JPH0653610B2 - Manufacturing method of high toughness silicon nitride sintered body - Google Patents

Manufacturing method of high toughness silicon nitride sintered body

Info

Publication number
JPH0653610B2
JPH0653610B2 JP63030059A JP3005988A JPH0653610B2 JP H0653610 B2 JPH0653610 B2 JP H0653610B2 JP 63030059 A JP63030059 A JP 63030059A JP 3005988 A JP3005988 A JP 3005988A JP H0653610 B2 JPH0653610 B2 JP H0653610B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
sintered body
volume
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63030059A
Other languages
Japanese (ja)
Other versions
JPH01208370A (en
Inventor
啓 磯崎
豊 平島
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63030059A priority Critical patent/JPH0653610B2/en
Publication of JPH01208370A publication Critical patent/JPH01208370A/en
Publication of JPH0653610B2 publication Critical patent/JPH0653610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、靱性の高い窒化珪素焼結体の製法に関するも
ので、エンジニアリングセラミツクスとして各種の機械
部品や自動車部品等に有用なものである。
TECHNICAL FIELD The present invention relates to a method for producing a silicon nitride sintered body having high toughness, and is useful as various engineering parts such as mechanical parts and automobile parts as engineering ceramics.

〔従来の技術〕[Conventional technology]

セラミツクスの本質的な性質である脆さを改善するため
の方法はこれまで幾つか提案されている。複合化による
方法は代表的なもので、ウイスカー、繊維、粒子などの
混合・分散による破壊靱性の向上がある。例えば、窯業
協会発行、「特集セラミツクスの強靱化に挑む」セラミ
ツクスVol.21NO.7 1986年7月号に記されてい
る。現在、窒化珪素焼結体の高靱化にはウイスカー添加
が最も有効と見られる。
Several methods have been proposed so far for improving brittleness, which is an essential property of ceramics. The composite method is a typical method, and the fracture toughness can be improved by mixing and dispersing whiskers, fibers, particles and the like. For example, it is described in "Special Issue on Strengthening Ceramics", Ceramics Vol.21 NO.7, July, 1986, published by Ceramic Industry Association. At present, addition of whiskers seems to be the most effective for increasing the toughness of a silicon nitride sintered body.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、複合化による強靱化を行うには均一な分
散が要求される。特にウイスカー、繊維は分散が難しく
湿式ボールミル等で長時間混合しなければならないばか
りでなく、完全な均一分散は実質的に不可能に近い。ま
た、スリツプキヤスト、射出成形等の成形方法の困難と
なる。さらには、ウイスカー、繊維を混入したものを焼
結することは難しく、たとえホツトプレス法であつても
理論密度近くにするのは容易ではない。
However, a uniform dispersion is required to strengthen the composite. In particular, whiskers and fibers are difficult to disperse, and not only must they be mixed for a long time with a wet ball mill, but complete uniform dispersion is practically impossible. Also, molding methods such as slip casting and injection molding become difficult. Furthermore, it is difficult to sinter those containing whiskers and fibers, and even with the hot press method, it is not easy to bring the density close to the theoretical density.

本発明は以上のような問題点を解決し、比較的容易に高
靱性の窒化珪素焼結体を得ようとするものである。
The present invention intends to solve the above problems and to relatively easily obtain a high toughness silicon nitride sintered body.

〔課題を解決するための手段〕[Means for Solving the Problems]

すなわち、本発明は、平均粒径1μm以下の窒化珪素粉
末を主成分とし、MgAl2O4-Al2O3系焼結助剤をMgAl2O4
として1〜5容量%と平均粒径3〜10μmのTiN粉末
10〜40容量%とを含んでなる混合原料粉末を成形・
焼結することを特徴とする高靱性窒化珪素焼結体の製法
である。
That is, the present invention is based on a silicon nitride powder having an average particle size of 1 μm or less as a main component, and an MgAl 2 O 4 —Al 2 O 3 -based sintering aid as 1 to 5% by volume as an average particle size of MgAl 2 O 4 minutes. Form a mixed raw material powder containing 3 to 10 μm of TiN powder 10 to 40% by volume.
This is a method for producing a high toughness silicon nitride sintered body, which is characterized by sintering.

以下、さらに詳しく本発明について説明する。The present invention will be described in more detail below.

