JPH01207187A - Treatment of waste organic water - Google Patents

Treatment of waste organic water

Info

Publication number
JPH01207187A
JPH01207187A JP63031048A JP3104888A JPH01207187A JP H01207187 A JPH01207187 A JP H01207187A JP 63031048 A JP63031048 A JP 63031048A JP 3104888 A JP3104888 A JP 3104888A JP H01207187 A JPH01207187 A JP H01207187A
Authority
JP
Japan
Prior art keywords
liquid
membrane
treatment
treated
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031048A
Other languages
Japanese (ja)
Inventor
Tsutomu Ogose
生越 勤
Mitsuhiro Kaneko
金子 充宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP63031048A priority Critical patent/JPH01207187A/en
Publication of JPH01207187A publication Critical patent/JPH01207187A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prevent clogging of a membrane occurring in turbid matter in a membrane sepn. treatment by adding an oxidizing agent to a liquid to be treated, then subjecting the liquid to the membrane sepn. treatment, thereby obtaining the anaerobic treated liquid having extremely high transparency. CONSTITUTION:The oxidizing agent such as sodium hypochlorite (NaClO) is properly injected form respective pipings 34, 35 into the treated liquid from a gas-liquid sepn. tank 8 and the circulating liquid from a membrane separator 12. The reduced sulfur in the anaerobic treated liquid is thereby oxidized and the turbidity by the reduced sulfur is eliminated, by which the transparency of the anerobic treated liquid is enhanced. As a result, the clogging of the membrane occurring in the turbid matter in the membrane sepn. treatment of a post stage is prevented, by which the permeating flux is maintained highly and stably and the frequencies of the membrane cleaning are decreased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機性廃水の処理方法に係り、特に有機性廃水
を嫌気性処理した後、得ら°れる処理液を膜分離処理す
る処理法において、膜分離処理工程の透過流束の低下を
防止して、効率的な処理を行う方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating organic wastewater, and particularly to a treatment method in which organic wastewater is subjected to anaerobic treatment and then the resulting treated liquid is subjected to membrane separation treatment. The present invention relates to a method of preventing a decrease in permeation flux in a membrane separation treatment step and performing efficient treatment.

[従来の技術] 各種産業廃水、生活廃水等の有機性廃水の処理方法とし
て、微生物を利用する生物的処理方法がある。生物的処
理方法のうち、嫌気性処理方法は、高濃度の有機性廃水
を嫌気性細菌群により効率的に分解するものであり、特
にメタン生成反応により発生するメタンガスを主成分と
するガス回収法は、省エネルギー型廃液処理方法として
注目されている。
[Prior Art] As a method for treating organic wastewater such as various industrial wastewater and domestic wastewater, there is a biological treatment method that uses microorganisms. Among biological treatment methods, the anaerobic treatment method efficiently decomposes highly concentrated organic wastewater using anaerobic bacteria, and in particular, it is a method for recovering gas whose main component is methane gas generated by a methane production reaction. is attracting attention as an energy-saving waste liquid treatment method.

ところで、有機性廃水を嫌気性生物処理する方法におい
ては、嫌気性処理液中の還元硫黄がコロイド化して処理
液が白濁するという問題があった。
By the way, in the method of anaerobic biological treatment of organic wastewater, there is a problem that the reduced sulfur in the anaerobic treatment liquid turns into colloid and the treatment liquid becomes cloudy.

従来、このような還元硫黄による白濁を防止する方法と
して、嫌気性処理液を減圧脱硫あるいは更に後処理とし
て好気性生物濾過する方法が提案されている(「水質汚
濁研究JVO&。
Conventionally, as a method to prevent such cloudiness due to reduced sulfur, methods have been proposed in which the anaerobically treated liquid is subjected to vacuum desulfurization or further aerobic biological filtration as a post-treatment ("Water Pollution Research JVO &.

10、No、11 (1987)第666〜669頁)
10, No. 11 (1987) pp. 666-669)
.

一方、最近になって、嫌気性処理液を膜分1ilt’A
埋して、液中に残留する嫌気性スラッジや嫌気性SSを
除去する方法が検討されつつある。
On the other hand, recently, the anaerobic treatment liquid has a membrane fraction of 1ilt'A.
A method of removing anaerobic sludge and anaerobic SS remaining in the liquid by burying it in the liquid is being considered.

