JP3315483B2 - Ceramic composite sintered body - Google Patents

Ceramic composite sintered body

Info

Publication number
JP3315483B2
JP3315483B2 JP19072293A JP19072293A JP3315483B2 JP 3315483 B2 JP3315483 B2 JP 3315483B2 JP 19072293 A JP19072293 A JP 19072293A JP 19072293 A JP19072293 A JP 19072293A JP 3315483 B2 JP3315483 B2 JP 3315483B2
Authority
JP
Japan
Prior art keywords
particles
sintered body
ceramic
sic
composite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19072293A
Other languages
Japanese (ja)
Other versions
JPH0782047A (en
Inventor
晧一 新原
敦 中平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP19072293A priority Critical patent/JP3315483B2/en
Publication of JPH0782047A publication Critical patent/JPH0782047A/en
Application granted granted Critical
Publication of JP3315483B2 publication Critical patent/JP3315483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスの破壊靭
性及び高温特性を大幅に改善向上させたセラミックス複
合焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic composite sintered body having significantly improved and improved fracture toughness and high-temperature characteristics of ceramics.

【0002】[0002]

【従来の技術】セラミックスは、機械的強度が高く、化
学的安定性や耐摩耗性等に優れ、低比重である等の優れ
た特性を有するため、切削工具から半導体素子搭載用基
板まで多種多様な用途に用いられ、中でも構造用セラミ
ックス材料としては酸化物系の酸化アルミニウム(Al
23)及び酸化ジルコニウム(ZrO2)、窒化物系の
窒化ケイ素(Si34)及び窒化アルミニウム(Al
N)、炭化物系では炭化ケイ素(SiC)等の焼結体が
広範に使用されている。
2. Description of the Related Art Ceramics have excellent characteristics such as high mechanical strength, excellent chemical stability and abrasion resistance, and low specific gravity. Oxide-based aluminum oxide (Al)
2 O 3 ), zirconium oxide (ZrO 2 ), nitride silicon nitride (Si 3 N 4 ) and aluminum nitride (Al
N), and in the carbide system, sintered bodies such as silicon carbide (SiC) are widely used.

【0003】最近では、これらのセラミックス材料を自
動車エンジンの各種部品等のような高温構造部材に応用
する研究が進められているが、これら高温構造部材とし
て用いる場合における最大の問題は、セラミックス材料
の脆さをいかに改善克服するかにある。そのため、セラ
ミックス材料の強度並びに靭性を向上させる試みが数多
くなされ、ウイスカーや長繊維等との複合化や組成制御
による強靭化や高強度化が提案されている。
[0003] Recently, research on applying these ceramic materials to high-temperature structural members such as various parts of an automobile engine has been advanced. How to overcome and improve brittleness. For this reason, many attempts have been made to improve the strength and toughness of ceramic materials, and toughness and high strength by compounding with whiskers and long fibers and controlling the composition have been proposed.

【0004】例えば、特開平2−141466号公報に
は、MgOマトリックスの結晶粒内に1.0μm以下の
SiC粒子を分散させることにより、室温あるいは高温
での強度を向上させたセラミックス複合材料が記載され
ている。又、特開平4−202059号公報には、短軸
径が0.05〜3μmでアスペクト比が3〜20の柱状
窒化ケイ素又はサイアロンに、1〜500nmの粒子を
分散させることにより、Si34焼結体の強度の向上を
図る方法が開示されている。
For example, JP-A-2-141466 discloses a ceramic composite material in which strength at room temperature or high temperature is improved by dispersing SiC particles of 1.0 μm or less in crystal grains of an MgO matrix. Have been. Japanese Unexamined Patent Publication (Kokai) No. 4-202059 discloses that Si 3 N is dispersed by dispersing particles of 1 to 500 nm in columnar silicon nitride or sialon having a minor axis diameter of 0.05 to 3 μm and an aspect ratio of 3 to 20. (4 ) A method for improving the strength of a sintered body is disclosed.

