JPH01206355A - Photosensitive body - Google Patents

Photosensitive body

Info

Publication number
JPH01206355A
JPH01206355A JP63031303A JP3130388A JPH01206355A JP H01206355 A JPH01206355 A JP H01206355A JP 63031303 A JP63031303 A JP 63031303A JP 3130388 A JP3130388 A JP 3130388A JP H01206355 A JPH01206355 A JP H01206355A
Authority
JP
Japan
Prior art keywords
layer
atm
silicon
photoreceptor
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031303A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakanishi
達雄 中西
Yuji Marukawa
丸川 雄二
Satoshi Takahashi
智 高橋
Toshiki Yamazaki
山崎 敏規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP63031303A priority Critical patent/JPH01206355A/en
Publication of JPH01206355A publication Critical patent/JPH01206355A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain the photosensitive body which withstands repetitive use and with which good images are obtainable by incorporating a carbon atom and oxygen atom into a surface reformed layer and doping an impurity element under specific conditions therein. CONSTITUTION:This photosensitive body has a charge generating layer 43 consisting of amorphous silicon hydride and/or halide and a charge transfer layer 42 consisting of amorphous silicon hydride and/or carbohalide as well as the surface reformed layer 45 on the surface of either thereof. The surface reformed layer 45 consists of the amorphous silicon hydride and/or halide contg. the carbon and oxygen atoms and contg. the impurity element of group IIIA of the periodic table as well. The content of the oxygen atom is specified to 1-20atm.% (where the total content of the silicon atom and the carbon atom and oxygen atom is designated as 100atm.%) and the surface reformed layer 45 doped with the impurity element under the conditions expressed by formula I at the time of forming the surface reformed layer 45 is formed. The photosensitive body which withstands the repetitive use and with which the good images are obtd. is thereby obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