[発明が解決しようとする課題] しかしながら、上記いずれの方法においても十分に満足
し得る効果が得られておらず、特に嫌気性処理液を膜分
M処理する方法では、白濁物による膜の目詰りのために
透過流束の低下が著しく、頻繁に膜の洗浄を行う必要が
あるという問題があった。
[Problems to be Solved by the Invention] However, none of the above methods has been able to achieve a sufficiently satisfactory effect, and in particular, in the method of treating the anaerobic treatment liquid with membrane fraction M, the membrane is damaged due to white turbidity. There was a problem in that the permeation flux was significantly reduced due to clogging, requiring frequent cleaning of the membrane.

本発明は、有機性廃水の嫌気性処理液の還元硫黄による
白濁を有効に防止すると共に、後工程の膜分離処理にお
ける透過流束の低下、膜性能の劣化を防止して、効率的
に有機性廃水を処理することができる方法を提供するこ
とを目的とする。
The present invention effectively prevents white turbidity caused by reduced sulfur in an anaerobic treatment solution for organic wastewater, and also prevents a decrease in permeation flux and deterioration of membrane performance in the membrane separation process in the subsequent process. The purpose of the present invention is to provide a method capable of treating industrial wastewater.

[課題を解決するための手段] 本発明の有機性廃水の処理方法は、有機性廃水を嫌気性
処理し、その処理液を膜分離処理する方′  法におい
て、膜分離処理に供する被処理液に、酸化剤を添加した
後、酸分m処理することを特徴とする。
[Means for Solving the Problems] The organic wastewater treatment method of the present invention is a method in which organic wastewater is anaerobically treated and the treated liquid is membrane-separated. The method is characterized in that after adding an oxidizing agent, an acid treatment is performed.

なお、本発明において、嫌気性処理水に添加する酸化剤
としては、例えば、次亜塩素酸ソーダ(NaCj20)
、オゾン(03)、塩素(CI12)等を用いることが
できるが、取り扱い上及び効果上、NaCILOが好ま
しい。
In the present invention, examples of the oxidizing agent added to the anaerobically treated water include sodium hypochlorite (NaCj20).
, ozone (03), chlorine (CI12), etc. can be used, but NaCILO is preferable in terms of handling and effectiveness.

酸化剤の添加量は、用いる酸化剤の種類、被処理水質や
膜材質、膜分離処理条件等に応じて適宜決定される。例
えば、酸化剤としてNaCj20を用いる場合、一般に
は酸分11処理に供する被処理水中のNaCj20濃度
が30〜50 p p m程度で良いが、これにより十
分な効果が得られない場合には、−時的にNaCILO
濃度が100〜11000ppとなるように注入するの
が好ましい。
The amount of the oxidizing agent added is appropriately determined depending on the type of oxidizing agent used, the quality of the water to be treated, the membrane material, the membrane separation treatment conditions, and the like. For example, when using NaCj20 as an oxidizing agent, the concentration of NaCj20 in the water to be treated that is subjected to acid content 11 treatment may generally be about 30 to 50 ppm, but if this does not produce a sufficient effect, - Temporarily NaCILO
It is preferable to implant at a concentration of 100 to 11,000 pp.

酸化剤の添加方法としては特に制限はなく、例えば次の
■又は■の方法等を採用することができる。
There is no particular restriction on the method of adding the oxidizing agent, and for example, the following method (1) or (2) may be employed.

■ 嫌気性処理液に酸化剤を連続的又は間歇的に注入す
る。
■ Continuously or intermittently inject an oxidizing agent into the anaerobic treatment solution.

■ 酸分m処理における循環液に酸化剤を連続的又は間
歇的に注入する。
(2) Continuously or intermittently inject an oxidizing agent into the circulating fluid during acid treatment.

なお、酸化剤による効果を向上させるために消泡剤を併
用することは、極めて有効である。この場合には、嫌気
性処理液、具体的にはメタン反応槽排出液に消泡剤を注
入した夜気液分離し、ガス分離を行なった液に酸化剤を
連続的又は間歇的に注入する。
Note that it is extremely effective to use an antifoaming agent in combination to improve the effect of the oxidizing agent. In this case, an antifoaming agent is injected into the anaerobically treated liquid, specifically the methane reactor discharge liquid, the gas is separated, and an oxidizing agent is continuously or intermittently injected into the gas-separated liquid. .