【0005】この様に、セラミックスの結晶粒子内にナ
ノメートルサイズの微粒子を分散複合化させ、強度及び
靭性の向上を図ったセラミックス複合材料は公知であ
り、ナノコンポジット又はナノ複合体と呼ばれている。
しかしながら、これらのナノメートルサイズの粒子を分
散させたセラミックス複合材料(以下ナノ複合体と称
す)においても、高い破壊靭性と破壊エネルギーを持た
せることや、耐クリープ特性等の優れた高温特性を与え
る点では十分とは言えず、さらなる特性の向上が望まれ
ていた。
[0005] As described above, ceramic composite materials in which nanometer-sized fine particles are dispersed and compounded in ceramic crystal particles to improve strength and toughness are known, and are referred to as nanocomposites or nanocomposites. Is.
However, even ceramic composites (hereinafter referred to as nanocomposites) in which these nanometer-sized particles are dispersed provide high fracture toughness and fracture energy, as well as excellent high-temperature properties such as creep resistance. In that respect, it is not sufficient, and further improvement in characteristics has been desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる従来
の事情に鑑み、構造材料として十分な強度を備えると共
に、室温及び高温における破壊靭性並びに耐クリープ特
性等の高温特性を改善向上させたセラミックス複合焼結
体を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a ceramic which has sufficient strength as a structural material and has improved and improved high-temperature properties such as fracture toughness and creep resistance at room temperature and high temperature. An object is to provide a composite sintered body.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するセラミックス複合焼結体において
は、セラミックスの結晶粒子を有するマトリックスと、
マトリックスの結晶粒子の粒内及び/又はその粒界相に
分散したマトリックスと別種のナノメートルサイズのセ
ラミックスの球状粒子と、粒界相に分散した直径が5〜
30μmの範囲にあり且つ厚さが6μm以下であるマト
リックスと別種のセラミックスの板状粒子とからなり、
当該板状粒子の含有量が全体の0.5〜20体積%であ
ることを特徴とする。
Means for Solving the Problems To achieve the above object, a ceramic composite sintered body provided by the present invention comprises a matrix having ceramic crystal particles,
A matrix dispersed in the crystal grains of the matrix and / or in the grain boundary phase thereof and a spherical particle of another type of nanometer-sized ceramic;
A matrix in the range of 30 μm and having a thickness of 6 μm or less and plate-like particles of another type of ceramics,
The content of the plate-like particles is 0.5 to 20% by volume of the whole.

【0008】[0008]

【作用】本発明のセラミックス複合焼結体は、従来のナ
ノメートルサイズの粒子(以下ナノ粒子と称する)を分
散させただけでなく、更にやや大きなミクロンサイズの
板状粒子を粒界相に分散させ、マトリックスの結晶粒子
及び粒界相とのハイブリッド化を行うことによって、従
来のナノ複合体に比べて破壊靭性や高温特性を飛躍的に
向上させることができたものである。
The ceramic composite sintered body of the present invention not only disperses conventional nanometer-sized particles (hereinafter referred to as nanoparticles), but also disperses slightly larger micron-sized plate-like particles in the grain boundary phase. Then, by performing the hybridization with the crystal grains and the grain boundary phase of the matrix, the fracture toughness and the high-temperature characteristics can be remarkably improved as compared with the conventional nanocomposite.

【0009】即ち、本発明のセラミックス複合焼結体に
おいては、板状粒子を粒界相に分散させることによっ
て、セラミックスの亀裂の進展を妨げる引き抜き効果、
架橋効果、亀裂先端の偏向効果等が誘引され、セラミッ
クス複合焼結体の靭性や破壊エネルギーを大幅に向上さ
せることができる。特に、本発明では偏平な板状粒子を
用いるため、亀裂先端での偏向効果に効力を発揮すると
考えられる。
That is, in the ceramic composite sintered body of the present invention, by dispersing the plate-like particles in the grain boundary phase, a pull-out effect for preventing the propagation of cracks in the ceramic,
The bridging effect, the deflection effect at the crack tip, and the like are induced, and the toughness and fracture energy of the ceramic composite sintered body can be significantly improved. In particular, since flat plate-like particles are used in the present invention, it is considered that they exert an effect on the deflection effect at the crack tip.

【0010】更に、粒内及び/又は粒界相に存在するナ
ノ粒子によって板状粒子の引き抜き効果及び架橋効果が
増加され、ナノ粒子自身も亀裂の偏向等に効果を発揮す
るので、亀裂の進展を抑えることができ、セラミックス
複合焼結体の靭性や破壊エネルギーをより一層向上させ
るものと考えられる。
[0010] Furthermore, the nanoparticle present in the intragranular and / or grain boundary phase enhances the effect of pulling out and bridging the plate-like particle, and the nanoparticle itself also exerts an effect on crack deflection and the like, so that the crack progresses. Therefore, it is considered that the toughness and fracture energy of the ceramic composite sintered body are further improved.