イ、産業上の利用分野 本発明は感光体、例えば電子写真感光体に関するもので
ある。 口、従来技術 従来、電子写真感光体として、アモルファスシリコン(
a−3i)を母体として用いた電子写真感光体が近年に
なって提案されている。 このようなa−3iはいわゆるダングリングボンドを有
しているため、この欠陥を水素原子で補償して暗抵抗を
大としかつ光導電性も向上させたアモルファス水素化シ
リコン(a−3i : If)が提案されている。 しかしながら、a−3i:Hを表面とする感光体は、長
期に亘って大気や湿気に曝されることによる影響、コロ
ナ放電で生成される化学種の影響等の如き表面の化学的
安定性に関して、これまで十分な検討がなされていない
。例えば1力月以上放置したものは湿気の影響を受け、
受容電位が著しく低下することが分っている。一方、ア
モルファス水素化炭化シリコン(以下、a−3iC:H
と称する。)について、その製法や存在が” Phi、
  Mag、  Vol、 35”  (1978)等
に記載されており、その特性として、耐熱性や表面硬度
が高いこと、a−3i:Hと比較して高い暗所抵抗率(
10” 〜10”Ω−cJ)を有すルコト、炭素量ニよ
り光学的エネルギーギャップが1.6〜2.8eVの範
囲に亘って変化すること等が知られている。 但、炭素の含有によりバンドギャップが拡がるために長
波長感度が不良となるという欠点がある。 こうしたa−3iC:Hとa−3i:Hとを組合せた電
子写真感光体は例えば特開昭57−115559号公報
において提案されている。これによれば、a−3i:H
からなる電荷発生層上にa−8iC:H層を表面改質層
として形成している。 しかしながら、上記の公知の感光体について本発明者が
検討を加えたところ、表面改質層を設けても、未だ期待
した程には効果がなく、特に画像流れが生じ易いことが
判明した。 ハ0発明の目的 本発明の目的は、繰返し使用に耐え、良好な画像を得る
ことのできる感光体を提供することにある。 二1発明の構成及びその作用効果 即ち、本発明は、アモルファス水素化及び/又はハロゲ
ン化シリコンからなる電荷発生層と、アモルファス水素
化及び/又はハロゲン化炭化シリコンからなる電荷輸送
層と、前記電荷発生層又は電荷輸送層の表面に被着され
た表面改質層とを有し、この表面改質層が炭素原子及び
酸素原子を含有しかつ周期表第mA族の不純物元素も含
有するアモルファス水素化及び/又はハロゲン化シリコ
ンからなり、前記酸素原子の量が1〜20 atm%(
但し、シリコン原子と炭素原子と酸素原子との合計量を
100a tm%とする。)であり、かつ前記不純物元
素がグロー放電分解による前記表面改質層の形成時に、 の条件下で前記表面改質層中にドープされたちのである
感光体に係るものである。 本発明によれば、表面改質層は炭素原子及び酸素原子を
含有しているので、層の機械的強度及び光学的バンドギ
ャップ(Eg、opt)が大となり、白スジ発生等によ
る画質の劣化がなく、耐刷性が優れたものとなる。しか
も、表面改質層には、上記した不純物元素が10−’ 
〜103容ffl (vol)pl”の割合でドープさ
れているので、画像形成時に画像流れを大きく減少させ
ることができる。これは、上記不純物元素によって層の
表面抵抗及び不純物準位が適切に設定されるためである
と思われる。 また、上記の電荷発生層と上記の電荷輸送層とを設けて
機能分離型の積層構造としているので、電荷発生層によ
って広い波長域での光感度を得、かつこの電荷発生層と
へテロ接合を形成する電荷輸送層によって電荷輸送能と
帯電電位の向上とを図ることができる。 ホ、実施例 以下、本発明を実施例について詳細に説明する。 第1図は、本実施例によるa−3i系電子写真感光体3
9を示すものである。この感光体39はAn等のドラム
状導電性支持基板41上に、必要に応じて設けられるa
−3i系の電荷ブロッキング層44と、アモルファス水
素化炭化シリコン(a−3i C: l()からなる電
荷輸送JEJ42と、a−3i:、Hからなる電荷発生
層(不純物ドーピングなし又は真性化されたもの)43
と、C及び0を含有するa−3i  (Co):Hから
なる表面改質層45とが積層された構造からなっている
。 電荷ブロッキング層44は、a−3t:Hla−3iC
:H又はa−3iN:Hからなっていてよく、また周期
表第11rA族又は第VA族元素がドープされていてよ
い。また、電荷輸送層42、電荷発生層43にも同様の
不純物がドープされていてよい。電荷発生層43は、暗
所抵抗率ρ。と光照射時の抵抗率ρ、との比が電子写真
感光体として充分大きく光感度(特に可視及び赤外領域
の光に対するもの)が良好である。 ここで注目すべきことは、表面改質層45がC及び○を
含有するa−3i  (CO):Hからなっていること
である。これによって、表面改質層45の機械的強度が
向上すると共に、光学的バンドギャップが向上する。 表面改質層45の組成については、 10 atm%≦(C+0)≦100 atm%l  
atm%≦(0)   ≦ 20 atm%(イ旦し、
 C3i)  + (C)  十(0) = 100 
atm%)とするのが望ましく、 40 atm%≦(C+O)≦ 70 atm%l a
tm%≦
B. Industrial Application Field The present invention relates to a photoreceptor, for example, an electrophotographic photoreceptor. Conventional technology Conventionally, amorphous silicon (
Electrophotographic photoreceptors using a-3i) as a matrix have been proposed in recent years. Since such a-3i has so-called dangling bonds, amorphous hydrogenated silicon (a-3i: If ) has been proposed. However, photoreceptors with a-3i:H surfaces are susceptible to surface chemical stability, such as the effects of long-term exposure to the atmosphere or moisture, and the effects of chemical species generated by corona discharge. , has not been sufficiently investigated so far. For example, items that have been left for more than a month will be affected by moisture.
It is known that the receptor potential is significantly reduced. On the other hand, amorphous hydrogenated silicon carbide (hereinafter a-3iC:H
It is called. ), its manufacturing method and existence are "Phi,"
Mag, Vol. 35'' (1978), etc., and its characteristics include high heat resistance and surface hardness, and high dark resistivity (compared to a-3i:H).
It is known that the optical energy gap changes over a range of 1.6 to 2.8 eV depending on the carbon content. However, there is a drawback that the long wavelength sensitivity becomes poor due to the widening of the band gap due to the inclusion of carbon. An electrophotographic photoreceptor combining such a-3iC:H and a-3i:H has been proposed, for example, in Japanese Patent Application Laid-Open No. 115559/1983. According to this, a-3i:H
An a-8iC:H layer is formed as a surface modification layer on the charge generation layer consisting of the following. However, when the present inventor investigated the above-mentioned known photoreceptor, it was found that even if a surface modification layer was provided, it was still not as effective as expected, and image deletion was particularly likely to occur. OBJECT OF THE INVENTION An object of the present invention is to provide a photoreceptor that can withstand repeated use and can produce good images. 21 Structure of the invention and its effects, that is, the present invention comprises: a charge generation layer made of amorphous hydrogenated and/or halogenated silicon; a charge transport layer made of amorphous hydrogenated and/or halogenated silicon carbide; Amorphous hydrogen having a surface modified layer deposited on the surface of the generation layer or the charge transport layer, the surface modified layer containing carbon atoms and oxygen atoms and also containing an impurity element of group mA of the periodic table. and/or halogenated silicon, and the amount of oxygen atoms is 1 to 20 atm% (
However, the total amount of silicon atoms, carbon atoms, and oxygen atoms is 100 atm%. ), and the impurity element is doped into the surface modified layer under the following conditions during formation of the surface modified layer by glow discharge decomposition. According to the present invention, since the surface modified layer contains carbon atoms and oxygen atoms, the mechanical strength and optical band gap (Eg, opt) of the layer become large, resulting in deterioration of image quality due to white streaks, etc. This results in excellent printing durability. Moreover, the above-mentioned impurity elements are present in the surface modified layer at 10-'
Since it is doped at a ratio of ~103 volume ffl (vol) pl", image blurring can be greatly reduced during image formation. This is because the surface resistance and impurity level of the layer are appropriately set by the above impurity elements. In addition, since the charge generation layer described above and the charge transport layer described above are provided to form a functionally separated laminated structure, the charge generation layer provides photosensitivity in a wide wavelength range. In addition, the charge transporting layer forming a heterojunction with the charge generating layer can improve charge transporting ability and charging potential. E. EXAMPLES The present invention will be explained in detail with reference to Examples below. The figure shows an a-3i electrophotographic photoreceptor 3 according to this embodiment.
9. This photoreceptor 39 is provided on a drum-shaped conductive support substrate 41 made of An, etc., as necessary.
-3i-based charge blocking layer 44, a charge transport JEJ42 made of amorphous hydrogenated silicon carbide (a-3i C: l()), and a charge generation layer made of a-3i:, H (without impurity doping or intrinsically 43
and a surface-modified layer 45 made of a-3i (Co):H containing C and 0. The charge blocking layer 44 is a-3t:Hla-3iC
:H or a-3iN:H, and may be doped with an element of group 11rA or group VA of the periodic table. Further, the charge transport layer 42 and the charge generation layer 43 may also be doped with similar impurities. The charge generation layer 43 has a dark resistivity ρ. The ratio of resistivity ρ when irradiated with light is sufficiently large as an electrophotographic photoreceptor, and the photosensitivity (particularly to light in the visible and infrared regions) is good. What should be noted here is that the surface modified layer 45 is made of a-3i (CO):H containing C and O. This improves the mechanical strength of the surface modified layer 45 and also improves the optical band gap. Regarding the composition of the surface modified layer 45, 10 atm%≦(C+0)≦100 atm%l
atm%≦(0)≦20 atm%
C3i) + (C) ten (0) = 100
40 atm%≦(C+O)≦70 atm%l a
tm%≦

