JPH01206514A - Manufacture of transparent conductive laminating body - Google Patents

Manufacture of transparent conductive laminating body

Info

Publication number
JPH01206514A
JPH01206514A JP7761488A JP7761488A JPH01206514A JP H01206514 A JPH01206514 A JP H01206514A JP 7761488 A JP7761488 A JP 7761488A JP 7761488 A JP7761488 A JP 7761488A JP H01206514 A JPH01206514 A JP H01206514A
Authority
JP
Japan
Prior art keywords
vacuum
atmosphere
heat treatment
transparent conductive
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7761488A
Other languages
Japanese (ja)
Other versions
JP2828987B2 (en
Inventor
Tsukasa Miyazaki
司 宮崎
Yasuhito Owaki
泰人 大脇
Masaharu Seki
正治 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26418684&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01206514(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP63077614A priority Critical patent/JP2828987B2/en
Publication of JPH01206514A publication Critical patent/JPH01206514A/en
Application granted granted Critical
Publication of JP2828987B2 publication Critical patent/JP2828987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a laminating body of low resistance and high transparency by forming a metallic oxide thin film which mainly includes indium oxide on plastic base material according to a sputtering method and thereafter performing heat treatment under non-oxidizing gas atmosphere or vacuum atmosphere. CONSTITUTION:A metallic oxide thin film which mainly includes indium oxide is formed on plastic base material according to a sputtering method, and thereafter it is subjected to heat treatment under non-oxidizing gas atmosphere or vacuum atmosphere. As the non-oxidizing gas atmosphere, inert gas such as nitrogen gas or argon gas is taken. Also, the vacuum degree of the vacuum atmosphere is generally high vacuum degree of less than 1X10<-5>Torr. The temperature of the heat treatment is generally 150-200 deg.C even if it is under the non-oxidizing gas atmosphere or vacuum atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はプラスチック基材と金属酸化物薄膜とからな
る透明導電性積層体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a transparent conductive laminate comprising a plastic base material and a metal oxide thin film.

〔従来の技術〕[Conventional technology]

透明導電性積層体としては、基材としてガラスまたはプ
ラスチックを用いたもの、またこの上に設ける透明導電
性層を金、パラジウムなどの金属薄膜タイプとしたもの
、インジウム酸化物、スズ酸化物、チタン酸化物などの
金属酸化物薄膜タイプとしたもの、チタン酸化物/銀/
チタン酸化物の如き多層薄膜タイプとしたものなどが数
多く知られている。
Transparent conductive laminates include those that use glass or plastic as a base material, those that have a transparent conductive layer formed on top of this as a metal thin film type such as gold or palladium, indium oxide, tin oxide, or titanium. Metal oxide thin film type such as oxide, titanium oxide/silver/
Many multilayer thin film types such as titanium oxide are known.

これらの積層体の中でも、プラスチック基材上に金属酸
化物薄膜を設けてなるものは、軽量性。
Among these laminates, those made by providing a metal oxide thin film on a plastic base material are lightweight.

加工性、耐衝撃性、可撓性などにすぐれるうえに、透明
性および導電性にもすぐれているため、各種の産業分野
で広く利用されている。また、このような金属酸化物薄
膜タイプのうち、上記薄膜をインジウム酸化物を主とし
て含むもの、たとえばインジウム酸化物単独またはこれ
に少量のスズを加えた混合酸化物(以下、ITOという
)などで構成した積層体は、透明性および導電性が特に
良好で、しかもエツチング特性にすぐれて電極のパター
ン化が容易であるといった特徴を有していることから、
実用性の最も高いものとして近年特に注目を浴びている
It has excellent processability, impact resistance, flexibility, etc., as well as excellent transparency and conductivity, so it is widely used in various industrial fields. Furthermore, among these types of metal oxide thin films, the thin film may be composed mainly of indium oxide, such as indium oxide alone or a mixed oxide containing a small amount of tin (hereinafter referred to as ITO). The resulting laminate has particularly good transparency and conductivity, as well as excellent etching properties and easy patterning of electrodes.
It has attracted particular attention in recent years as the most practical.