【0011】特に、マトリックスの結晶粒子が酸化物で
且つその粒内に分散しているナノ粒子が非酸化物の場
合、マトリックス内に熱膨張係数の差に起因する残留応
力が発生することが多くなるので粒内破壊が誘導され、
そのため結合力の弱い粒界部分を亀裂がパスすることが
なくなり、これが特性の向上をもたらす。又、板状粒子
とマトリックスの結晶粒子の間にも、大きな熱膨張係数
の差が存在することが多く、このため微小な亀裂が発生
して応力集中を改善し、靭性や破壊エネルギーの増加に
効果を発揮する。
In particular, when the crystal grains of the matrix are oxide and the nanoparticles dispersed in the grains are non-oxide, residual stress due to the difference in the coefficient of thermal expansion often occurs in the matrix. So that intragranular fracture is induced,
Therefore, the crack does not pass through the grain boundary portion having a weak bonding force, which leads to an improvement in the characteristics. In addition, there is often a large difference in the coefficient of thermal expansion between the plate-like particles and the crystal grains of the matrix, which results in small cracks that improve stress concentration and increase toughness and fracture energy. It is effective.

【0012】又、本発明のセラミックス複合焼結体は、
従来のナノ複合体に比べて、高温でのクリープ特性を飛
躍的に向上させることができる。これは、粒界に分散し
ている偏平な板状粒子により粒界滑りが抑制されるほ
か、粒内及び/又は粒界に存在するナノ粒子によって転
移の移動や拡散、粒界滑りが抑制されるためであると考
えられる。
Also, the ceramic composite sintered body of the present invention
The creep characteristics at high temperatures can be significantly improved as compared with the conventional nanocomposite. This is because, in addition to the flat plate-like particles dispersed at the grain boundaries, grain boundary slip is suppressed, and the movement, diffusion, and grain boundary slip of the transition are suppressed by nanoparticles present in the grains and / or at the grain boundaries. It is thought to be because.

【0013】本発明のセラミックス複合焼結体におい
て、マトリックスの結晶粒子を構成するセラミックスは
特に制限がなく、従来より構造用材料として使用されて
きた酸化物系及び非酸化物系のいずれでもよいが、Al
23、ZrO2、Si34、SiC又はAlNが好まし
い。又、分散される球状粒子及び/又は板状粒子を構成
するセラミックスはマトリックスとは別種のセラミック
スであって、従来からナノ粒子として使用されてきたも
のと同様であってよいが、中でもAl23、ZrO2
Si34又はSiCが好ましい。
In the ceramic composite sintered body of the present invention, the ceramic constituting the crystal grains of the matrix is not particularly limited, and may be any of oxide-based and non-oxide-based materials conventionally used as structural materials. , Al
Preferred are 2 O 3 , ZrO 2 , Si 3 N 4 , SiC or AlN. Further, ceramic constituting the spherical particles and / or plate-like particles are dispersed is a different kind of ceramic matrix may be similar to those which have been conventionally used as nanoparticles. Among these Al 2 O 3 , ZrO 2 ,
Si 3 N 4 or SiC is preferred.

【0014】本発明における板状粒子の大きさは、偏平
な粒子の直径が5〜30μmの範囲にあることが必要で
ある。直径が5μm未満では引き抜き効果及び亀裂の偏
向効果の寄与が少なくなるため十分な特性が得られず、
30μmを越えると焼結性の低下が起こるほか、特にマ
トリックスが酸化物の場合に板状粒子周辺に多くのマイ
クロクラック等が発生するため特性の向上が望めないか
らである。又、上記した板状粒子の効果を十分発揮させ
るためには、偏平な板状粒子の厚さが6μm以下、好ま
しくは3μm以下であることが望ましい。
The size of the plate-like particles in the present invention must be such that the diameter of the flat particles is in the range of 5 to 30 μm. When the diameter is less than 5 μm, the contribution of the drawing effect and the crack deflecting effect is reduced, so that sufficient characteristics cannot be obtained.
If it exceeds 30 μm, the sinterability is reduced, and especially when the matrix is an oxide, many microcracks and the like are generated around the plate-like particles, so that an improvement in characteristics cannot be expected. Further, in order to sufficiently exert the effect of the above-mentioned plate-like particles, it is desirable that the thickness of the flat plate-like particles is 6 μm or less, preferably 3 μm or less.