〔0〕  ≦ 10 atm%(イ旦し、(S
 i) + (C) 十(0) −100atm%)と
するのが更に望ましい(ここで、atm%は原子数の百
分率を表す)。C+Oの含有量が少なすぎると耐スクラ
ッチ性向上の効果に乏しくなり、また逆に多すぎるとS
i量が減って半導体特性が失われ易い。 また、上記表面改質層は、少量の酸素原子を含有するこ
とによって光学的バント°ギヤツブが向上し、耐画像流
れ性が向上するが、逆に多すぎると耐スクラッチ性の低
下を引き起こす。 また、この感光体の他の注目点は、後述のグロー放電法
において例えば CBz Hb ) / (S i H4) 〜10−3
〜103容fflppm(望ましくは10−1〜103
容ffippm 、更には10− ’〜102容量pp
m 、最も好ましくは10−1〜10容量ppm)の周
期表第1IIA族元素を表面改質層45中にドープして
いることである。こうした不純物元素の含有によって、
画像流れを大幅に減少させることができるのである。即
ち、不純物元素の量が104容itppm未満であれば
少なすぎ、また103容量ppmを超えると多すぎ、共
に十分な表面抵抗が得られず、画像流れが顕著に生じて
しまう。 また、表面改質層45の膜厚は200〜50,000人
とすることが望ましく、1 、000〜10,000人
とするのが更に望ましい。膜厚が大きすぎると、残留電
位■8が高くなりすぎかつ光感度の低下も生じ、a−3
i系感光体としての良好な特性を失い易く、また膜厚が
小さすぎると、1−ンネル効果によって電荷が表面上に
帯電されなくなるため、暗減衰の増大や光感度の低下が
生じてしまう。 電荷発生層43はa−3i:Hからなっていてよく、そ
の組成としては、Hを5〜40 atm%とするのがよ
く、Hに代えて或いは併用してノ\ロゲンを含有すると
きにはハロゲン5〜40 atm%、或いはI]とハロ
ゲンとの合計量は5〜40 atm%とするのがよい。 この電荷発生層43は帯電能向上のために不純物、特に
周期表第IIIA族又はVA族元素をドープするとよい
。例えば、後述のグロー放電時に、 CB2 H6) / (S i Ha 〕=10−3〜
100(好ましくは10−2〜10)容量ppm S(
P H2)  / (S i H4〕=10−3〜10
0(好ましくは10−”〜10)容量ppmとしてよい
。 また、この層43の厚みは1〜50μm1好ましくは5
〜30μmとするのがよい。光導電性層43の厚みが小
さすぎると十分な帯電電位が得られず、また大きすぎる
と残留電位が上昇し、実用上不充分である。 電荷輸送層42は電位保持及び電荷輸送の両機能を担い
、暗所抵抗率が好ましくは10′2Ω−cm以上あって
、耐高電界性を有し、単位膜厚当りに保持される電位が
高(、しかも電子を大きな移動度と寿命を以って効率よ
く支持体1側へ輸送する。 また、炭素含有量(特に5〜30 atm%)によって
エネルギーギヤツブの大きさを調節できるため、電荷発
生層43において光照射に応じて発生した電子に対し障
壁を作ることなく、効率よく注入させることができる。 従ってこのa−3iC:0層42は実用レベルの高い表
面電位を保持し、a −3i:H層43で発生した電荷
担体を効率良く速やかに輸送し、高感度で残留電位のな
い感光体とする働きがある。 この電荷輸送層42の炭素原子含有量を5〜30atm
%(更にはlO〜20 atm%)にするのがよい(但
、SiとCとの合計原子数は100 atm%)。 即ち、炭素原子含有量が5 atm%未満では、a−3
iC:8層2の比抵抗が電位保持能に必要な1012Ω
−cmを下延るために特に帯電電位が不充分となり易い
。また、炭素原子含有量が30 atm%を超えると、
比抵抗がやはり低下すると同時に、炭素原子が多すぎて
a−3iCsH層中での欠陥が増えてキャリア輸送能自
体が悪くなり易い。 この層42には、水素原子が5〜50 atm%含有さ
れているのがよ(、I−Iに代えて或いは併用してハロ
ゲンを含有するときにはハロゲン5〜50 atm%、
或いはHとハロゲンとの合計量は5〜50 atm%と
するのがよい。この層42は帯電能向上のために不純物
、特に周期表第1I[A族又はVA族元素をドープする
とよい。例えば、後述のグロー放電時に、[B2H6)
/ (S jH−)〜10−’〜1000(好ましくは
10−” 〜100 )容量ppm、CPH3)  /
 (S i H4) =lO弓〜1000(好ましくは
10−2〜100)容量ppmとしてよい。 更に、この電荷輸送層42の膜厚は、例えばカールソン
方式による乾式現像法を通用するためには5μm〜30
μmであることが望ましい。この膜厚が5μm未満であ
ると薄すぎるために現像に必要な表面電位が得られず、
また30μmを超えるとキャリアの支持体41への到達
率が低下してしまう。 また、上記電荷ブロッキング層44は、基板41からの
電子の注入を充分に防ぎ、感度、帯電能の向上のために
は、周期表第IIIA族元素(例えばボロン)をグロー
放電分解でドープして、P型(更にはP+型)化する。 ブロッキング層の組成によって、次のようにドーピング
量を制′4′JIIするのが望ましい。 a−3i:H(H含有量5〜40 atm%):CBz
 H6) / (S s H−) −10−3〜10’
容量ppm(更には10−’ 〜10”容量ppm)(
P H:I )  / (S i H4〕=10−’〜
104容量ppm(更には10−1〜102容ffip
pm)a−3iC:H(H含有量5〜50 atm%、
C含有量 5〜100 atm%): (B2 H6) / (S i H4) 〜10−’〜
106容璽ppm(更には10−1〜104容量ppm
)CP H3)  / (S i H4) 〜10−3
〜106容ffi p p m(更には10−1〜10
4容足l1l)III)a−5iN:H(H含有15〜
50 atm%、N含有量5〜60 atm%) : CBz H6) / (S i Ha ) 〜10−3
〜106容量ppm(更には10−1〜10′容量pp
n+)CP Hz )  / (S i H4) 〜1
0−’〜10b容IJi p p m(更には10− 
’〜104容量pI)m)また、ブロッキング層44は
膜厚100人〜2μmがよい。厚みが小さすぎるとブロ
ッキング効果が弱く、また大きすぎると電荷輸送能が悪
くなり易い。 なお、上記の各層は水素を含有することが必要である。 特に、電荷発生層43中の水素含有量は、ダングリング
ボンドを補償して光導電性及び電荷保持性を向上させる
ために必要である。 また、上記の層42.43の順序は逆にしてもよい。ま
た、ドープする不純物としては、ボロン以外にもA1、
Ga、I n−、Tβ等の周期表第■A族元素を使用で
きるし、またリン以外にもAs、sb等の周期表第VA
族元素を使用できる。 次に、上記した感光体く例えばドラム状)の製造方法及
びその装置(グロー放電装置)を第2図について説明す
る。 この装置51の真空槽52内ではドラム状の基板41が
垂直に回転可能にセットされ、ヒーター55で基板41
を内側から所定温度に加熱し得るようになっている。基
板41に対向してその周囲に、ガス導出口53付きの円
筒状高周波電極57が配され、基板41との間に高周波
電源56によりグロー放電が生ゼしめられる。なお、図
中の62ば5i)14又はガス状シリコン化合物の供給
源、63はCH,等の炭化水素ガスの供給源、64はN
2等の窒素化合物ガスの供給源、65は0□等の酸素化
合物ガスの供給源、66はAr等のキャリアガス供給源
、67は不純物ガス(例えばI3z H6)供給源、6
8は各流量計である。このグロー放電装置において、ま
ず支持体である例えばA1基板41の表面を清浄化した
後に真空槽52内に配置し、真空槽52内のガス圧が1
O−6T orrとなるように調節して排気し、かつ基
板41を所定温度、特に100〜350℃(望ましくは
150〜300”C)に加熱保持する。次いで、高純度
の不活性ガスをキャリアガスとして、SiH4又はガス
状シリコン化合物、CH4、N2、CO2,02等を適
宜真空槽52内に導入し、例えば0.01〜10Tor
rの反応圧下で高周波電源56により高周波電圧(例え
ば13.56 Mllz)を印加する。これによって、
上記各反応ガスを電極57と基板41との間でグロー放
電分解し、a−3iC:H。 a−3i :H,a−3iC:H,a−3iCO:Hを
上記の層44.42.43.45として基板上に連続的
に(即ち、例えば第1図の例に対応して)堆積させる。 上記製造方法においては、支持体上にa−3i系の層を
製膜する工程で支持体温度を100〜350℃としてい
るので、感光体の膜質(特に電気的特性)を良くするこ
とができる。 なお、上記a−3i系怒光体の各層の形成時において、
ダングリングボンドを補償するためには、上記したHの
かわりに、或いはHと併用してフン素等のハロゲンをS
 i F a等の形で導入し、a−Si  :F、、 
a−3i  :H:F、、 a−3iN:F。 a−3iN:H:F、  a−3iC:F。 a−3iC:H:F等とすることもできる。 以下、本発明を具体的な実施例について説明する。 グロー放電分解法により、ドラム状Aβ支持体上に第1
図の構造の電子写真感光体を作製した。 即ち、まず支持体である、例えば平滑な表面を持つドラ
ム状A1基板41の表面を清浄化した後に、第2図の真
空槽52内に配置し、真空槽52内のガス圧が10− 
’ T orrとなるように調節して排気し、かつ基板
41を所定温度、特に100〜350℃(望ましくは1
50〜300°C)に加熱保持する。 次いで、高純度のArガスをキャリアガスとして導入し
、0.5 Torrの背圧のもとで周波数13.56M
 tlzO高周波電力を印加し、10分間の予備放電を
行った。次いで、SiH4とCH,とB11−16とか
らなる反応ガスを導入し、流量比1:L:1:(1,5
xlO−’)の(Ar+S i [(、+CH4十BZ
 H6)混合ガスをグロー放電分解することにより、電
荷ブロッキング機能を担うP+型のa −3i C: 
H層44を6pm/hrの堆積速度で所定厚さに製膜し
た。次いでSiH4に対するBzHbの流量比を1 :
  (6Xl0−6)として電荷輸送層42を6μm 
/ h rの堆積速度で順次所定厚さに製膜した。引き
続き、B2H6及びCH4を供給停止し、3iH4を放
電分解し、所定厚さのa−3i:H層43を形成した。 更に、流量比40:3:9’Oの(Ar : S iH
4: CH4)混合ガスを反応圧力P =0.5 To
rr 、放電パワーR,=400Wでグロー放電分解し
、所定厚さの中間層を形成し、更に流量比40: 3 
:90:  (1,5Xl0−’)の(Ar : S 
i H4: CH4: B2 Hb )混合ガスを反応
圧力P =1.OTorr 、放電パワーR,=400
Wでグロー放電分解して表面保護層45を更に設け、電
子写真感光体を完成させた。この際、BzHaO量を種
々変え、対応する感光体を得た。 なお、表面層45をa−3i Coとするときの酸素源
としてCO□を使用し、必要に応じて適当量供給した。 次に、上記の各感光体を使用して次のテストを行なった
。但し、表面改質層をa−3iC:H(Bは除く。)の
組成において、C債を39J atm%、○量を5.6
atm%とした(表−1)。また、表−2のデータは表
−1の隘4において○量を変化させて得られたものであ
る(数字はatm%)。 璽寛握起 温度33℃、相対湿度80%の環境下で、感光体を電子
写真複写機U −B 1x2500 (コニカ株式会社
製)改造機内に24時間順応させた後、現像剤、紙、ブ
レードとは非接触で1000コピーの空回しを行った後
、画像出しを行ない、以下の基準で画像流れの程度を判
定した。 ○:画画像流がなく、5.5ポイントの英字や細線の再
現性が良い。 △:5.5ポイントの英字がつぶれて読みづらい。 X:5.5ポイントの英字判読不能。 乱ム又’y L±檀 上記において、酸素量を種々変えた表面改質層を設けた
感光体を作製し、引っかき傷の状態を観察した。 ○:引っかき傷殆どない。 △:  〃    あり。 ×:〃    非常に多い。 結果を下記表−1にまとめて示した。この結果から、本
発明に基づいて感光体(隘2〜7)を作成すれば、電子