[作 用] 本発明の方法に従って、酸分1lIIA埋に供する被処
理水に酸化剤を添加することにより、酸化剤が嫌気性処
理液中の還元硫黄を酸化し、還元硫黄による白濁、及び
、それによる膜の目詰り、透過流束の低下を有効に防止
する。
[Function] According to the method of the present invention, by adding an oxidizing agent to the water to be treated that is subjected to acid content 1lIIA, the oxidizing agent oxidizes the reduced sulfur in the anaerobic treatment liquid, causing cloudiness due to the reduced sulfur, and This effectively prevents membrane clogging and reduction in permeation flux.

[実施例] 以下、図面を参照して本発明の実施例について詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の有機性廃水の処理力゛法の実施に好適
な処理装置の一例を示す系統図である。
FIG. 1 is a system diagram showing an example of a treatment apparatus suitable for carrying out the organic wastewater treatment method of the present invention.

有機性廃液、例えばC0Dcr濃度約6500m g 
/ Itの11(グルコース)を主体とする廃液は、廃
液調整槽1に貯留され、給液ポンプ2により配管21を
経て熱交換器3に送給され温度調整された後、まず、配
管22を経て第1反応4w(酸生成槽)4に送給され、
有機酸生成処理される。
Organic waste liquid, e.g. C0Dcr concentration approximately 6500 mg
The waste liquid mainly containing 11 (glucose) of It is stored in the waste liquid adjustment tank 1, and after being sent to the heat exchanger 3 via the pipe 21 by the liquid supply pump 2 and temperature-adjusted, the waste liquid is first passed through the pipe 22. The acid is then fed to the first reaction 4w (acid generation tank) 4,
Processed to produce organic acids.

次いで給液ポンプ5により配管23を経て熱交換器6に
送給され温度調整された後、配管24を経て第2反応4
ff (メタン反応4り7に送給されて生物分解処理(
It!気性処理)される。第2反応槽7においては処理
液の一部を配管25により循環通液した。なお、熱交換
器3.6においては、蒸気との熱交換により、液温をコ
ントロールしている。
Next, the liquid is sent to the heat exchanger 6 via the piping 23 by the supply pump 5, and after temperature adjustment, the liquid is sent to the second reaction 4 via the piping 24.
ff (Feeded to methane reaction 4 and 7 for biodegradation treatment (
It! Temper treatment). In the second reaction tank 7, a part of the treatment liquid was circulated through a pipe 25. Note that in the heat exchanger 3.6, the liquid temperature is controlled by heat exchange with steam.

嫌気性処理後は、発生したガスと処理液とを分離するた
めに、配管26により気液分!!1槽8へ送給して気液
分離する。この送給過程において、配管27より消泡剤
を添加する。気液分m槽8にて分離されたメタンを主成
分とするガスは脱硫塔9にて処理された後、配管28よ
り糸外へ排出される。
After anaerobic treatment, in order to separate the generated gas and treatment liquid, the gas and liquid components are separated using piping 26! ! 1 tank 8 for gas-liquid separation. During this feeding process, an antifoaming agent is added through the pipe 27. The gas mainly composed of methane separated in the gas-liquid separation tank 8 is treated in the desulfurization tower 9 and then discharged from the pipe 28 to the outside of the thread.

気液分laI槽8により分離された嫌気性処理液は配管
29.30より膜循環水槽lOに送られる。
The anaerobic treatment liquid separated by the gas-liquid separation laI tank 8 is sent to the membrane circulation water tank IO through piping 29,30.

膜循環水槽10中の液は給液ポンプ11により、配管3
1を経て膜分離装置12に送給され、膜分離処理され、
含有する嫌気性菌体、嫌気性スラッジ等の懸濁物が除去
される。膜分離処理の透過液は処理水として配管32よ
り系外へ排出され、−方、循環液は配管33より膜循環
水槽10へ戻される。なお、膜循環水槽10において、
濃縮したスラッジは定期的に配管36より糸外へ排出す
る。
The liquid in the membrane circulation water tank 10 is supplied to the piping 3 by the liquid supply pump 11.
1 to the membrane separator 12 where it is subjected to membrane separation treatment,
Suspended substances such as anaerobic bacterial cells and anaerobic sludge are removed. The permeate from the membrane separation process is discharged as treated water to the outside of the system through piping 32, while the circulating liquid is returned to the membrane circulation water tank 10 through piping 33. In addition, in the membrane circulation water tank 10,
The concentrated sludge is periodically discharged from the pipe 36 to the outside of the thread.