複合化による破壊靱性向上の主な機構として、クラツク
・デイフレクシヨン、マイクロクラツキング、応力誘起
変態、プルアウトなどが考えられるが、本発明の方法に
おいては、クラツク・デイフレクシヨンとマイクロクラ
ツキングが重要である。クラツク・デイフレクシヨン
は、マトリツクスと分散相の靱性や熱膨張率などの物性
の相違や両者の界面状態などが原因となつてクラツクが
分散粒子の周りをジグザグに折れ曲つて進むことにより
エネルギーが散逸するものである。また、マイクロクラ
ツキングも分散相とマトリツクスの熱膨張率の差などに
よつて分散粒子の周りに歪みが生じ、多数のクラツクが
発生し、主クラツク先端が微細クラツクの生じた領域に
進むと、微細クラツク同士が結合して成長したり、新し
く微細クラツクが発生したりしてこの領域の弾性率が低
下する。そのため、主クラツク先端にかかる応力が減少
するものである。
As the main mechanism for improving fracture toughness by compounding, crack / diffusion, microcracking, stress-induced transformation, pullout, etc. are considered, but in the method of the present invention, crack / diffusion and microcracking are used. King is important. The crack day flexion causes energy to increase as the crack bends around the dispersed particles in a zigzag manner due to differences in the physical properties such as the toughness and the coefficient of thermal expansion of the matrix and the dispersed phase, and the interfacial state between the two. It is dissipated. Also, in microcracking, distortion occurs around the dispersed particles due to the difference in the coefficient of thermal expansion between the dispersed phase and the matrix, and a large number of cracks are generated. As a result, fine cracks are bonded to each other to grow, or new fine cracks are generated, so that the elastic modulus in this region is lowered. Therefore, the stress applied to the tip of the main crack is reduced.

本発明者らは、窒化珪素焼結体の高靱性化について種々
検討した結果、分散粒子としてはTiN粒子が最適であ
り、そのTiN粒子を窒化珪素焼結体に分散させるには、
平均粒径3〜10μmのTiN粉末を窒化珪素粉末、焼結
助剤及びTiN粉末からなる混合原料粉末中に10〜40
容量%含ませればよいことを見いだしたものである。Ti
N粉末の平均粒径が3μm未満であるか又は10μmを
こえると大幅な高靱性化を達成することができず、また
TiN粉末の含有量が混合原料粉末中、10〜40容量%
以外の割合であっても同様に靱性の大幅な向上はなく、
特に40容量%をこえると強度が低下するようになる。
As a result of various studies on the toughness of the silicon nitride sintered body, the present inventors found that TiN particles are optimal as the dispersed particles, and in order to disperse the TiN particles in the silicon nitride sintered body,
TiN powder having an average particle size of 3 to 10 μm was added to a mixed raw material powder consisting of silicon nitride powder, a sintering aid and TiN powder in an amount of 10 to 40
It was found that it is necessary to include the capacity%. Ti
If the average particle size of the N powder is less than 3 μm or exceeds 10 μm, it is not possible to achieve significant toughness, and
The content of TiN powder is 10 to 40% by volume in the mixed raw material powder.
Similarly, there is no significant improvement in toughness at other ratios,
In particular, if it exceeds 40% by volume, the strength will decrease.

本発明で使用される窒化珪素Si3N4粉末の平均粒径は1
μm以下であることが必要であり、1μmをこえると靱
性の改善は認められない。
The average particle size of the silicon nitride Si 3 N 4 powder used in the present invention is 1
It is necessary to be less than μm, and if it exceeds 1 μm, improvement in toughness is not recognized.