写真感光体として特に画像流れの著しく少ないものが得
られた。また、表−2から本発明に基づ< 1kll〜
13は特性に優れている。 表−1 表−2 次に、本発明に基づく機能分離型の感光体は実験の結果
、光感度や帯電特性に優れていることが分った。測定は
次の通りに行い、結果を下記表−3に示した。 仄溜」浦いう二しLと U −B 1x2500改造機を使った電位測定で、4
00nmにピークをもつ除電光301 ux−secを
照射した後も残っている感光体表面電位。 帯+S″′立■。(V) U −B 1x2500改造機(コニカ(樽製)を用い
、感光体流れ込み電流200μA、露光なしの条件で、
360SX型電位計(トレンク社製)で測定した現像直
前の表面電位。 半減 光、 El/2  (#ux−sec )上記の
装置を用い、ダイクロイ、クミラー(光伸光学社製)に
より像露光波長のうち620nm以上の長波長成分をシ
ャープカットし、表面電位を500 Vから250Vに
半減するのに必要な露光量。 (露光量は550−1型光量計(EG andG社製)
にて測定) 表−3 但し、下記表の各データ中、左側(*1)は下記の本発
明に基づく機能分離型感光体、右側(*2)は下記の単
層型感光体のデータを示す。 *1)支持体:A1、ブロッキング層:厚さ1μmのボ
ロンドープドa−3iC: H3電荷輸送層:厚さ12μmのボロンドープドa−3
iC:H3電荷発生N:厚さ7μmのボロンドープドa
−3iニド■、表面改質層:厚さ0.3μmのa−3i
CO:H *2)支持体:Aβ、ブロッキング層:厚さ1μmのボ
ロンドープドa−3iC: H1光導電性層:厚さ19μmのボロンドープドa  
SI:H%表面改質層:厚さ0.3μmのa−3iCO
:H
[0] ≦ 10 atm% (S
i) + (C) 10(0) -100 atm%) (here, atm% represents the percentage of the number of atoms). If the C+O content is too low, the effect of improving scratch resistance will be poor, and if it is too high, the S
The amount of i decreases and semiconductor characteristics are likely to be lost. In addition, when the surface-modified layer contains a small amount of oxygen atoms, the optical band gearing is improved and the image fade resistance is improved, but if the amount is too large, the scratch resistance is deteriorated. Another noteworthy point of this photoreceptor is that in the glow discharge method described below, for example, CBz Hb ) / (S i H4) ~10-3
~103 volume fflppm (preferably 10-1~103
Capacity ffippm, and even 10-' to 102 capacitance ppm
m, most preferably 10 -1 to 10 ppm by volume) of Group IIA elements of the periodic table are doped into the surface modification layer 45 . Due to the inclusion of these impurity elements,
Image deletion can be significantly reduced. That is, if the amount of the impurity element is less than 10 4 volume ppm, it is too small, and if it exceeds 10 3 volume ppm, it is too large, and in both cases, a sufficient surface resistance cannot be obtained and image blurring occurs significantly. Further, the thickness of the surface modified layer 45 is desirably 200 to 50,000, more preferably 1,000 to 10,000. If the film thickness is too large, the residual potential (8) will become too high and the photosensitivity will decrease, resulting in a-3
It is easy to lose good characteristics as an i-type photoreceptor, and if the film thickness is too small, charges will not be charged on the surface due to the 1-channel effect, resulting in an increase in dark decay and a decrease in photosensitivity. The charge generation layer 43 may be composed of a-3i:H, and its composition is preferably 5 to 40 atm% of H, and when it contains halogen instead of or in combination with H. 5 to 40 atm%, or the total amount of I] and halogen is preferably 5 to 40 atm%. This charge generation layer 43 is preferably doped with an impurity, particularly an element from Group IIIA or VA of the periodic table, to improve charging performance. For example, during glow discharge described below, CB2 H6) / (S i Ha ] = 10-3 ~
100 (preferably 10-2 to 10) Capacity ppm S(
P H2) / (S i H4] = 10-3 ~ 10
0 (preferably 10-" to 10) capacitance ppm. Also, the thickness of this layer 43 is 1 to 50 μm, preferably 5
It is preferable to set the thickness to 30 μm. If the thickness of the photoconductive layer 43 is too small, a sufficient charging potential cannot be obtained, and if it is too large, the residual potential increases, which is insufficient for practical use. The charge transport layer 42 has the functions of both potential retention and charge transport, preferably has a dark resistivity of 10'2 Ω-cm or more, has high electric field resistance, and has a potential retained per unit film thickness. In addition, the size of the energy gear can be adjusted by adjusting the carbon content (especially 5 to 30 atm%). It is possible to efficiently inject electrons generated in response to light irradiation in the charge generation layer 43 without creating a barrier. Therefore, this a-3iC:0 layer 42 maintains a high surface potential at a practical level, and -3i: It has the function of efficiently and quickly transporting charge carriers generated in the H layer 43, and making the photoreceptor highly sensitive and free of residual potential.The carbon atom content of this charge transport layer 42 is set to 5 to 30 atm.
% (furthermore, 10 to 20 atm%) (however, the total number of atoms of Si and C is 100 atm%). That is, when the carbon atom content is less than 5 atm%, a-3
iC: The specific resistance of 8 layers 2 is 1012Ω, which is necessary for potential holding ability.
-cm, the charging potential is particularly likely to be insufficient. Moreover, when the carbon atom content exceeds 30 atm%,
At the same time, the specific resistance decreases, and at the same time, the presence of too many carbon atoms increases the number of defects in the a-3iCsH layer, which tends to deteriorate the carrier transport ability itself. This layer 42 preferably contains 5 to 50 atm% of hydrogen atoms (5 to 50 atm% of halogen when containing halogen instead of or in combination with II).
Alternatively, the total amount of H and halogen is preferably 5 to 50 atm%. This layer 42 is preferably doped with an impurity, particularly an element of Group I [A or VA of the periodic table] in order to improve charging performance. For example, during glow discharge described below, [B2H6]