本実施例においては、気液分離418からの処理液及び
膜分離装置12からの循環液に、それぞれ配管34.3
5より、NaCJZO等の酸化剤を適宜注入する。
In this embodiment, pipes 34 and 3 are connected to the treated liquid from the gas-liquid separation 418 and the circulating liquid from the membrane separation device 12, respectively.
Step 5, an oxidizing agent such as NaCJZO is appropriately injected.

これにより、従来においては、嫌気性処理液中には10
〜20ppm程度の還元硫黄が残留し、これが白濁して
膜の目詰りを引き起こしていたが、これらのトラブルが
解消され、膜分離処理の透過流束の向上、膜洗浄頻度の
低減が図れた。
As a result, in the past, 10
Approximately 20 ppm of reduced sulfur remained, which became cloudy and caused clogging of the membrane, but these problems were resolved, and the permeation flux of the membrane separation process was improved and the frequency of membrane cleaning was reduced.

以下、具体的な実験例について説明する。A specific experimental example will be described below.

実験例1(本発明例) 第1図に示す装置により、本発明の方法に従って、有機
性廃水の処理を行なった。
Experimental Example 1 (Example of the Present Invention) Using the apparatus shown in FIG. 1, organic wastewater was treated according to the method of the present invention.

なお、廃液のCOD濃度、処理条件、各槽の容量は、以
下の通りとした。
The COD concentration of the waste liquid, treatment conditions, and capacity of each tank were as follows.

廃 液:糖(グルコース)を主体とする廃液(CODc
、6500mg/Jl) 廃液通液流量=250℃/h 廃液通液温度:35℃ 消泡剤(クリレス5117)注入量 :20mg/I NaCj!O注入量:3omg/l(連続注入)膜分離
装置(膜間3mmモジュール) 分離膜  :平膜型UF膜 膜面積  :1.92m2 運転圧力 :入口/出口=2.6/1.3(kg/cm
2) 循環水流量: 17m3/h (2m/5ee)温度 
:35℃ 各イa容量 廃液調整槽:2m3 第1反応槽=1m3 第2反応槽:4m3 気液分i槽: 200j2 膜循環水槽:200Il 得られた処理水の水質を第1表に示す。
Waste liquid: Waste liquid mainly composed of sugar (glucose)
, 6500mg/Jl) Waste liquid flow rate = 250°C/h Waste liquid passage temperature: 35°C Antifoaming agent (Kuriless 5117) injection amount: 20mg/I NaCj! O injection amount: 3 omg/l (continuous injection) Membrane separation device (3 mm module between membranes) Separation membrane: Flat membrane type UF membrane Membrane area: 1.92 m2 Operating pressure: Inlet/outlet = 2.6/1.3 (kg) /cm
2) Circulating water flow rate: 17m3/h (2m/5ee) Temperature
: 35°C Capacity of each a waste liquid adjustment tank: 2 m3 First reaction tank = 1 m3 Second reaction tank: 4 m3 Gas-liquid separation tank: 200j2 Membrane circulation water tank: 200Il The quality of the obtained treated water is shown in Table 1.

また、膜分離装置の透過流束の経時変化を第2図に示す
Furthermore, Fig. 2 shows the change over time in the permeation flux of the membrane separator.

実験例2(比較例) NaCJ20を注入しなかったこと以外は実施例1と同
様にして廃水処理を行なった。
Experimental Example 2 (Comparative Example) Wastewater treatment was carried out in the same manner as in Example 1 except that NaCJ20 was not injected.

結果を第1表及び第2図に示す。The results are shown in Table 1 and Figure 2.

