲って進むことに工りエ
ネルヤーが散逸するものである。を九、マイクロクラッ
キングも分散相とマトリックスの熱膨張率の差などによ
って分散粒子の周シに歪みが生じ、多数のクラックが発
生し、主クラック先端が微細クラックの生じた領域に進
むと、微細クラック同士が結合して成長したり、新しく
微細クラックが発生し定すしてこの領域の弾性率が低下
する。そのため、主クラック先端にかかる応力が減少す
るものである。
The main mechanisms for improving fracture toughness through composite composition include crack deflection, microcracking, stress-induced transformation, and solve-out, but in the method of the present invention, crack deflection and microcracking are is important. Cracks and deflections are caused by differences in physical properties such as toughness and coefficient of thermal expansion between the matrix and dispersed phase, as well as by the state of the interface between the two. The energy of construction is dissipated by zigzagging and bending. 9. Microcracking also causes distortion in the circumference of the dispersed particles due to the difference in thermal expansion coefficient between the dispersed phase and the matrix, and many cracks are generated.When the tip of the main crack advances to the area where the microcracks have occurred, the microcracking occurs. Cracks may combine and grow, or new fine cracks may occur, resulting in a decrease in the elastic modulus of this region. Therefore, the stress applied to the tip of the main crack is reduced.

すなわち、本発明は、窒化珪素焼結体中に特定物性の■
a族元素の窒化物、炭化物及び/又はそれらの固溶体粒
子七遍度に分散させることに工り靭性の大幅な改善全可
能としたものである。
That is, the present invention provides a silicon nitride sintered body with specific physical properties.
By uniformly dispersing the nitrides, carbides, and/or solid solution particles of group A elements, it is possible to significantly improve the mechanical toughness.

本発明で便用される窒化珪素Si3N4粉末の平均粒径
は5μm以下であることを要し、5μrlL1に越えて
は靭性の改良は認められない。好ましい平均粒径は6−
以下特に1μm以下である。
The average particle size of the silicon nitride Si3N4 powder conveniently used in the present invention is required to be 5 μm or less, and no improvement in toughness is observed if it exceeds 5 μrlL1. The preferred average particle size is 6-
In particular, the thickness is 1 μm or less.

焼結助剤としては、Mg0t”成分として含有するもの
? MgO換算で0.2〜5容t%に相当する量を存在
させる。0.2容量憾未漕では焼結効果は少なく、また
、5容量%を越えると強度が低下する。
As a sintering aid, what is contained as a Mg0t component?Present in an amount equivalent to 0.2 to 5 volume t% in terms of MgO.If the volume is 0.2 volume, the sintering effect is small, and If it exceeds 5% by volume, the strength will decrease.

MgO’i成分として含有しない焼結助剤、例えばA1
□o、 −Y2O,系では高靭性化は達成できない。
Sintering aids not included as MgO'i components, such as A1
High toughness cannot be achieved with the □o, -Y2O, system.

本発明で使用される焼結助剤の具体例としては、MgO
、MgAl2O4、Mg810. 、MgSiO3、M
g(OH) 2、Mg(NOs)a、Mg5O,、コー
ディエライト等から選ばれ九1種又は2種以上である。
Specific examples of sintering aids used in the present invention include MgO
, MgAl2O4, Mg810. , MgSiO3, M
91 types or 2 or more types selected from g(OH)2, Mg(NOs)a, Mg5O, cordierite, etc.

なお、本発明においては、Al2O3、Y2O3、CO
A1g04 、ZrO2,8102等の他の焼結助剤と
併用することによって焼結性等全向上させることができ
、その割合は0.2〜5容量チ程度である。
In addition, in the present invention, Al2O3, Y2O3, CO
By using it in combination with other sintering aids such as A1g04, ZrO2, 8102, etc., the sinterability and other properties can be completely improved, and the ratio is about 0.2 to 5 by volume.