/ (S jH-) ~ 10-' ~ 1000 (preferably 10-'' ~ 100) Capacity ppm, CPH3) /
(S i H4) = IO~1000 (preferably 10-2~100) capacitance ppm. Further, the thickness of the charge transport layer 42 is, for example, 5 μm to 30 μm in order to pass the Carlson dry development method.
It is desirable that it is μm. If this film thickness is less than 5 μm, it is too thin and the surface potential necessary for development cannot be obtained.
Moreover, if it exceeds 30 μm, the rate of carrier reaching the support 41 will decrease. Further, in order to sufficiently prevent electron injection from the substrate 41 and improve sensitivity and charging ability, the charge blocking layer 44 is doped with a group IIIA element (for example, boron) of the periodic table by glow discharge decomposition. , to become P type (and even P+ type). It is desirable to control the doping amount as follows depending on the composition of the blocking layer. a-3i:H (H content 5-40 atm%): CBz
H6) / (S s H-) -10-3~10'
Capacity ppm (even 10-' to 10" capacity ppm) (
P H:I) / (S i H4] = 10-'~
104 volume ppm (furthermore, 10-1 to 102 volume ffip
pm) a-3iC:H (H content 5-50 atm%,
C content 5-100 atm%): (B2 H6) / (S i H4) ~10-'~
106 volume ppm (furthermore 10-1 to 104 volume ppm
)CP H3) / (S i H4) ~10-3
~106 volumesffi p p m (furthermore, 10-1~10
4 volumes l1l) III) a-5iN:H (H content 15~
50 atm%, N content 5-60 atm%): CBz H6) / (S i Ha ) ~10-3
~106 capacitance ppm (and even 10-1 to 10' capacitance ppm
n+)CP Hz) / (S i H4) ~1
0-' to 10b IJi p p m (furthermore, 10-
The blocking layer 44 preferably has a thickness of 100 to 2 μm. If the thickness is too small, the blocking effect will be weak, and if the thickness is too large, the charge transport ability will tend to deteriorate. Note that each of the above layers needs to contain hydrogen. In particular, the hydrogen content in the charge generation layer 43 is necessary to compensate for dangling bonds and improve photoconductivity and charge retention. Also, the order of the layers 42, 43 described above may be reversed. In addition to boron, the impurities to be doped include A1,
Group IV elements of the periodic table such as Ga, In-, and Tβ can be used, and in addition to phosphorus, elements of group VA of the periodic table such as As and sb can be used.
Group elements can be used. Next, a method for manufacturing the above-mentioned photoreceptor (eg, drum-shaped) and an apparatus therefor (glow discharge apparatus) will be explained with reference to FIG. A drum-shaped substrate 41 is set rotatably vertically in a vacuum chamber 52 of this device 51, and a heater 55 is used to rotate the substrate 41.
can be heated to a predetermined temperature from the inside. A cylindrical high frequency electrode 57 with a gas outlet 53 is disposed around and facing the substrate 41, and a glow discharge is generated between the electrode 57 and the substrate 41 by a high frequency power source 56. In addition, in the figure, 62 is 5i) 14 or a supply source of gaseous silicon compound, 63 is a supply source of hydrocarbon gas such as CH, 64 is N
65 is a supply source of oxygen compound gas such as 0□, 66 is a carrier gas supply source such as Ar, 67 is an impurity gas (for example, I3z H6) supply source, 6
8 is each flow meter. In this glow discharge device, first, the surface of a support, for example, an A1 substrate 41, is cleaned and then placed in a vacuum chamber 52, so that the gas pressure in the vacuum chamber 52 is 1.
The temperature is adjusted to O-6T orr and evacuated, and the substrate 41 is heated and maintained at a predetermined temperature, particularly 100 to 350"C (preferably 150 to 300"C).Next, a high-purity inert gas is heated to a carrier temperature. As a gas, SiH4 or a gaseous silicon compound, CH4, N2, CO2, 02, etc. are introduced into the vacuum chamber 52 as appropriate, and the pressure is, for example, 0.01 to 10 Torr.
A high frequency voltage (for example, 13.56 Mllz) is applied by a high frequency power supply 56 under a reaction pressure of r. by this,
Each of the above reaction gases is decomposed by glow discharge between the electrode 57 and the substrate 41 to form a-3iC:H. a-3i :H, a-3iC:H, a-3iCO:H as the above layers 44, 42, 43, 45 deposited successively (i.e. corresponding to the example of FIG. 1, for example) on the substrate. let In the above manufacturing method, the support temperature is set at 100 to 350°C in the step of forming the a-3i layer on the support, so the film quality (especially electrical properties) of the photoreceptor can be improved. . In addition, at the time of forming each layer of the a-3i-based photoreceptor,
In order to compensate for dangling bonds, it is necessary to use halogens such as fluorine instead of H, or in combination with H.
i F a etc., a-Si : F, ,
a-3i:H:F,, a-3iN:F. a-3iN:H:F, a-3iC:F. It can also be a-3iC:H:F or the like. Hereinafter, the present invention will be described with reference to specific examples. By glow discharge decomposition method, the first
An electrophotographic photoreceptor having the structure shown in the figure was manufactured. That is, first, after cleaning the surface of a support, for example, a drum-shaped A1 substrate 41 having a smooth surface, it is placed in a vacuum chamber 52 in FIG. 2, and the gas pressure in the vacuum chamber 52 is set to 10-