第1表 実験例3(本発明例) 膜分離装置の循環水流量を12m’ /h(1,4m 
/ s e c )としたこと以外は実験例1と同様に
して廃液処理を行なった。膜分離装置の透過流束の経時
変化を第2図に示す。
Table 1 Experimental Example 3 (Example of the present invention) The circulating water flow rate of the membrane separator was set to 12 m'/h (1.4 m
/sec) Waste liquid treatment was carried out in the same manner as in Experimental Example 1 except that the procedure was as follows. Figure 2 shows the change over time in the permeation flux of the membrane separator.

実験例4.5(比較例) 膜分離装置の循環水流量を15m3/h(1,8m/5
ee)(実験例4)又は10m3/h(1,2m/5e
c)(実験例5)としたこと以外は実験例2と同様にし
て廃液処理を行なった。
Experimental example 4.5 (comparative example) The circulating water flow rate of the membrane separator was set to 15 m3/h (1.8 m/5
ee) (Experimental Example 4) or 10m3/h (1,2m/5e
c) Waste liquid treatment was carried out in the same manner as in Experimental Example 2 except that (Experimental Example 5) was carried out.

膜分離装置の透過流束の経時変化を第2図に示す。Figure 2 shows the change over time in the permeation flux of the membrane separator.

第1表より、本発明の方法によれば、極めて透視度の高
い嫌気性処理液が得られ、膜分離処理液の水質も著しく
改善されることが明らかである。
From Table 1, it is clear that according to the method of the present invention, an anaerobic treatment liquid with extremely high transparency can be obtained, and the water quality of the membrane separation treatment liquid is also significantly improved.

また、第2図より、従来法(実験例2.4.5)では還
元硫黄の白濁のために透過流束が運転開始後急激に低下
して0.5〜in/secとなるが、本発明の方法によ
れば、白濁が解消されるため透過流束が約2 m / 
d a yと安定していることが明らかである。
In addition, from Figure 2, in the conventional method (Experiment Example 2.4.5), the permeation flux rapidly decreases to 0.5 to in/sec after the start of operation due to the cloudiness of reduced sulfur; According to the method of the invention, since cloudiness is eliminated, the permeation flux is approximately 2 m /
It is clear that d a y is stable.

このため、従来法においては、膜分離装置の膜洗浄頻度
が1日1回であったのに対し、本発明方法によれば4〜
5日に1回と、膜洗浄頻度を大幅に低減することができ
る。
For this reason, in the conventional method, the membrane separation frequency of the membrane separation device was once a day, whereas in the method of the present invention, the frequency of cleaning the membrane is 4 to 4 times a day.
Membrane cleaning frequency can be significantly reduced to once every 5 days.

なお、実験例1において、NaCuOの注入を間歇注入
として、膜分離装置の循環水に2〜3時間毎に約500
ppm注入しても同様の効果が得られることが認められ
た。
In Experimental Example 1, NaCuO was intermittently injected, and about 500 ml of NaCuO was added to the circulating water of the membrane separator every 2 to 3 hours.
It was found that similar effects can be obtained even when ppm is injected.

[発明の効果] 以上詳述した通り、本発明の有機性廃水の処理方法によ
れば、嫌気性処理液の還元硫黄による白濁が解消され、
極めて透視度の高い嫌気性処理液が得られる。このため
後工程の膜分離処理における白濁物に起因する膜の目詰
りが防止され、透過流束な高く、安定に維持することが
可能とされ、膜洗浄頻度も低減されると共に、処理水水
質も大幅に向上する。
[Effects of the Invention] As detailed above, according to the organic wastewater treatment method of the present invention, cloudiness caused by reduced sulfur in the anaerobic treatment liquid is eliminated,
An anaerobic treatment liquid with extremely high transparency can be obtained. This prevents clogging of the membrane caused by white turbidity during the membrane separation process in the post-process, making it possible to maintain a high and stable permeation flux, reducing the frequency of membrane cleaning, and improving the quality of the treated water. will also be significantly improved.