【0015】更に、上記した破壊靭性及び高温特性の向
上効果を発揮させるためには、板状粒子の量は複合焼結
体全体の0.5〜20体積%であることが必要である。
その理由は、0.5体積%未満では破壊靭性及び高温特
性の向上効果が現れず、20体積%を越えると複合焼結
体の緻密化が妨げられ、機械的特性が大幅に低下するか
らである。
Further, in order to exert the above-mentioned effects of improving the fracture toughness and high-temperature characteristics, the amount of the plate-like particles needs to be 0.5 to 20% by volume of the entire composite sintered body.
The reason is that if it is less than 0.5% by volume, the effect of improving the fracture toughness and high temperature properties does not appear, and if it exceeds 20% by volume, the densification of the composite sintered body is hindered, and the mechanical properties are greatly reduced. is there.

【0016】一方、球状粒子は従来のナノ複合体におい
て使用されているナノ粒子と同様であるが、その平均粒
径は100nm以下であることが好ましい。又、球状粒
子の含有量は、複合焼結体全体の5〜30体積%の範囲
が好ましい。その理由は、球状粒子の含有量が全体の5
体積%未満では前記本発明の効果が得られず、全体の3
0体積%を越えると粒子が凝集体を形成し、複合焼結体
の特性を劣化させるからである。
On the other hand, the spherical particles are the same as the nanoparticles used in the conventional nanocomposite, but the average particle diameter is preferably 100 nm or less. Further, the content of the spherical particles is preferably in the range of 5 to 30% by volume of the entire composite sintered body. The reason is that the content of the spherical particles is 5% of the whole.
If it is less than 3% by volume, the effect of the present invention cannot be obtained, and
If the content exceeds 0% by volume, the particles form aggregates and deteriorate the properties of the composite sintered body.

【0017】尚、かかる本発明のセラミックス複合焼結
体の製造は、マトリックスとなるセラミックス粉末に、
ナノメートルサイズの球状粒子の粉末と直径が5〜30
μmで厚さが6μm以下のミクロンサイズの板状粒子の
粉末を混合し、必要に応じて適当な焼結助剤を加え、適
当な雰囲気中において焼結すればよい。尚、球状粒子の
粉末と板状粒子の粉末はいずれも公知であり、それぞれ
粉末の製法や製造条件を変えることにより、結晶系の違
い等により形状の異なる粉末として得ることができる。
Incidentally, the production of the ceramic composite sintered body of the present invention comprises the steps of:
Nanometer-sized spherical particle powder and 5-30 diameter
The powder of micron-sized plate-like particles having a thickness of 6 μm or less and a thickness of 6 μm or less may be mixed, a suitable sintering aid may be added as needed, and sintering may be performed in a suitable atmosphere. The spherical particle powder and the plate-like particle powder are both publicly known, and can be obtained as powders having different shapes due to a difference in crystal system or the like by changing the method of producing the powder and the production conditions.

【0018】[0018]

【実施例】実施例1 平均粒径25nmのγ−Al23粉末に、平均粒径10
0nm以下のβ−SiC(球状粒子)粉末を全体の15
体積%、及び直径10〜20μmで厚さ3〜6μmのα
−SiC(板状粒子)粉末を全体の20体積%それぞれ
添加し、十分に混合した後、窒素ガス雰囲気中において
1850℃にて30MPaの条件で加圧焼結した。
EXAMPLE 1 An average particle size of 10 was added to γ-Al 2 O 3 powder having an average particle size of 25 nm.
Β-SiC (spherical particle) powder of 0 nm or less
Volume% and α of 10 to 20 μm in diameter and 3 to 6 μm in thickness
-SiC (plate-like particles) powder was added in an amount of 20% by volume of the whole, and after sufficient mixing, pressure sintering was performed at 1850 ° C and 30 MPa in a nitrogen gas atmosphere.