' T orr, and then heat the substrate 41 to a predetermined temperature, particularly 100 to 350°C (preferably 100°C to 350°C).
Heat and maintain at 50-300°C. Then, high-purity Ar gas was introduced as a carrier gas and the frequency was 13.56 M under a back pressure of 0.5 Torr.
tlzO high frequency power was applied and preliminary discharge was performed for 10 minutes. Next, a reaction gas consisting of SiH4, CH, and B11-16 was introduced, and the flow rate ratio was 1:L:1:(1,5
xlO-') of (Ar+S i [(,+CH40BZ
H6) P+ type a-3i C that plays a charge blocking function by decomposing the mixed gas by glow discharge:
The H layer 44 was formed to a predetermined thickness at a deposition rate of 6 pm/hr. Next, the flow rate ratio of BzHb to SiH4 was set to 1:
(6Xl0-6) and the charge transport layer 42 is 6 μm thick.
The films were sequentially formed to a predetermined thickness at a deposition rate of /hr. Subsequently, the supply of B2H6 and CH4 was stopped, and 3iH4 was decomposed by discharge to form an a-3i:H layer 43 of a predetermined thickness. Furthermore, at a flow rate ratio of 40:3:9'O (Ar:SiH
4: CH4) mixed gas at reaction pressure P = 0.5 To
rr, discharge power R, = 400 W, glow discharge decomposition is performed to form an intermediate layer of a predetermined thickness, and the flow rate ratio is 40:3.
:90:(1,5Xl0-')(Ar:S
i H4: CH4: B2 Hb) mixed gas at reaction pressure P = 1. OTorr, discharge power R, = 400
A surface protective layer 45 was further provided by glow discharge decomposition with W, and an electrophotographic photoreceptor was completed. At this time, the amount of BzHaO was varied to obtain corresponding photoreceptors. In addition, CO□ was used as an oxygen source when the surface layer 45 was made of a-3i Co, and an appropriate amount was supplied as necessary. Next, the following tests were conducted using each of the photoreceptors described above. However, in the composition of the surface modified layer of a-3iC:H (excluding B), C bond is 39J atm% and ○ amount is 5.6
ATM% (Table 1). Furthermore, the data in Table 2 was obtained by changing the amount of ○ in column 4 of Table 1 (the numbers are atm%). The photoreceptor was allowed to acclimate to a modified electrophotographic copying machine U-B 1x2500 (manufactured by Konica Corporation) for 24 hours in an environment with a temperature of 33°C and a relative humidity of 80%, and then the developer, paper, and blade were removed. After 1000 copies were made without contact with the paper, an image was printed and the degree of image blurring was determined based on the following criteria. ○: There is no image flow, and the reproducibility of 5.5-point alphabetic characters and thin lines is good. △: 5.5 point letters are crushed and difficult to read. X: 5.5 points of unreadable letters. Ranmu Mata'y L±Dan In the above, photoreceptors provided with surface-modified layers with various amounts of oxygen were prepared, and the state of scratches was observed. ○: Almost no scratches. △: 〃 Yes. ×: Very many. The results are summarized in Table 1 below. From this result, it was found that when the photoreceptors (numbers 2 to 7) were prepared according to the present invention, electrophotographic photoreceptors with significantly less image deletion were obtained. Furthermore, from Table 2, based on the present invention, < 1 kll ~
No. 13 has excellent characteristics. Table 1 Table 2 Next, as a result of experiments, it was found that the functionally separated photoreceptor according to the present invention has excellent photosensitivity and charging characteristics. The measurements were performed as follows, and the results are shown in Table 3 below. By measuring the electric potential using a modified 1x2500 machine, 4
The surface potential of the photoreceptor remains even after being irradiated with static elimination light of 301 ux-sec having a peak at 00 nm. Band + S''' Stand ■. (V) U-B 1x2500 modified machine (Konica (made by barrel)), photoreceptor inflow current 200 μA, no exposure conditions,
Surface potential just before development measured with a 360SX electrometer (manufactured by Trenk). Half-reduced light, El/2 (#ux-sec) Using the above device, sharply cut the long wavelength component of 620 nm or more of the image exposure wavelength using dichroi and Kumirror (manufactured by Koshinko Co., Ltd.), and reduce the surface potential from 500 V. The amount of exposure required to reduce the voltage by half to 250V. (The exposure amount was measured using a 550-1 light meter (manufactured by EG and G).
Table 3 However, among the data in the table below, the left side (*1) is the data for the function-separated photoreceptor based on the present invention, and the right side (*2) is the data for the single-layer photoreceptor below. show. *1) Support: A1, blocking layer: 1 μm thick boron-doped a-3iC: H3 charge transport layer: 12 μm thick boron-doped A-3
iC: H3 charge generation N: 7 μm thick boron doped a
-3i nide ■, surface modified layer: 0.3 μm thick a-3i
CO:H *2) Support: Aβ, blocking layer: 1 μm thick boron-doped a-3iC: H1 photoconductive layer: 19 μm thick boron-doped a
SI: H% Surface modified layer: a-3iCO with a thickness of 0.3 μm
:H