従来、このようなプラスチック基材とITOなどのイン
ジウム酸化物を主として含む金属酸化物薄膜とからなる
積層体は、上記基材上に上記薄膜をスパッタリング法に
より形成するという方法で製造されている。これは、ス
パッタリング法によると、長時間にわたる製膜が可能で
、かつ膜組成のずれが少なく、しかも広幅化が容易であ
るなどの利点が得られるためである。
Conventionally, a laminate consisting of such a plastic base material and a metal oxide thin film mainly containing indium oxide such as ITO has been manufactured by forming the thin film on the base material by sputtering. This is because the sputtering method has advantages such as being able to form a film over a long period of time, having little deviation in film composition, and being easy to widen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記方法で製造される積層体は、ガラス
基板上に上記と同様の金属酸化物薄膜を上記と同様の手
段で設けたものに較べて、透明性および導電性に劣ると
いう問題を有していた。この理由は、ガラス基板におい
ては、スパッタリングに際し基板温度を300℃程度の
高温に加熱でき、この加熱によって形成される酸化物薄
膜の性状を透明性および導電性を高めうるに適したもの
とすることができるのに対し、プラスチック基材ではそ
の耐熱性の点から、上記の如き高温に加熱することがで
きないためである。
However, the laminate produced by the above method has a problem in that it is inferior in transparency and conductivity compared to a laminate in which the same metal oxide thin film as above is provided on a glass substrate by the same means as above. was. The reason for this is that the glass substrate can be heated to a high temperature of about 300°C during sputtering, and the properties of the oxide thin film formed by this heating are suitable for increasing transparency and conductivity. This is because, on the other hand, plastic base materials cannot be heated to such high temperatures due to their heat resistance.

この発明は、上記の事情に鑑み、スパッタリング後に特
定の加熱処理を施すことにより、プラスチック基材上に
ITOなどのインジウム酸化物を主として含む金属酸化
物薄膜をスパッタリング法で形成する方法における前記
透明性および導電性の低下の問題を克服し、従来技術で
は達成できなかった低抵抗で高透明性の積層体を製造し
うる方法を提供することを目的としている。
In view of the above circumstances, the present invention provides a method for forming a metal oxide thin film mainly containing indium oxide such as ITO on a plastic substrate by sputtering, by performing a specific heat treatment after sputtering. It is an object of the present invention to provide a method capable of overcoming the problem of reduction in conductivity and producing a laminate with low resistance and high transparency, which could not be achieved using conventional techniques.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために鋭意検討
した結果、スパッタリング法によりインジウム酸化物を
主として含む金属酸化物薄膜を形成したのちに、非酸化
性ガス雰囲気下または真空雰囲気下で加熱処理すると、
プラスチック基材を用いた積層体の透明性および導電性
を大きく向上できるものであることを知り、この発明を
完成するに至った。
As a result of intensive studies to achieve the above object, the inventors formed a metal oxide thin film mainly containing indium oxide by sputtering, and then heated it under a non-oxidizing gas atmosphere or a vacuum atmosphere. When processed,
This invention was completed after learning that the transparency and conductivity of a laminate using a plastic base material can be greatly improved.

すなわち、この発明は、プラスチック基材上にインジウ
ム酸化物を主として含む金属酸化物薄膜をスパッタリン
グ法により形成したのち、非酸化性ガス雰囲気下または
真空雰囲気下で加熱処理することを特徴とする透明導電
性積層体の製造方法に係るものである。
That is, the present invention provides a transparent conductive film characterized in that a metal oxide thin film mainly containing indium oxide is formed on a plastic substrate by a sputtering method, and then heat-treated in a non-oxidizing gas atmosphere or a vacuum atmosphere. The present invention relates to a method for producing a laminate.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明におけるプラスチック基材としては、透明性お
よび耐熱性の良好なものであれば特に限定されず、ポリ
エステル、ポリアミド、ポリプロピレン、ポリカーボネ
ート、ポリイミド、ポリパラバン酸、ポリアミドイミド
、ポリベンゾイミダゾール、トリアセテート、ポリアク
リル、セルロース樹脂、フッ素樹脂などの各種のプラス
チックを広く使用できる。基材の形態は、通常はシート
状やフィルム状とされるが、その他の成型品とされたも
のであってもよい。シート状やフィルム状物である場合
の基材厚みは、一般に25〜200μm程度である。
The plastic base material in this invention is not particularly limited as long as it has good transparency and heat resistance, and includes polyester, polyamide, polypropylene, polycarbonate, polyimide, polyparabanic acid, polyamideimide, polybenzimidazole, triacetate, and polyacrylic. Various plastics such as cellulose resin, fluororesin, etc. can be widely used. The shape of the base material is usually a sheet or a film, but it may also be in the form of other molded products. The thickness of the base material in the case of a sheet-like or film-like product is generally about 25 to 200 μm.