本発明で使用される焼結助剤は、MgAl2O4とAl2O3を主成
分とするMgAl2O4-Al2O3系のものであり、その使用量は
混合原料粉末中、MgAl2O4分として1〜5容量%の含む
割合である。Al2O3の割合としては、混合原料粉末中、
0.2〜5容量%程度含まれていることが好ましい。Mg
Al2O4-Al2O3系焼結助剤の含有量が混合原料粉末中、MgA
l2O4として1容量%未満では焼結効果は少なく、また、
5容量%を越えると強度が低下する。本発明と異なる焼
結助剤、例えばAl2O3-Y2O3系焼結助剤では高靱性化を達
成することできない。本発明においては、MgO、MgSiO4、M
gSiO3、Mg(OH)2、Mg(NO3)2、MgSO4、コーディエライト等の
Mg化合物、さらにはY2O3、CoAl2O4、ZrO2、SiO2等の焼結助
剤と併用することもでき、その割合は、混合原料粉末
中、0.2〜5容量%程度の含有量である。
The sintering aid used in the present invention is a MgAl 2 O 4 -Al 2 O 3 -based one having MgAl 2 O 4 and Al 2 O 3 as the main components, and the amount used is in the mixed raw material powder, It is a ratio of 1 to 5% by volume as MgAl 2 O 4 minutes. As the proportion of Al 2 O 3 , in the mixed raw material powder,
It is preferably contained in an amount of about 0.2 to 5% by volume. Mg
The content of Al 2 O 4 -Al 2 O 3 based sintering aid is MgA in the mixed raw material powder.
If less than 1% by volume of l 2 O 4 , the sintering effect is small, and
If it exceeds 5% by volume, the strength will decrease. With a sintering aid different from the present invention, for example, an Al 2 O 3 —Y 2 O 3 -based sintering aid, high toughness cannot be achieved. In the present invention, MgO, MgSiO 4 , M
gSiO 3 , Mg (OH) 2 , Mg (NO 3 ) 2 , MgSO 4 , cordierite, etc.
It can also be used in combination with Mg compounds and further with sintering aids such as Y 2 O 3 , CoAl 2 O 4 , ZrO 2 and SiO 2 , the ratio of which is about 0.2 to 5% by volume in the mixed raw material powder. Is the content of.

Si3N4粉末、MgAl2O4-Al2O3系焼結助剤及びTiN粉末の混
合は、ボールミル等の混合機を用い湿式又は乾式で行わ
れる。成形・焼結方法については特に制限はなく、常圧
焼結、ホットプレス、HIP焼結を採用することができ
る。
The Si 3 N 4 powder, the MgAl 2 O 4 —Al 2 O 3 -based sintering aid and the TiN powder are mixed in a wet or dry manner using a mixer such as a ball mill. The forming / sintering method is not particularly limited, and normal pressure sintering, hot pressing, and HIP sintering can be adopted.

破壊靱性値KICの測定法には種々あるが、本発明ではIM
(Indentaion Micro fracture)法を採用する。これは、
“昭和59年度通商産業省工業技術院委託フアインセラ
ミツクスの標準化に関する調査研究報告書昭和60年3
月フアインセラミツクス協会”に記載されている測定法
であり、試料の鏡面研磨、圧子圧入、クラツク長さ測
定、経験式を用いたKICの算出の4つの過程からなる。
すなわち、表面研磨した試料にビツカース圧子を圧入す
る。装置はビツカースやヌープ硬度計を用いる。試料に
発生したクラツクの長さを光学顕微鏡あるいはSEMを用
いて測定するものである。
There are various methods for measuring the fracture toughness value K IC , but in the present invention, IM
(Indentaion Micro fracture) method is adopted. this is,
"A survey research report on the standardization of fine ceramics entrusted by the Agency of Industrial Science and Technology, Ministry of International Trade and Industry in 1984, March 1985.
This is a measurement method described in "Monthly Fine Ceramics Association" and consists of four processes: mirror polishing of sample, indentation, indentation measurement, crack length measurement, and K IC calculation using empirical formula.
That is, a Vitzkers indenter is pressed into the surface-polished sample. The device uses a Vitzkers or Knoop hardness tester. The length of cracks generated in the sample is measured using an optical microscope or SEM.

KICを算出する経験式は数多くあるが、本発明では次式
を用いた。
Although there are many empirical formulas for calculating K IC , the following formula was used in the present invention.