従って、本発明の方法によれば、有機性廃水の処理効率
が向上し、低コストで高水質の処理液を得ることが可能
とされる。
Therefore, according to the method of the present invention, the treatment efficiency of organic wastewater is improved, and it is possible to obtain a high-quality treated liquid at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の有機性廃水の処理方法の実施に好適な
処理装置の一例を示す系統図である。 第2図は実験例1〜5で得られた膜分離装置の透過流束
の経時変化を示すグラフである。 1・・・廃液調整槽、  4・・・第1反応槽、7・・
・第2反応槽、  8・・・気液分離槽、10・・・膜
種環水槽、  12・・・膜分離装置。 代理人  弁理士  重 舒  剛
FIG. 1 is a system diagram showing an example of a treatment apparatus suitable for implementing the organic wastewater treatment method of the present invention. FIG. 2 is a graph showing the change over time in the permeation flux of the membrane separation apparatus obtained in Experimental Examples 1 to 5. 1... Waste liquid adjustment tank, 4... First reaction tank, 7...
- Second reaction tank, 8... Gas-liquid separation tank, 10... Membrane type ring tank, 12... Membrane separation device. Agent Patent Attorney Tsuyoshi Shige

Claims (1)

【特許請求の範囲】[Claims] (1)有機性廃水を嫌気性処理し、その処理液を膜分離
処理する方法において、膜分離処理に供する被処理液に
酸化剤を添加した後、膜分離処理することを特徴とする
有機性廃水の処理方法。
(1) A method of anaerobically treating organic wastewater and membrane-separating the treated liquid, which comprises adding an oxidizing agent to the liquid to be treated and then subjecting it to membrane separation. Wastewater treatment methods.
JP63031048A 1988-02-12 1988-02-12 Treatment of waste organic water Pending JPH01207187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031048A JPH01207187A (en) 1988-02-12 1988-02-12 Treatment of waste organic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031048A JPH01207187A (en) 1988-02-12 1988-02-12 Treatment of waste organic water

Publications (1)

Publication Number Publication Date
JPH01207187A true JPH01207187A (en) 1989-08-21

Family

ID=12320599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031048A Pending JPH01207187A (en) 1988-02-12 1988-02-12 Treatment of waste organic water

Country Status (1)

Country Link
JP (1) JPH01207187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096720A1 (en) * 2003-03-31 2004-11-11 Ebara Corporation Method and system for methane fermentation treatment of wastewater containing sulfur compound
JP2006198484A (en) * 2005-01-18 2006-08-03 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096720A1 (en) * 2003-03-31 2004-11-11 Ebara Corporation Method and system for methane fermentation treatment of wastewater containing sulfur compound
US7374682B2 (en) 2003-03-31 2008-05-20 Ebara Corporation Method and apparatus for the methane fermentation treatment of wastewater containing sulfur compound
JP2006198484A (en) * 2005-01-18 2006-08-03 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method

Similar Documents

Publication Publication Date Title
JP4632356B2 (en) Biological nitrogen removal method and system
JPH0663592A (en) Ultra-pure water producing apparatus
US6592763B1 (en) Method and device for treating aqueous flows in a bioreactor, an ultrafiltration unit and a membrane filtration unit
CN109437474A (en) A kind of combined oxidation-BAC process removing coking reverse osmosis concentrated water organic matter
JP2007044579A (en) Biomass treatment system
KR100327151B1 (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP3721871B2 (en) Production method of ultra pure water
JP4006011B2 (en) Method and apparatus for treating organic waste
JP5801769B2 (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
JP2008510619A (en) Anoxic biological reduction systems and methods
JPS58210897A (en) Biological dephosphorization method of waste water
CN111362496A (en) Low-energy-consumption membrane-method antibiotic pharmaceutical wastewater recycling system and treatment process thereof
JP3636035B2 (en) Digestion method of organic sludge
JPH01207187A (en) Treatment of waste organic water
KR20200000056A (en) The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane
ES2220535T3 (en) PROCEDURE FOR THE ELIMINATION OF ORGANIC MATERIAL THAT IS REFRACTORY TO BIOLOGICAL TREATMENT.
CN212269808U (en) Reverse osmosis strong brine processing system
JPS62221493A (en) Method for treating membrane bioreactor
JPH105789A (en) Treatment of methane fermentation treating liquid and treating facility
JPS6331592A (en) Method for making ultrapure water
JPH0871593A (en) Water treatment method
KR20190000157A (en) The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane
KR20200101663A (en) Equipment capable of filtering of livestock wastewater and cleaning of membrane
JP3937625B2 (en) Biological treatment method for organic waste