高靭性化のための分散粒子は種々検討し窺結果、平均粒
径が1.5〜10μmでかつ熱膨張係数が6X 10−
67’C以上の■a族元素の窒化物、炭化物及びそれら
の固溶体から選ばれ7’e1m以上の無機粉末が良好で
あることを見い出した。具体的な化合物としては、Ti
N XTiC、ZrN XZrC、HfH。
We investigated various types of dispersed particles to improve toughness and found that the average particle size was 1.5 to 10 μm and the coefficient of thermal expansion was 6X 10-
It has been found that inorganic powders selected from nitrides, carbides, and solid solutions of group (III) elements of 67'C or higher and 7'e1m or higher are good. As a specific compound, Ti
NXTiC, ZrNXZrC, HfH.

HfC、TiC05N O,5環上あげることができる
。特にTiNは最も良好な靭性化を示し友。
Examples include HfC, TiC05N O, 5-ring. In particular, TiN shows the best toughness.

分散粒子の平均粒径が1.5μm未満又は10μmケこ
えては高靭性化は期待できない。また、熱膨張係数が6
 X 10−6 /°O未滴の粒子であっても同様に期
待できず、さらには、本発明に係る熱膨張係数を有して
も上記し九以外の化合物、例えば■a族元素の金属、硼
化物、酸化物等であっては高靭性化?達成することがで
きない。望ましい熱膨張係数は8 X 10−’ /’
C以上である。分散粒子の含有量は、Si3N、粉末、
焼結助剤及び分散粒子からなる混合粉末中1〜50容量
係である。1容量係未満では靭性の向上は認めらルす、
また、50容量%七こえては強度等の物性が低下する。
If the average particle diameter of the dispersed particles is less than 1.5 μm or more than 10 μm, high toughness cannot be expected. Also, the coefficient of thermal expansion is 6
The same cannot be expected even if the particle is a droplet of , borides, oxides, etc. to increase toughness? cannot be achieved. Desired coefficient of thermal expansion is 8 x 10-'/'
C or higher. The content of the dispersed particles is Si3N, powder,
The volume ratio is 1 to 50 in a mixed powder consisting of a sintering aid and dispersed particles. No improvement in toughness is observed below 1 volume ratio.
Moreover, if the content exceeds 50% by volume, physical properties such as strength will deteriorate.

Si3N、粉末、焼結助剤、Cr3C2粉末の混合は、
ボールミル等の混合+M’を用い、湿式あるいは乾式で
行われる。成形・焼結方法とは、一般に、常圧焼結、ホ
ットプレス、HIP焼結があるが、特に限定されるもの
ではなく、分散粒子の種類と用途に工って選択される。
The mixture of Si3N, powder, sintering aid, and Cr3C2 powder is
Mixing is carried out wet or dry using a ball mill or the like +M'. The molding/sintering method generally includes pressureless sintering, hot pressing, and HIP sintering, but is not particularly limited and is selected depending on the type and purpose of the dispersed particles.

例えば、TiNについては常圧焼結で高い焼結密度が得
られるが、焼結性の悪いものはホットプレス法が採用さ
れる。
For example, for TiN, a high sintered density can be obtained by pressureless sintering, but if the sintering property is poor, the hot pressing method is adopted.

破壊靭性値に工。の測定法には種々あるが、本発明では
IM (Indentaion Micro frac
ture )法を採用する。これは、7昭和59年度通
商産業省工業技術院委託ファインセラミックスの標醜化
に関する調査研究報告書昭和60年6月ファインセラミ
ックス協会”に記載されている測定法であ夛、試料の鏡
面研磨、圧子圧入、クラック長さ測定、経験式を用い−
fcK工。の算出の4つの過程からなる。
Modified fracture toughness value. Although there are various methods for measuring , the present invention uses IM (Indentation Micro frac).
ture) method. This is a measurement method described in the 1985 Ministry of International Trade and Industry Agency of Industrial Science and Technology Commissioned Investigation Research Report on Fine Ceramics Defacement (June 1986) by the Fine Ceramics Association. Using press fitting, crack length measurement, and empirical formula -
fcK engineering. It consists of four processes of calculation.