(KICφ/Ha1/2)(H/Eφ)2/5=0.129(c/a)-3/2 E…ヤング率、H…硬度、a…圧痕長さ、c…亀裂長
さ、φ=3、荷重は20kg、荷重印加時間15秒間 各種セラミツクスの破壊靱性値KIC(MPa・m1/2)は、一般
に、Si3N44〜6、SiC3〜5、Al2O33〜5、部分安定
化ZrO2(PSZ)7〜10、ガラス0.75、WC-Co合金12〜1
6、アルミ合金34と言われている。本発明によれば、
これを常圧焼結により8.5以上にすることができるも
のである。
(K IC φ / Ha 1/2 ) (H / E φ) 2/5 = 0.129 (c / a) -3/2 E ... Young's modulus, H ... Hardness, a ... Indentation length, c ... Crack length, φ = 3, load 20 kg, load application time 15 seconds The fracture toughness value K IC (MPa · m 1/2 ) of various ceramics is generally Si 3 N 4 4-6, SiC 3-5, Al 2 O 3 3 ~ 5, partially stabilized ZrO 2 (PSZ) 7 ~ 10, glass 0.75, WC-Co alloy 12 ~ 1
6. It is said to be aluminum alloy 34. According to the invention,
This can be increased to 8.5 or more by pressureless sintering.

〔実施例〕〔Example〕

以下、実施例をあげてさらに具体的に本発明を説明す
る。
Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1 表−1に示す種々の容量%の焼結助剤MgO、MgAl2O4、Al2O
3、Y2O3及び分散粒子として平均粒径4.0μm、熱膨張係
数9.3×10−6/℃のTiN粉末15容量%を平均粒径0.
6μmのSi3N4粉末(電気化学工業社製SN-GD3)に混合
して全体を100容量%の混合原料粉末を調製した。こ
れを1750℃、6時間、N9kg/cm2の常圧焼結法に
より蛇Si3N4焼結体を得、破壊靱性値KICを測定した。そ
の結果を表−1に示す。
Example 1 Various volume% sintering aids MgO, MgAl 2 O 4 , Al 2 O shown in Table 1
3 , Y 2 O 3 and 15% by volume of TiN powder having an average particle size of 4.0 μm as dispersed particles and a thermal expansion coefficient of 9.3 × 10 −6 / ° C.
6 μm of Si 3 N 4 powder (SN-GD3 manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed to prepare 100% by volume of mixed raw material powder. A serpentine Si 3 N 4 sintered body was obtained by subjecting this to a pressureless sintering method of N 2 9 kg / cm 2 at 1750 ° C. for 6 hours, and the fracture toughness value K IC was measured. The results are shown in Table-1.

実施例2 表−1の実験NO.9において、TiN粉末を種々の割合とし
Si3N4粉末に置きかえて使用したこと以外は同様の条件
で焼結体を作製し破壊靱性値KICを測定した。その結果
を表−2に示す。
Example 2 In Experiment No. 9 of Table 1, TiN powder was mixed in various proportions.
Sintered bodies were prepared under the same conditions except that Si 3 N 4 powder was used instead, and the fracture toughness value K IC was measured. The results are shown in Table-2.

実施例3 表−1の実験NO.9において、Si3N4粉末とTiN粉末の平
均粒径を表−3に示すように変えたこと以外は同様の条
件で焼結体を作製し破壊靱性値KICとJISR1601の常
温曲げ強度を測定した。それらの結果を表−3に示す。
Example 3 In Experiment No. 9 of Table-1, a sintered body was prepared under the same conditions except that the average particle size of Si 3 N 4 powder and TiN powder was changed as shown in Table-3, and fracture toughness was obtained. The room temperature bending strength of the value K IC and JIS R1601 was measured. The results are shown in Table-3.

実施例4 表−1の実験NO.9において、MgAl2O4粉末を種々の割合
としSi3N4粉末に置きかえて使用したこと以外は同様の
条件で焼結体を作製し破壊靱性値KICを測定した。その
結果を表−4に示す。
Example 4 In Experiment No. 9 of Table-1, a sintered body was prepared under the same conditions except that MgAl 2 O 4 powder was used in various proportions in place of Si 3 N 4 powder, and fracture toughness value K IC was measured. The results are shown in Table-4.

以上の実施例から次のことがわかる。 The following can be understood from the above-described examples.

(1)実施例1及び実施例4から、MgAl2O4-Al2O3系焼
結助剤の添加量をMgAl2O4分として1〜5容量%とした
ときに、8.5MPa・m1/2以上の高いKICが得ら
れる。
(1) From Example 1 and Example 4, when the addition amount of the MgAl 2 O 4 —Al 2 O 3 -based sintering aid was 1 to 5% by volume as MgAl 2 O 4 minutes, 8.5 MPa · A high K IC of m 1/2 or more can be obtained.