【0019】得られた本発明の複合焼結体材料は、マト
リックスであるAl23結晶粒子の粒内及び粒界相に平
均粒径100nm以下のSiCの球状粒子が、及び粒界
相には直径10〜20μmで厚さ3〜6μmのSiCの
板状粒子が分散した構造を有していた。
In the obtained composite sintered body material of the present invention, spherical particles of SiC having an average particle diameter of 100 nm or less are contained in the intragranular phase and the grain boundary phase of Al 2 O 3 crystal grains as a matrix, and in the grain boundary phase. Had a structure in which plate-like particles of SiC having a diameter of 10 to 20 μm and a thickness of 3 to 6 μm were dispersed.

【0020】この複合焼結体材料について、各種の評価
試験を行った。その結果として亀裂進展抵抗を図1に、
及び1300℃でのクリープ試験の結果を図2に示し
た。又、CN(Chevron Notch)法で測定
した破壊エネルギー及びJISR1601に準拠して測
定した3点曲げ強度を表1にそれぞれ示した。
Various evaluation tests were performed on the composite sintered body material. As a result, the crack propagation resistance is shown in FIG.
2 and the results of the creep test at 1300 ° C. are shown in FIG. Table 1 shows the breaking energy measured by the CN (Chevron Notch) method and the three-point bending strength measured according to JISR1601.

【0021】比較のため、Al23焼結体としてAl2
3粉末を1500℃で、及びAl23+SiCナノ複
合体としてAl23粉末と5体積%のβ−SiC粉末を
1600℃で、その他は上記と同じ条件で加圧焼結し
た。得られた従来のAl23焼結体とAl23+SiC
ナノ複合体についても、上記と同様の評価試験を行い、
結果を図1、図2、及び表1に併せて示した。
[0021] For comparison, Al 2 as Al 2 O 3 sintered body
O 3 powder at 1500 ° C., and Al 2 O 3 + as SiC nanocomposite Al 2 O 3 powder and 5 vol% beta-SiC powder at 1600 ° C., others were pressure sintering under the same conditions as above. The obtained conventional Al 2 O 3 sintered body and Al 2 O 3 + SiC
For the nanocomposite, the same evaluation test as above was performed.
The results are shown in FIG. 1, FIG. 2, and Table 1.

【0022】[0022]

【表1】 焼 結 体 材 料 破壊エネルギーГ(J/m2) 3点曲げ強度(MPa) 本発明複合焼結体 82.2 800 Al23焼結体 11.2 350 Al2O3+SiCナノ複合体 15.2 1000Table 1 Sintered material fracture energy Г (J / m 2 ) Three-point bending strength (MPa) Composite sintered body of the present invention 82.2 800 Al 2 O 3 sintered body 11.2 350 Al 2 O 3 + SiC nano composite 15.2 1000

【0023】これらの結果から、本発明のAl23+S
iC系セラミックス複合焼結体は、従来のAl23焼結
体及びAl23+SiCナノ複合体と比較して、3点曲
げ強度こそAl23+SiCナノ複合体に若干及ばない
ものの、Al23系セラミックスとしては十分高い強度
を有し、同時に非常に高い破壊靭性と破壊エネルギー並
びに非常に優れた耐クリープ特性を持つことが判る。
From these results, it can be seen that Al 2 O 3 + S of the present invention is used.
Although the iC-based ceramic composite sintered body has a three-point bending strength slightly lower than that of the Al 2 O 3 + SiC nano composite compared to the conventional Al 2 O 3 sintered body and Al 2 O 3 + SiC nano composite. It can be seen that the Al 2 O 3 ceramic has sufficiently high strength, and at the same time, has very high fracture toughness and fracture energy, as well as extremely excellent creep resistance.

【0024】実施例2 下記表2に示したマトリックス、球状粒子及び板状粒子
を構成すべき各粉末を配合し、表2に示す条件に従って
それぞれ焼結した。尚、球状粒子の各粉末は平均粒径1
00nm以下のものを、及び板状粒子の各粉末は直径5
〜30μmで厚さ3μm以下のものを用いた。
Example 2 The powders constituting the matrix, spherical particles and plate-like particles shown in Table 2 below were blended and sintered according to the conditions shown in Table 2. Each of the spherical particles had an average particle size of 1
Powder having a diameter of 5 nm or less, and
Those having a thickness of 3030 μm and a thickness of 3 μm or less were used.