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図は本発明の実施例を示すものであって、 第1図はa−5i系感光体の断面図、 第2図はグロー放電装置の概略断面図 である。 なお、図面に示された符号において、 39・・・・a−3i系感光体 41・・・・支持体く基板) 42・・・・電荷輸送層 43・・・・電荷発生層 44・・・・電荷ブロッキング層 45・・・・表面改質層 である。 代理人  弁理士  逢 坂   末 弟1図 。 1 to 2 show embodiments of the present invention, Figure 1 is a cross-sectional view of an a-5i photoreceptor; Figure 2 is a schematic cross-sectional view of the glow discharge device. It is. In addition, in the symbols shown in the drawings, 39...a-3i type photoreceptor 41...Support substrate) 42...Charge transport layer 43...Charge generation layer 44...Charge blocking layer 45...Surface modified layer It is. Agent Patent Attorney Sue Aisaka Younger brother 1 picture.

Claims (1)

【特許請求の範囲】 1、アモルファス水素化及び/又はハロゲン化、シリコ
ンからなる電荷発生層と、アモルファス水素化及び/又
はハロゲン化炭化シリコンからなる電荷輸送層と、前記
電荷発生層又は電荷輸送層の表面に被着された表面改質
層とを有し、この表面改質層が炭素原子及び酸素原子を
含有しかつ周期表第IIIA族の不純物元素も含有するア
モルファス水素化及び/又はハロゲン化シリコンからな
り、前記酸素原子の量が1〜20atm%(但し、シリ
コン原子と炭素原子と酸素原子との合計量を100at
m%とする。)であり、かつ前記不純物元素がグロー放
電分解による前記表面改質層の形成時に、10^−^3
容量ppm≦〔不純物元素の化合物〕/〔シリコン化合
物〕≦10^3容量ppm の条件下で前記表面改質層中にドープされたものである
感光体。
[Scope of Claims] 1. A charge generation layer made of amorphous hydrogenated and/or halogenated silicon, a charge transport layer made of amorphous hydrogenated and/or halogenated silicon carbide, and the charge generation layer or charge transport layer an amorphous hydrogenated and/or halogenated amorphous material having a surface modified layer deposited on the surface of the amorphous hydrogenated and/or halogenated surface modified layer containing carbon atoms and oxygen atoms and also containing impurity elements of Group IIIA of the periodic table. It consists of silicon, and the amount of oxygen atoms is 1 to 20 atm% (however, the total amount of silicon atoms, carbon atoms, and oxygen atoms is 100 atm%).
Let it be m%. ), and the impurity element is 10^-^3 when forming the surface modified layer by glow discharge decomposition.
A photoreceptor in which the surface modification layer is doped under the following condition: Capacity ppm≦[Compound of impurity element]/[Silicon compound]≦10^3 Capacity ppm.
JP63031303A 1988-02-12 1988-02-12 Photosensitive body Pending JPH01206355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031303A JPH01206355A (en) 1988-02-12 1988-02-12 Photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031303A JPH01206355A (en) 1988-02-12 1988-02-12 Photosensitive body