(2)実施例2から、TiN粉末が10〜40容量%のと
きに、8.5MPa・m1/2以上の高いKICが得られ
る。
(2) From Example 2, when the TiN powder is 10 to 40% by volume, a high K IC of 8.5 MPa · m 1/2 or more can be obtained.

(3)実施例3から、Si3N4粉末の平均粒径が1μm以
下でしかもTiN粉末のそれが3〜10μmの場合に、
8.6MPa・m1/2以上の高いKICが得られる。
(3) From Example 3, when the average particle size of the Si 3 N 4 powder is 1 μm or less and the TiN powder has an average particle size of 3 to 10 μm,
A high K IC of 8.6 MPa · m 1/2 or more can be obtained.

〔発明の効果〕〔The invention's effect〕

本発明によれば、破壊靱性値8.5MPa・m1/2
上を有する高靱性の窒化珪素焼結体を簡単に製造するこ
とができる。
According to the present invention, a high toughness silicon nitride sintered body having a fracture toughness value of 8.5 MPa · m 1/2 or more can be easily manufactured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平均粒径1μm以下の窒化珪素粉末を主成
分とし、MgAl2O4-Al2O3系焼結助剤をMgAl2O4分として1
〜5容量%と平均粒径3〜10μmのTiN粉末10〜4
0容量%とを含んでなる混合原料粉末を成形・焼結する
ことを特徴とする高靱性窒化珪素焼結体の製法。
1. A silicon nitride powder having an average particle diameter of 1 μm or less as a main component, and a MgAl 2 O 4 -Al 2 O 3 -based sintering aid as MgAl 2 O 4 min.
˜5% by volume and average particle size 3˜10 μm TiN powder 10˜4
A method for producing a high toughness silicon nitride sintered body, which comprises molding and sintering a mixed raw material powder containing 0% by volume.
JP63030059A 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body Expired - Lifetime JPH0653610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030059A JPH0653610B2 (en) 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030059A JPH0653610B2 (en) 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01208370A JPH01208370A (en) 1989-08-22
JPH0653610B2 true JPH0653610B2 (en) 1994-07-20

Family

ID=12293256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030059A Expired - Lifetime JPH0653610B2 (en) 1988-02-13 1988-02-13 Manufacturing method of high toughness silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0653610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2829229B2 (en) * 1993-10-25 1998-11-25 株式会社東芝 Silicon nitride ceramic sintered body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207880A (en) * 1983-05-13 1984-11-26 工業技術院長 Manufacture of silicon nitride sintered body

Also Published As

Publication number Publication date
JPH01208370A (en) 1989-08-22

Similar Documents

Publication Publication Date Title
JPS5964567A (en) Ceramic formed body, manufacture and structural member
JPS638071B2 (en)
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
EP0370176B1 (en) Ceramic composit material and process of manufacturing thereof
US4990469A (en) Refractory material and process for production of the same
JPH04130049A (en) Ceramic composite material and its production
JPH0653610B2 (en) Manufacturing method of high toughness silicon nitride sintered body
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP2974473B2 (en) Composite ceramics and manufacturing method thereof
JP4296251B2 (en) Method for producing alumina-boron nitride composite material
JPH0653609B2 (en) Manufacturing method of high toughness silicon nitride sintered body
JP3315483B2 (en) Ceramic composite sintered body
US5324693A (en) Ceramic composites and process for manufacturing the same
JPH05319910A (en) Ceramic composite material and its production
JP2566580B2 (en) Silicon carbide / silicon nitride composite sintered body
JPH03504959A (en) Ultra-tough monolithic silicon nitride
JP2979703B2 (en) Composite ceramic material and method for producing the same
JPH06287061A (en) Sic-based composite ceramic and its production
JP3152558B2 (en) Particle-dispersed silicon nitride sintered body and method for producing the same
JPS62265173A (en) Silicon carbide whisker-reinforced composite material
JP2581128B2 (en) Alumina-sialon composite sintered body
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JP2858811B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPH06206762A (en) Composite material of ceramics and its production
JPH075385B2 (en) Silicon nitride sintered body and method for producing the same