【0025】[0025]

【表2】 球状粒子 板状粒子 焼結温度 N2試料 マトリックス vol% vol% (℃) (atm) 1 Al23 SiC 5 SiC 10 1900 1 2 Al23 Si3N4 10 SiC 10 1900 1 3 Al23 SiC 10 ZrO2 20 1850 1 4 Al23 ZrO2 20 ZrO2 10 1900 1 5* Al23 − − SiC 10 1900 1 6* Al23 SiC 5 SiC 25 2000 1 7* Al23 SiC 5 SiC 0.1 1800 1 8* Al23 SiC 5 − 1600 1 9* Al23 ZrO2 10 − 1600 1 10* Al23 − − 1500 1 11 Si34 SiC 10 SiC 15 1900 5 12 Si34 SiC 20 SiC 5 1900 5 13* Si34 SiC 20 − 1850 5 14* Si34 − − 1800 5 15 ZrO2 SiC 15 SiC 15 1800 1 16 ZrO2 Si3N4 5 SiC 10 1800 1 17 ZrO2 Al2O3 20 Al2O3 10 1800 1 18* ZrO2 SiC 10 − 1800 1 19* ZrO2 − − 1600 1 20 AlN SiC 10 SiC 15 1950 1 21 AlN Si3N4 10 SiC 20 1950 1 22* AlN − − 1800 1 23 SiC Si3N4 10 SiC 15 2000 5 24* SiC − − 2000 5 (注)表中の*を付した試料は比較例である。TABLE 2 spherical particles shaped particles sintering temperature N 2 pressure sample matrix vol% vol% (℃) ( atm) 1 Al 2 O 3 SiC 5 SiC 10 1900 1 2 Al 2 O 3 Si 3 N 4 10 SiC 10 1900 13 Al 2 O 3 SiC 10 ZrO 2 20 1850 14 Al 2 O 3 ZrO 2 20 ZrO 2 10 1900 15 * Al 2 O 3 − − SiC 10 1900 16 * Al 2 O 3 SiC 5 SiC 25 2000 17 * Al 2 O 3 SiC 5 SiC 0.1 1800 18 * Al 2 O 3 SiC 5 − 1600 19 * Al 2 O 3 ZrO 2 10 − 1600 1 10 * Al 2 O 3 − − 1500 1 11 Si 3 N 4 SiC 10 SiC 15 1900 5 12 Si 3 N 4 SiC 20 SiC 5 1900 5 13 * Si 3 N 4 SiC 20 − 1850 5 14 * Si 3 N 4 − − 1800 5 15 ZrO 2 SiC 15 SiC 15 1800 1 16 ZrO 2 Si 3 N 4 5 SiC 10 1800 1 17 ZrO 2 Al 2 O 3 20 Al 2 O 3 10 1800 1 18 * ZrO 2 SiC 10 − 1800 1 19 * ZrO 2 − − 1600 1 20 AlN SiC 10 SiC 15 1950 1 21 AlN Si 3 N 4 10 SiC 20 1950 1 22 * AlN - - 1800 1 23 SiC Si 3 N 4 10 SiC 15 2000 5 24 * iC - - 2000 5 (Note) samples * in the table are comparative examples.

【0026】得られた各焼結体試料について、相対密
度、JIS R1607に準拠したSEPB試験(予亀
裂導入試験)による破壊靭性値、及び真空中において高
温顕微鏡硬度計を用いて室温と1200℃でのビッカー
ス硬度を測定し、それぞれの結果を表3に示した。
For each of the obtained sintered compact samples, the relative density, the fracture toughness value by the SEPB test (pre-crack introduction test) in accordance with JIS R1607, and the room temperature and 1200 ° C. in a vacuum using a high-temperature microscope hardness meter. Were measured for Vickers hardness, and the results are shown in Table 3.

【0027】[0027]

【表3】 (注)表中の*を付した試料は比較例である。[Table 3] (Note) Samples marked with * in the table are comparative examples.

【0028】以上の結果から、従来の単一焼結体及びナ
ノ複合体とマトリックスが同系の本発明の複合焼結体と
を比較すると、ナノ粒子を粒内及び粒界相に且つ板状粒
子を粒界相に分散させた本発明の複合焼結体は格段に高
い破壊靭性を持ち、且つ高温硬度が改善されていること
が理解される。
From the above results, when comparing the conventional single sintered body and the nanocomposite with the composite sintered body of the present invention having the same matrix as the matrix, the nanoparticles were placed in the intragranular and grain boundary phases and the plate-like particles. It is understood that the composite sintered body of the present invention in which is dispersed in the grain boundary phase has remarkably high fracture toughness and has improved high-temperature hardness.