Publications (1)

Publication Number Publication Date
JPH01206355A true JPH01206355A (en) 1989-08-18

Family

ID=12327525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031303A Pending JPH01206355A (en) 1988-02-12 1988-02-12 Photosensitive body

Country Status (1)

Country Link
JP (1) JPH01206355A (en)

Similar Documents

Publication Publication Date Title
JPS61159657A (en) Photosensitive body
JPS6228757A (en) Photosensitive body
JPH01206355A (en) Photosensitive body
JPS6228758A (en) Photosensitive body
JPS6228759A (en) Photosensitive body
JPH01206353A (en) Photosensitive body
JPS6228755A (en) Photosensitive body
JPH01185639A (en) Photosensitive body
JPH01206354A (en) Photosensitive body
JPH01185643A (en) Photosensitive body
JPS6228761A (en) Photosensitive body
JPS6228763A (en) Photosensitive body
JPH01185642A (en) Photosensitive body
JPH01277243A (en) Photosensitive body
JPH01185638A (en) Photosensitive body
JPH01206356A (en) Photosensitive body
JPS61294456A (en) Photosensitive body
JPS6228754A (en) Photosensitive body
JPS60235151A (en) Photosensitive body
JPH01289959A (en) Photosensitive body
JPS628161A (en) Photosensitive body
JPS6228751A (en) Photosensitive body
JPS6228753A (en) Photosensitive body
JPH01289962A (en) Photosensitive body
JPS61183658A (en) Photosensitive body