すなわち、表面研磨し九試料にぎツカース圧子全圧入す
る。装置はビッカースやヌープ硬度計を用いる。試料に
発生し几クラックの長さ七光学顕微鏡あるいはS−を用
いて測定するものである。
That is, the surface is polished and nine samples are fully pressed into the indenter. The device used is Vickers or Knoop hardness tester. The length of the cracks that occur in the sample is measured using an optical microscope or S-.

K工。全算出する経験式は数多くあるが、本発明では次
式を用いた。
K engineering. Although there are many empirical formulas for total calculation, the following formula is used in the present invention.

(K工(H<6/!!LA) (HA$)’ = O−
129(c/a) AE・・・ヤング率、H・・・硬度
、a・・・圧痕長さ、C・・・亀裂長さ、φ=6、荷重
は20ゆ、荷重印加時間15秒間 各種セラミックスの破壊靭性11iK工。(MPa−m
A )は、一般に、Si3N、 4〜6.81C’ 3
〜5、A12036〜5、部分安定化&rC)a(PS
Z) 7〜10、ガラス0.75、WC−Co合金12
〜16、アルミ合金64と2われている。本発明によれ
ば、これt常圧焼結に1夛7以上にすることができるも
のである。
(K engineering (H<6/!!LA) (HA$)' = O-
129 (c/a) AE... Young's modulus, H... hardness, a... indentation length, C... crack length, φ=6, load is 20 mm, load application time is 15 seconds, various Fracture toughness of ceramics is 11iK. (MPa-m
A) is generally Si3N, 4-6.81C'3
~5, A12036~5, Partially Stabilized &rC) a(PS
Z) 7-10, glass 0.75, WC-Co alloy 12
~16, aluminum alloy 64 and 2. According to the present invention, the pressureless sintering process can be performed in 1 to 7 times or more.

〔実施例〕〔Example〕

以下、実施例tあげてさらに具体的に本発明全説明する
Hereinafter, the present invention will be fully explained in more detail with reference to Example t.

実施例1 表−1に示す種々の容量チの焼結助剤Mgo、MgAl
2O4、Al2O3、Y2O3及び分散粒子として平均
粒径4.Ottm、熱膨張係数9.5 x 10−リ/
 ’Q (D TiN粉末15容in’を平均粒径0.
6μ扉の513N4粉末(′l!気化学工業社製SN 
−GD 6)に混合して全体全100容量チの混合粉末
上調製し九〇これを1750°C,6時間、N29に9
/cIr?−の常圧焼結法により813N、焼結体を得
、破壊靭性値に工。?測定した。その結果を表−1に示
す。
Example 1 Sintering aids Mgo, MgAl with various capacities shown in Table-1
2O4, Al2O3, Y2O3 and dispersed particles with an average particle size of 4. Ottm, coefficient of thermal expansion 9.5 x 10-li/
'Q (D) 15 volumes of TiN powder with an average particle size of 0.
6μ door 513N4 powder ('l! SN manufactured by Ki Kagaku Kogyo Co., Ltd.
-GD 6) to prepare a total of 100 volumes of mixed powder.
/cIr? - A sintered body of 813N was obtained by the pressureless sintering method, and the fracture toughness value was improved. ? It was measured. The results are shown in Table-1.

表−1 (注)実験屑2〜7.9及び11は本発明例、実験/r
61.8及び10は比較例である。なお、実験屑1は硬
度不足にエリKIC”測定することはできなかった。
Table-1 (Note) Experimental scraps 2 to 7.9 and 11 are examples of the present invention, experiment/r
61.8 and 10 are comparative examples. It should be noted that it was not possible to measure EriKIC'' for Experimental Scrap 1 due to insufficient hardness.