【0029】[0029]

【発明の効果】本発明によれば、構造材料として十分な
強度を備えると共に、従来のナノ複合体にくらべて、室
温及び高温における破壊靭性並びに耐クリープ特性等の
高温特性が格段に優れたセラミックス複合焼結体を提供
することができる。従って、本発明のセラミックス複合
焼結体は、自動車エンジン部品等の高温構造用材料とし
て特に有用である。
According to the present invention, a ceramic having a sufficient strength as a structural material and having significantly higher high-temperature properties such as fracture toughness and creep resistance at room temperature and high temperature than conventional nanocomposites. A composite sintered body can be provided. Therefore, the ceramic composite sintered body of the present invention is particularly useful as a high-temperature structural material for automobile engine parts and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Al23+SiC系の本発明複合焼結体と同系
の従来のナノ複合体及びAl23焼結体における亀裂進
展抵抗を示すグラフである。
FIG. 1 is a graph showing crack propagation resistance in an Al 2 O 3 + SiC-based composite sintered body of the present invention, a conventional nanocomposite of the same type, and an Al 2 O 3 sintered body.

【図2】Al23+SiC系の本発明複合焼結体と同系
の従来のナノ複合体及びAl23焼結体における130
0℃域での応力−歪直線を示すグラフである。
[Figure 2] Al 2 O 3 + 130 in the conventional nanocomposite and Al 2 O 3 sintered body of the present invention composite sintered body and syngeneic SiC-based
It is a graph which shows a stress-strain straight line in a 0 degreeC area.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 35/584 C04B 35/58 104K (56)参考文献 特開 平2−160669(JP,A) 特開 平2−289470(JP,A) 特開 平5−58751(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 - 35/84 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 7 identifications FI C04B 35/584 C04B 35/58 104K (56 ) references Patent Rights 2-160669 (JP, a) Patent Rights 2-289470 ( JP, A) JP-A-5-58751 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/00-35/84

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミックスの結晶粒子を有するマトリ
ックスと、マトリックスの結晶粒子の粒内及び/又はそ
の粒界相に分散したマトリックスと別種のナノメートル
サイズのセラミックスの球状粒子と、粒界相に分散した
直径が5〜30μmの範囲にあり且つ厚さが6μm以下
であるマトリックスと別種のセラミックスの板状粒子と
からなり、当該板状粒子の含有量が全体の0.5〜20
体積%であることを特徴とするセラミックス複合焼結
体。
1. A matrix having crystal grains of ceramics, a matrix dispersed within the grains of the crystal grains of the matrix and / or a grain boundary phase thereof, and spherical particles of a nanometer-sized ceramic of a different kind, and dispersed in a grain boundary phase. A matrix having a diameter in the range of 5 to 30 μm and a thickness of 6 μm or less and plate-like particles of another type of ceramic, and the content of the plate-like particles is 0.5 to 20
A ceramic composite sintered body characterized by volume%.
【請求項2】 球状粒子の平均粒径が100nm以下で
あり、且つその含有量が全体の5〜30体積%であるこ
とを特徴とする、請求項1に記載のセラミックス複合焼
結体。
2. The ceramic composite sintered body according to claim 1, wherein the spherical particles have an average particle diameter of 100 nm or less and the content thereof is 5 to 30% by volume of the whole.
【請求項3】 板状粒子の厚さが3μm以下であること
を特徴とする、請求項1又は2に記載のセラミックス複
合焼結体。
3. The ceramic composite sintered body according to claim 1, wherein the thickness of the plate-like particles is 3 μm or less.
【請求項4】 マトリックスの結晶粒子を構成するセラ
ミックスがAl23、ZrO2、Si34、SiC又は
AlNであり、球状粒子及び/又は板状粒子を構成する
セラミックスがAl23、ZrO2、Si34又はSi
Cであることを特徴とする、請求項1〜3のいずれかに
記載のセラミックス複合焼結体。
4. The ceramic constituting the crystal grains of the matrix is Al 2 O 3 , ZrO 2 , Si 3 N 4 , SiC or AlN, and the ceramic constituting the spherical particles and / or the plate-like particles is Al 2 O 3 , ZrO 2 , Si 3 N 4 or Si
The ceramic composite sintered body according to any one of claims 1 to 3, wherein C is C.
【請求項5】 マトリックスの結晶粒子を構成するセラ
ミックスが酸化物であり、球状粒子及び板状粒子を構成
するセラミックスが非酸化物であることを特徴とする、
請求項1ないし4のいずれかに記載のセラミックス複合
焼結体。
5. The ceramic constituting the crystal grains of the matrix is an oxide, and the ceramic constituting the spherical particles and the plate-like particles is a non-oxide.
The ceramic composite sintered body according to claim 1.
JP19072293A 1993-07-02 1993-07-02 Ceramic composite sintered body Expired - Fee Related JP3315483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19072293A JP3315483B2 (en) 1993-07-02 1993-07-02 Ceramic composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19072293A JP3315483B2 (en) 1993-07-02 1993-07-02 Ceramic composite sintered body