このようなプラスチック基材に金属酸化物薄膜を設ける
に先立って、溶剤洗浄、超音波洗浄などにより除塵、清
浄化し、必要ならば薄膜と基材との接着性や耐摩耗性を
向上させるための下塗り層の形成や表面処理を施すよう
にしてもよい。このような下塗り層の形成や表面処理を
施すには、特公昭57−39004号公報などに開示さ
れているような公知の方法を採用して行うことができる
Before forming a metal oxide thin film on such a plastic substrate, it is cleaned and cleaned by solvent cleaning, ultrasonic cleaning, etc., and if necessary, it is cleaned to improve the adhesion and abrasion resistance between the thin film and the substrate. Formation of an undercoat layer or surface treatment may also be performed. Formation of such an undercoat layer and surface treatment can be carried out by employing known methods such as those disclosed in Japanese Patent Publication No. 57-39004.

この発明においては、まず上記のプラスチック基材上に
ITOなどのインジウム酸化物を主として含む金属酸化
物薄膜をスパッタリング法にて形成する。スパッタリン
グ法自体は公知の方法に準じて行うことができ、たとえ
ば直流または高周波二極スパッタリング、直流または高
周波マグネトロンスパッタリング、イオンビームスパッ
タリングなどの方式を採用できる。これらの中でも、マ
グネトロンスパッタリング方式は、プラスチック基材へ
のプラズマ衝撃が少なく、高速製膜が可能なため、好ま
しい。
In this invention, first, a metal oxide thin film mainly containing indium oxide such as ITO is formed on the plastic base material by sputtering. The sputtering method itself can be carried out according to a known method, and methods such as direct current or high frequency bipolar sputtering, direct current or high frequency magnetron sputtering, and ion beam sputtering can be employed. Among these, the magnetron sputtering method is preferable because it causes less plasma impact on the plastic base material and enables high-speed film formation.

ターゲットとしては、金属インジウムまたはこれを主成
分としてこれにスズなどの他の金属を通常10重量%以
下含む合金を用いるか、あるいは酸化インジウムまたは
これを主成分としてこれに酸化スズなどの他の金属酸化
物を金属換算で上記と同様の割合で含む複合酸化物から
なる焼結体が用いられる。前者においては、アルゴンガ
スなどの不活性ガスと酸素ガスとの混合ガスを真空槽内
に導入して、反応性スパッタリングを行い、また後者に
おいては、アルゴンガスなどの不活性ガス単独かまたは
これに微量の酸素ガスを混合したものを真空槽内に導入
してスパッタリングを行えばよい。
As a target, use metal indium or an alloy containing indium as the main component and usually 10% by weight or less of other metals such as tin, or indium oxide or an alloy containing indium as the main component and other metals such as tin oxide. A sintered body made of a composite oxide containing the oxide in the same proportion as above in terms of metal is used. In the former, reactive sputtering is performed by introducing a mixed gas of an inert gas such as argon gas and oxygen gas into a vacuum chamber, and in the latter, an inert gas such as argon gas alone or in combination with it is used. Sputtering may be performed by introducing a mixture of a trace amount of oxygen gas into a vacuum chamber.

スパッタリング時のプラスチック基材の温度は、基材の
耐熱度に応じて決められるが、一般には200℃以下、
好ましくは25〜100℃の範囲とするのがよい。製膜
条件は、スパッタリング方式、ターゲットの材料および
導入ガス雰囲気などによって大きく異なるため、−概に
は決められない。
The temperature of the plastic base material during sputtering is determined depending on the heat resistance of the base material, but is generally 200°C or less,
Preferably, the temperature is in the range of 25 to 100°C. Film forming conditions cannot be generally determined because they vary greatly depending on the sputtering method, target material, introduced gas atmosphere, and the like.

マグネトロンスパッタリング方式では、たとえば真空度
をI X 10−3〜I X 10−”To r r、
放電電流を1.5〜3Aとして、製膜速度を300〜6
00人/分とするのがよい。
In the magnetron sputtering method, the degree of vacuum is, for example, IX 10-3 to IX 10-''Torr,
The discharge current was set to 1.5 to 3 A, and the film forming rate was set to 300 to 6.
It is preferable to set the rate to 00 people/minute.

このようにして形成されるインジウム酸化物を主として
含む金属酸化物薄膜の厚みは、通常40〜3,000人
の範囲とするのが適当である。この薄膜は、スパッタリ
ング方式、ターゲットの材料および導入ガス雰囲気など
によって、酸化度その他の膜性状が大きく異なったもの
となり、それに伴って透明性や導電性も相違してくるが
、上記膜性状をいかに好適なものとしても、ガラス基板
を用いたものと比較すれば、透明性および導電性の低下
は避けられない。
The thickness of the metal oxide thin film mainly containing indium oxide formed in this way is usually in the range of 40 to 3,000. The degree of oxidation and other film properties of this thin film vary greatly depending on the sputtering method, target material, introduced gas atmosphere, etc., and the transparency and conductivity of this thin film also vary accordingly. Even if it is suitable, it is inevitable that the transparency and conductivity will be lower than that using a glass substrate.

そこで、この発明では、上記薄膜形成後に、非酸化性ガ
ス雰囲気下または真空雰囲気下で加熱処理して、透明性
および導電性の大幅な向上を図る。
Therefore, in the present invention, after the thin film is formed, it is heat-treated in a non-oxidizing gas atmosphere or a vacuum atmosphere to significantly improve transparency and conductivity.

ところで、従来においても、薄膜形成後に加熱処理を施
して膜性状を変える試みはなされていたが、この加熱処
理は酸化性ガス雰囲気下で行われ、主に膜の酸化度を高
めることによって透明性などを高めようとしたものであ
る。しかるに、この発明のように、非酸化性ガス雰囲気
下または真空雰囲気下で加熱処理したときに、膜の透明
性および導電性が大きく向上することについては全く知
られていなかったことであり、この発明者らが初めて見
い出したことである。このように透明性および導電性が
向上する理由は、今のところ明らかではないが、膜の緻
密化、結晶質化など酸化度以外の膜性状の変化がおこる
ためではないかと推定される。
By the way, in the past, attempts have been made to change the film properties by applying heat treatment after forming the thin film, but this heat treatment is performed in an oxidizing gas atmosphere, and mainly improves transparency by increasing the degree of oxidation of the film. It was an attempt to increase the However, it was not known at all that the transparency and conductivity of the film were greatly improved when heat-treated in a non-oxidizing gas atmosphere or a vacuum atmosphere, as in this invention. This was discovered for the first time by the inventors. The reason why transparency and conductivity improve in this way is not clear at present, but it is presumed that it is due to changes in film properties other than the degree of oxidation, such as densification and crystallization of the film.

非酸化性ガス雰囲気としては、窒素ガスやアルゴンガス
などの不活性ガス雰囲気とすればよい。
The non-oxidizing gas atmosphere may be an inert gas atmosphere such as nitrogen gas or argon gas.

また、真空雰囲気の真空度は特に限定されないが、1×
10−5Torr以下の高真空度とするのが好ましい。
In addition, the degree of vacuum of the vacuum atmosphere is not particularly limited, but is 1×
A high degree of vacuum of 10 −5 Torr or less is preferable.

高真空度とした方が好ましい理由は、以下のとおりであ
る。
The reason why it is preferable to use a high degree of vacuum is as follows.

すなわち、既述のとおり、この発明の上記の加熱処理に
より透明性および導電性を改善しうるが、その程度は加
熱処理を行う前のスパッタリング時の条件、特に酸素ガ
ス導入量によってかなり相違し、この導入量を適正範囲
に設定したときに、最も高い透明性および導電性が得ら
れる。ここで、上記の加熱処理を真空雰囲気下で行う場
合、低真空度とするよりも高真空度とした方が、上記ス
パッタリング時の酸素ガス導入量の適正範囲をより広(
とることができる。
That is, as mentioned above, transparency and conductivity can be improved by the heat treatment of the present invention, but the degree of improvement varies considerably depending on the sputtering conditions before the heat treatment, especially the amount of oxygen gas introduced. The highest transparency and conductivity can be obtained when the amount introduced is set within an appropriate range. Here, when performing the above heat treatment in a vacuum atmosphere, it is better to use a high degree of vacuum than a low degree of vacuum to widen the appropriate range of the amount of oxygen gas introduced during the sputtering (
You can take it.

たとえば、後記の実施例1におけるようなl×10−’
To r r程度の低真空度での加熱処理では、第1図
の曲線−1aにて示されるように、100〜15007
口となる最も高い導電性を得るには、スパッタリング時
の酸素ガス導入量を34〜35゜53CCMの範囲に設
定しておくことが望まれる。
For example, l×10−′ as in Example 1 described later.
In heat treatment at a low degree of vacuum such as Torr, as shown by curve 1a in FIG.
In order to obtain the highest conductivity, it is desirable to set the amount of oxygen gas introduced during sputtering in the range of 34 to 35 degrees and 53 CCM.

これに対し、後記の実施例2におけるような1×10−
5To r r程度の高真空度での加熱処理によれば、
同図の曲線−10にて示されるように、上記と同じ導電
性を得るのに、上記酸素ガス導入量を34〜36.53
CCMの広い範囲に設定することができる。
In contrast, 1×10 − as in Example 2 described later
According to heat treatment at a high degree of vacuum of about 5 Torr,
As shown by curve 10 in the figure, to obtain the same conductivity as above, the amount of oxygen gas introduced is 34 to 36.53.
CCM can be set in a wide range.

このように、1×10−5Torr以上の高真空雰囲気
下で加熱処理を行うようにすれば、スパッタリング時の
酸素ガス導入量を微妙に調節しなくても、高い透明性お
よび導電性が安定して得られ、この点で非常に有利とな
るのである。
In this way, by performing heat treatment in a high vacuum atmosphere of 1 x 10-5 Torr or more, high transparency and conductivity can be maintained without delicately adjusting the amount of oxygen gas introduced during sputtering. In this respect, it is very advantageous.

なお、この発明の上記加熱処理時の温度はミ非酸化性ガ
ス雰囲気下であっても真空雰囲気下であっても、一般に
150〜200℃、好ましくは160〜180℃とする
のがよい。かかる温度下で通常2〜8時間の加熱処理を
施すことにより、目的とする低抵抗でかつ高透明性の積
層体を得ることができる。
Incidentally, the temperature during the heat treatment of the present invention is generally 150 to 200°C, preferably 160 to 180°C, whether under a non-oxidizing gas atmosphere or a vacuum atmosphere. By performing heat treatment at such a temperature for usually 2 to 8 hours, a desired laminate with low resistance and high transparency can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の方法によれば、プラスチック
基材とインジウム酸化物を主として含む金属酸化物薄膜
とからなる透明性および導電性にすぐれる積層体を製造
できるから、液晶デイスプレィ、エレクト西ルミネッセ
ンスデイスプレィなどの新しいデイスプレィ方式におけ
る透明電極のほか、透明物品の帯電防止や電磁波遮断な
どの種々の用途に適した透明導電性積層体を提供するこ
とができる。
As described above, according to the method of the present invention, a laminate consisting of a plastic base material and a metal oxide thin film mainly containing indium oxide, which has excellent transparency and conductivity, can be manufactured. In addition to transparent electrodes for new display systems such as luminescent displays, it is possible to provide transparent conductive laminates suitable for various uses such as preventing static electricity in transparent articles and blocking electromagnetic waves.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 真空槽内に、厚さ75μmのポリエステルフィルムと、
ターゲットとして金属インジウムを生成分としスズを1
0重量%含む合金とを、セットし、真空度4X10−3
Torr、アルゴンガス導入量130 S CCM (
standard cubic centimeter
s /m1nute) 、酸素ガス導入134.43C
CM、放電電流1.5 A、製膜速度450人/分の条
件でマグネトロンスパッタリングを行い、上記のポリエ
ステルフィルム上に膜厚180人のITO薄膜を形成し
た。その後、1×10−5Torrの真空雰囲気下で1
80°Cで6時間の加熱処理を施して、透明導電性積層
体を作製した。
Example 1 A polyester film with a thickness of 75 μm was placed in a vacuum chamber,
Metallic indium is used as a target and tin is added as a production component.
Set the alloy containing 0% by weight and vacuum 4X10-3.
Torr, argon gas introduction amount 130 S CCM (
standard cubic centimeter
s/m1nute), oxygen gas introduction 134.43C
Magnetron sputtering was performed under the conditions of CM, discharge current of 1.5 A, and film forming rate of 450 persons/min to form an ITO thin film with a thickness of 180 persons/min on the above polyester film. After that, 1 × 10-5 Torr vacuum atmosphere
A transparent conductive laminate was produced by heat treatment at 80°C for 6 hours.

この積層体は、そのシート抵抗が110Ω/口、波長5
50nmの光透過率が87%であって、低抵抗でかつ高
透明性を有するものであった。
This laminate has a sheet resistance of 110Ω/hole and a wavelength of 5
The light transmittance at 50 nm was 87%, and it had low resistance and high transparency.

つぎに、酸素ガス導入量を変更した以外は、上記と全く
同じ条件で膜厚180人のマグネトロンスパッタリング
を行い、その後上記と全く同じ加熱処理を施して得た各
種の透明導電性積層体Aと、加熱処理を省いた以外は上
記同様にして得た各種の透明導電性積層体Bとにつき、
上記酸素ガス導入量とシート抵抗および波長550nm
の光透過率との関係を調べた。その結果は、第1図およ
び第2図に示されるとおりであった。
Next, magnetron sputtering was performed to a film thickness of 180 mm under the same conditions as above, except that the amount of oxygen gas introduced was changed, and then various transparent conductive laminates A were obtained by performing the same heat treatment as above. , and various transparent conductive laminates B obtained in the same manner as above except that the heat treatment was omitted.
The above oxygen gas introduction amount, sheet resistance and wavelength 550nm
The relationship between light transmittance and light transmittance was investigated. The results were as shown in FIGS. 1 and 2.

第1図は酸素ガス導入量とシート抵抗との関係を、第2
図は酸素ガス導入量と波長550nmの光透過率との関
係をそれぞれ示し、両図中、曲線−1a、2aは透明導
電性積層体Aの結果、曲線−1b、2bは透明導電性積
層体Bの結果、である。
Figure 1 shows the relationship between the amount of oxygen gas introduced and the sheet resistance.
The figures show the relationship between the amount of oxygen gas introduced and the light transmittance at a wavelength of 550 nm. In both figures, curves -1a and 2a are the results for transparent conductive laminate A, and curves -1b and 2b are for the transparent conductive laminate. The result of B is.

上記両図から明らかなように、この発明の特定の加熱処
理を施した透明導電性積層体Aおよび上記加熱処理を施
さない透明導電性積層体B共にマグネトロンスパッタリ
ング時の酸素ガス導入量によってシート抵抗と光透過率
とが大きく変化するが、一定の酸素ガス導入量のもとで
はこの発明の透明導電性積層体Aの方が透明導電性積層
体Bに較べてより低いシート抵抗およびより高い光透過
率を有しているものであることが判る。
As is clear from the above two figures, the sheet resistance of both the transparent conductive laminate A subjected to the specific heat treatment of this invention and the transparent conductive laminate B not subjected to the above heat treatment depends on the amount of oxygen gas introduced during magnetron sputtering. However, under a constant amount of oxygen gas introduced, the transparent conductive laminate A of the present invention has lower sheet resistance and higher light transmittance than the transparent conductive laminate B. It can be seen that it has transmittance.

また、透明導電性積層体Bではマグネトロンスパッタリ
ング時の酸素ガス導入量を36.43 CCMとしたと
き最も低いシート抵抗(330Ω/口)が得られ、また
光透過率は85%とかなり高い値が得られているが、こ
れらの値はこの発明の透明導電性積層体Aの最高値(酸
素ガス尋人量を実施例1の34.43CCMとしたとき
のシート抵抗110Ω/口および光透過率87%)に較
べれば劣っており、この発明の方法により従来では達成
できなかった低抵抗でかつ高透明性の積層体の製造が可
能となることも明らかである。
In addition, in transparent conductive laminate B, when the amount of oxygen gas introduced during magnetron sputtering was set to 36.43 CCM, the lowest sheet resistance (330Ω/hole) was obtained, and the light transmittance was a fairly high value of 85%. However, these values are the highest values of the transparent conductive laminate A of the present invention (sheet resistance of 110 Ω/hole and light transmittance of 87 when the amount of oxygen gas is 34.43 CCM as in Example 1). %), and it is clear that the method of the present invention makes it possible to produce a laminate with low resistance and high transparency, which was previously unattainable.

実施例2 加熱処理の条件を1×10−5Torrの真空雰囲気下
180℃で6時間とした以外は、実施例1の透明導電性
積層体Aの場合と同様にして透明導電性積層体Cを作製
した。この積層体Cにつき、マグネトロンスパッタリン
グ時の酸素ガス導入量とシート抵抗との関係を調べた結
果は、第1図の曲線−10にて示されるとおりであった
Example 2 A transparent conductive laminate C was prepared in the same manner as in the case of the transparent conductive laminate A of Example 1, except that the heat treatment conditions were set at 180° C. for 6 hours in a vacuum atmosphere of 1×10 −5 Torr. Created. Regarding this laminate C, the relationship between the amount of oxygen gas introduced during magnetron sputtering and the sheet resistance was investigated, and the results were as shown by curve -10 in FIG.

この曲線から明らかなように、酸素ガス導入量が34〜
36.53CCMとなる広い範囲において、100〜1
50Ω/口の低いシート抵抗が得られており、このよう
な低抵抗値を示す積層体は透明性も85%以上と大変良
好であった。
As is clear from this curve, the amount of oxygen gas introduced is 34~
100 to 1 in a wide range of 36.53CCM
A low sheet resistance of 50 Ω/hole was obtained, and the laminate exhibiting such a low resistance value also had a very good transparency of 85% or more.

実施例3 実施例1と同様の方法で酸素ガス導入量を34゜43C
CMとして膜厚180人のマグネトロンスパッタリング
を行ったのち、1気圧のアルゴンガス雰囲気下180℃
で6時間の加熱処理を施して、透明導電性積層体を作製
した。この積層体のシート抵抗は130Ω/口、光透過
率は87%であった。
Example 3 Using the same method as Example 1, the amount of oxygen gas introduced was changed to 34°43C.
After performing magnetron sputtering with a film thickness of 180 mm as CM, the film was sputtered at 180°C in an argon gas atmosphere of 1 atm.
A transparent conductive laminate was produced by heat treatment for 6 hours. The sheet resistance of this laminate was 130Ω/hole, and the light transmittance was 87%.

実施例4 アルゴンガス雰囲気下の加熱処理に代えて、1気圧の窒
素ガス雰囲気下180℃で6時間の加熱処理を施した以
外は、実施例3と同様にして透明導電性積層体を作製し
た。この積層体のシート抵抗は135Ω/口、光透過率
は86.5%であった。
Example 4 A transparent conductive laminate was produced in the same manner as in Example 3, except that instead of heat treatment in an argon gas atmosphere, heat treatment was performed at 180° C. for 6 hours in a nitrogen gas atmosphere of 1 atm. . The sheet resistance of this laminate was 135Ω/hole, and the light transmittance was 86.5%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法およびこの発明とは異なる方法
で製造した透明導電性積層体に関しスパッタリング時の
酸素ガス導入量とシート抵抗との関係を示す特性図、第
2図は上記同様の透明導電性積層体に関しスパッタリン
グ時の酸素ガス導入量と光透過率との関係を示す特性図
である。 第1図 ?r”& #n”7.4.<](SCCM)第2図 βネn°ヌカλ量(SCCM)
Figure 1 is a characteristic diagram showing the relationship between the amount of oxygen gas introduced during sputtering and sheet resistance for transparent conductive laminates manufactured by the method of this invention and a method different from this invention, and Figure 2 is a characteristic diagram showing the relationship between the amount of oxygen gas introduced during sputtering and sheet resistance. FIG. 2 is a characteristic diagram showing the relationship between the amount of oxygen gas introduced during sputtering and the light transmittance of a conductive laminate. Figure 1? r” &#n”7.4.<] (SCCM) Fig. 2 β n° Nuka λ amount (SCCM)

Claims (2)

【特許請求の範囲】[Claims] (1)プラスチック基材上にインジウム酸化物を主とし
て含む金属酸化物薄膜をスパッタリング法により形成し
たのち、非酸化性ガス雰囲気下または真空雰囲気下で加
熱処理することを特徴とする透明導電性積層体の製造方
法。
(1) A transparent conductive laminate characterized in that a metal oxide thin film containing mainly indium oxide is formed on a plastic substrate by sputtering, and then heat-treated in a non-oxidizing gas atmosphere or a vacuum atmosphere. manufacturing method.
(2)真空雰囲気下での加熱処理における真空度が1×
10^−^5Torr以下の高真空度である請求項(1
)に記載の透明導電性積層体の製造方法。
(2) The degree of vacuum during heat treatment in a vacuum atmosphere is 1×
Claim (1) where the degree of vacuum is 10^-^5 Torr or less
) The method for producing a transparent conductive laminate according to
JP63077614A 1987-10-23 1988-03-29 Method for producing transparent conductive laminate Expired - Lifetime JP2828987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077614A JP2828987B2 (en) 1987-10-23 1988-03-29 Method for producing transparent conductive laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-267389 1987-10-23
JP26738987 1987-10-23
JP63077614A JP2828987B2 (en) 1987-10-23 1988-03-29 Method for producing transparent conductive laminate

Publications (2)

Publication Number Publication Date
JPH01206514A true JPH01206514A (en) 1989-08-18
JP2828987B2 JP2828987B2 (en) 1998-11-25

Family

ID=26418684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077614A Expired - Lifetime JP2828987B2 (en) 1987-10-23 1988-03-29 Method for producing transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP2828987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164882A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Laminate having excellent reliability and workability and method for producing laminate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209809A (en) * 1982-05-31 1983-12-06 株式会社東芝 Method of forming transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209809A (en) * 1982-05-31 1983-12-06 株式会社東芝 Method of forming transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164882A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Laminate having excellent reliability and workability and method for producing laminate

Also Published As

Publication number Publication date
JP2828987B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
TWI239938B (en) Conductive transparent layers and method for their production
JP2525475B2 (en) Transparent conductive laminate
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JP4010587B2 (en) Transparent conductive laminate and electroluminescence light emitting device using the same
JP4287001B2 (en) Transparent conductive laminate
JPH06136159A (en) Transparent conductive film and its production
JPS6179647A (en) Manufacture of transparent conductive laminate
JPH02221365A (en) Production of transparent conductive laminate
JPH02276630A (en) Transparent conductive laminate and manufacture thereof
JP3483355B2 (en) Transparent conductive laminate
JP3511337B2 (en) Transparent conductive laminate and method for producing the same
JPS61183809A (en) Transparent conductive laminate body and manufacture thereof
JPH01206514A (en) Manufacture of transparent conductive laminating body
JP3501820B2 (en) Transparent conductive film with excellent flexibility
JP2000192237A (en) Production of high transparent gas barrier film
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPH09234816A (en) Transparent conductive laminate
JPH08132554A (en) Transparent conductive film
JP3654841B2 (en) Transparent conductive film and method for producing the same
JP3501819B2 (en) Transparent conductive film with excellent flatness
JPH10278159A (en) Production of transparent conductive membrane laminate
JP4567127B2 (en) Transparent conductive laminate
JPH01100260A (en) Manufacture of laminated body of transparent conductive film
JPH0468315A (en) Transparent conductive film and production thereof
JPH09272172A (en) Laminated body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10