実施例2 表−1の実験腐9において、TiN粉末を種々の割合と
じSi3N、粉末に置きかえて使用したこと以外は同様
の条件で焼結体を作製し破壊靭性tKIC’勿測定した
。その結果全表−2に示す。
Example 2 Sintered bodies were produced under the same conditions as in Experiment 9 in Table 1, except that TiN powder was replaced with Si3N powder in various proportions, and the fracture toughness tKIC' was measured. The results are shown in Table 2.

表−2 (注)実験/1613〜19は本発明例、実験層12及
び20は比較例である。
Table 2 (Note) Experiments/1613 to 19 are examples of the present invention, and experimental layers 12 and 20 are comparative examples.

実施例3 表−1の実験層9において、Si3N、粉末とTiN粉
末の平均粒径を表−3に示すぶつに変えたこと以外は同
機の条件で焼結体を作製し破壊靭性、1に工。とJIS
R1601の常温曲げ強度を測定した。
Example 3 A sintered body was produced under the same conditions as in the same machine except that in experimental layer 9 of Table 1, the average particle diameters of Si3N powder and TiN powder were changed to those shown in Table 3, and the fracture toughness was 1. Engineering. and JIS
The room temperature bending strength of R1601 was measured.

それらの結果を表−6に示す。The results are shown in Table-6.

以下余白 表−3 (注)実験/l62i〜24.27〜30は本発明例、
実験A25.26及び61は比較例である。
Margin Table-3 (Note) Experiment/l62i~24.27~30 are examples of the present invention,
Experiments A25, 26 and 61 are comparative examples.

実施例4 表−1の実験/169において、平均粒径4.0μmの
TiN粉末のかわシに表−4に示す種々の分散粒子?用
い、かつ、1650℃、2時間、300kg/C!IL
2の条件でホットプレス焼結し丸こと以外は同様の条件
で焼結体を作製し破壊靭性値に工。を測定した。その結
果を表−4に示す。
Example 4 In the experiment/169 shown in Table 1, various dispersed particles shown in Table 4 were added to TiN powder with an average particle size of 4.0 μm. and 1650℃, 2 hours, 300kg/C! IL
A sintered body was produced under the same conditions except for hot press sintering under the conditions of 2, and the fracture toughness was determined. was measured. The results are shown in Table 4.

以下余白 表−4 (注)実験層62〜68は本発明例、実験/1fi39
〜42は比較例である。
Margin Table-4 (Note) Experimental layers 62 to 68 are examples of the present invention, Experiment/1fi39
-42 are comparative examples.

以上の実施例から次のことがわかる。The following can be seen from the above examples.

(1)実施例1からMgOi成分として含有してなる焼
結助剤の添加量は、1容量チ以上5容量係が適切である
。中でも、MgA1□04+A】203系が最も高いK
ICk示した。Al2O3+Y2O3系は最も低い値全
示し九がMlgOi加えることによりKICは向上した
(1) From Example 1, the appropriate amount of the sintering aid contained as the MgOi component is 1 to 5 by volume. Among them, the MgA1□04+A]203 series has the highest K
ICk was shown. The Al2O3+Y2O3 system showed the lowest value in all cases, but the KIC was improved by adding MlgOi.

(2)実施例2から分散粒子が1容量チ以上50容量チ
以下で7.0〜9*6MPa−m/iのKICが得られ
る。
(2) From Example 2, a KIC of 7.0 to 9*6 MPa-m/i can be obtained when the dispersed particles are 1 to 50 volumes.

(3)実施例6にはSi3N、粉末と分散粒子の平均粒
径の影響が示されてお’)、S’3N4は5.0μm以
下、分散粒子は1.5μm以上10μm以下で7.0〜
9.2MPa−m/lのにICが得られる。
(3) Example 6 shows the influence of the average particle size of Si3N, powder and dispersed particles. ~
An IC of 9.2 MPa-m/l is obtained.

(4)実施例4では熱膨張係数が破壊靭性値に与える影
響が調べられており、lVa族の炭化物、窒化物及びそ
れらの固溶体であって熱膨張係数が6、OX 1 o−
671以上のものにおいて初めて7、OMpa−mA以
上の高い靭性1!’t”達成することができる。
(4) In Example 4, the influence of the coefficient of thermal expansion on the fracture toughness value was investigated.
High toughness of 7, OMpa-mA or higher for the first time in 671 or higher! 't' can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、簡単に高靭性の窒化珪素焼結体
全製造することができる。
According to the method of the present invention, a highly tough silicon nitride sintered body can be easily manufactured.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)平均粒径5μm以下の窒化珪素粉末を主成分とし
MgOを成分として含有してなる焼結助剤をMgO換算
で0.2〜5容量%と平均粒径1.5〜10μmでかつ
熱膨張係数6×10^−^6/℃以上のIVa族元素の窒
化物、炭化物及びそれらの固溶体から選ばれた少なくと
も1種以上の分散粒子1〜50容量%とを含んでなる混
合粉末を成形・焼結することを特徴とする高靭性窒化珪
素焼結体の製法。
(1) A sintering aid mainly composed of silicon nitride powder with an average particle size of 5 μm or less and containing MgO as a component with an average particle size of 1.5 to 10 μm and 0.2 to 5 volume % in terms of MgO, and A mixed powder containing 1 to 50% by volume of at least one type of dispersed particles selected from nitrides, carbides, and solid solutions of group IVa elements having a thermal expansion coefficient of 6 x 10^-^6/°C or more. A method for producing a high-toughness silicon nitride sintered body, which is characterized by forming and sintering.
JP63030059A 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body Expired - Lifetime JPH0653610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030059A JPH0653610B2 (en) 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030059A JPH0653610B2 (en) 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01208370A true JPH01208370A (en) 1989-08-22
JPH0653610B2 JPH0653610B2 (en) 1994-07-20

Family

ID=12293256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030059A Expired - Lifetime JPH0653610B2 (en) 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0653610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649824A3 (en) * 1993-10-25 1996-04-10 Toshiba Kk Silicon nitride-based sinters.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207880A (en) * 1983-05-13 1984-11-26 工業技術院長 Manufacture of silicon nitride sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207880A (en) * 1983-05-13 1984-11-26 工業技術院長 Manufacture of silicon nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649824A3 (en) * 1993-10-25 1996-04-10 Toshiba Kk Silicon nitride-based sinters.

Also Published As

Publication number Publication date
JPH0653610B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JPH06505225A (en) High-density, self-strengthening silicon nitride ceramic produced by pressureless or low-pressure gas sintering
Akbari et al. The influence of different SiC amounts on the microstructure, densification, and mechanical properties of hot‐pressed Al2O3‐SiC composites
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
EP0370176B1 (en) Ceramic composit material and process of manufacturing thereof
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
EP0419151B1 (en) Sintered ceramic composite body and method of manufacturing same
EP0419150B1 (en) Sintered ceramic composite body and method of manufacturing same
JPH01208370A (en) Production of highly tough calcined silicon nitride compact
US5352533A (en) Ceramic composite body, process for producing a ceramic composite
JP3315483B2 (en) Ceramic composite sintered body
JP2854340B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2858811B2 (en) Ceramic composite sintered body and method of manufacturing the same
US5324693A (en) Ceramic composites and process for manufacturing the same
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS61256963A (en) High strength alumina sintered body and manufacture
JP3009046B2 (en) Ceramic composite sintered body and method of manufacturing the same
Yoshimatsu et al. Mechanical properties of zirconia-alumina composite ceramics prepared from Zr-Al metallo-organic compounds
JPH01208369A (en) Production of highly tough calcined silicon nitride compact
JPH05319910A (en) Ceramic composite material and its production
JPH05194022A (en) Ceramic composite material and its production
JPH0813702B2 (en) Composite ceramics
Kobayashi et al. Microstructure and high-temperature property of reaction HIP-sintered SiC-AlN ceramic alloys
JPH03103360A (en) Ceramics composite sintered material and production thereof
JPH01183460A (en) Production of sintered ceramic material