Publications (2)

Publication Number Publication Date
JPH0782047A JPH0782047A (en) 1995-03-28
JP3315483B2 true JP3315483B2 (en) 2002-08-19

Family

ID=16262730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19072293A Expired - Fee Related JP3315483B2 (en) 1993-07-02 1993-07-02 Ceramic composite sintered body

Country Status (1)

Country Link
JP (1) JP3315483B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951737B2 (en) 2006-08-30 2011-05-31 Ngk Spark Plug Co., Ltd. Aluminum oxide-based composite sintered body and cutting insert
JP5051834B2 (en) * 2007-09-20 2012-10-17 国立大学法人島根大学 Thermal shock-resistant electromagnetic shielding material and method for producing the same
JP4905307B2 (en) * 2007-09-20 2012-03-28 三菱マテリアル株式会社 Power module substrate
KR101179336B1 (en) * 2010-07-22 2012-09-03 삼성전기주식회사 Buffer sheet for firing ceramic substrate and method for manufacturing ceramic substrate using the same

Also Published As

Publication number Publication date
JPH0782047A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
Hirano et al. Microstructure and mechanical properties of Si3N4/SiC composites
Ruh et al. Mechanical and Microstructural Characterization of Mullite and Mullite‐SiC‐Whisker and ZrO2‐Toughened‐Mullite—SiC‐Whisker Composites
Shinoda et al. Superplasticity of silicon carbide
US4729972A (en) High toughness ceramics and process for the preparation thereof
EP0370176B1 (en) Ceramic composit material and process of manufacturing thereof
JP2659082B2 (en) Manufacturing method of zirconia-based composite ceramic sintered body
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP3315483B2 (en) Ceramic composite sintered body
JPH01188454A (en) High strength composite ceramic sintered body
Hirano et al. Effects of matrix grain size on the mechanical properties of Si3N4/SiC nanocomposites densified with Y2O3
Choa et al. Microstructure and mechanical properties of SiC-platelet reinforced Al2O3/SiC-particle hybrid composites
Kim et al. Fabrication and mechanical properties of silicon carbide‐silicon nitride composites with oxynitride glass
Deng et al. Microstructure and flexure creep behaviour of SiC-particle reinforced Al2O3 matrix composites
JPH07223865A (en) Silicone nitride-based sintered material and production thereof
Chu et al. Mechanical Properties and Microstructure of Si3N4‐Whisker‐Reinforced Si3N4 Matrix Composites
Takano et al. Microstructure and mechanical properties of ZrO 2 (2Y)-toughened Al 2 O 3 ceramics fabricated by spark plasma sintering
JP3121996B2 (en) Alumina sintered body
JP4070254B2 (en) Composite sintered body of silicon nitride and silicon carbide and method for producing the same
Šajgalík et al. Silicon nitride/carbide nano/micro composites for room as well as high temperature applications
JP2955917B2 (en) Silicon nitride sintered body having high fracture toughness by addition of foreign particles and method for producing the same
JP2854340B2 (en) Ceramic composite sintered body and method of manufacturing the same
Ohji et al. Microstructural evolution and mechanical/thermal properties of silicon nitride ceramics
JP2581128B2 (en) Alumina-sialon composite sintered body
Choi et al. R‐Curve behavior of silicon nitride ceramic reinforced with silicon carbide platelets
Yoshimura et al. Effect of Nano‐Sized SiC Dispersion on Microstructure and Mechanical Properties of Rare‐Earth Oxide Ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees