JPH01206111A - Dynamical pressure bearing - Google Patents

Dynamical pressure bearing

Info

Publication number
JPH01206111A
JPH01206111A JP3015288A JP3015288A JPH01206111A JP H01206111 A JPH01206111 A JP H01206111A JP 3015288 A JP3015288 A JP 3015288A JP 3015288 A JP3015288 A JP 3015288A JP H01206111 A JPH01206111 A JP H01206111A
Authority
JP
Japan
Prior art keywords
bearing
groove
shaft
length
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3015288A
Other languages
Japanese (ja)
Inventor
Shinji Kanebayashi
金林 新二
Shuji Kamaya
釜谷 周滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3015288A priority Critical patent/JPH01206111A/en
Publication of JPH01206111A publication Critical patent/JPH01206111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the load capacity of a dynamic pressure bearing by specifying the proportion of the groove portion of herringbone grooves with respect to the surface area of a shaft and forming, in specified limits, the ratio of the depth of the groove to the gap between the bearing and a shaft portion, an angle between the groove portion and an axial rotational direction, and the proportion of the length from the bearing to the intermediate area of the groove portion. CONSTITUTION:More than a pair and a half herringbone type groove as grooves 3 are provided on the circumference of a shaft portion 1, the proportion of the groove portion 3 with respect to the surface area of the shaft 1 is within 0.4-0.6, if the depth of the groove 3 designates delta and the gap of a bearing 2 designates C, delta/C is within 1.05-1.3. The first angle betaI=148 deg.-160 deg. between the groove 3 and the axial rotational direction, the second angle betaII=35 deg.-43 deg., if the length of the bearing 2 designates L and the length of the intermediate are of the groove 3 designates LII, LII/L=0.47-0.53. As a result, the dynamic pressure bearing capable of stably reversible rotation, having a high load capacity can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、工作機械や音響機器、情報機器等に利用され
るモータ等の高速回転する高精度モータに使用される動
圧軸受に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a hydrodynamic bearing used in high-precision motors that rotate at high speed, such as motors used in machine tools, audio equipment, information equipment, etc. be.

(従来技術) 従来の動圧軸受は、軸受滑り面に複数のスパイラル状や
ヘリングボーン状の溝を形成した動圧グループ軸受が知
られている。これらは滑り軸受の一種であり、回転に伴
って、滑り面に設けた複数のスパイラル状の溝に沿って
、油等の作動流体を軸受内部に押し込み、作動流体に高
い圧力を発生させ、この流体圧力により負荷を受けるよ
うにしたものである。
(Prior Art) As a conventional hydrodynamic bearing, a hydrodynamic group bearing is known in which a plurality of spiral or herringbone grooves are formed on a bearing sliding surface. These are a type of sliding bearing, and as they rotate, working fluid such as oil is forced inside the bearing along multiple spiral grooves provided on the sliding surface, generating high pressure in the working fluid. The load is applied by fluid pressure.

第3図は従来のへリングボーン状の溝を有する軸受の一
例であり、文献(例■amrocL+ B、J、 an
d++1eming+ o、p、、sth Gas B
ear、S3++wp、+Vo1.I Paper11
3 (1971))により知られている。
Figure 3 shows an example of a conventional bearing with herringbone grooves, and is shown in the literature (e.g. amrocL+ B, J, an
d++1eming+ o, p,, sth Gas B
ear, S3++wp, +Vo1. I Paper 11
3 (1971)).

(発明が解決しようとする課題) これらの軸受は、作動している間は、軸と軸また、正逆
回転が可能な軸受の負荷容量の高い安定した設計寸法条
件は今までに示された例がない。
(Problem to be Solved by the Invention) These bearings have stable design dimensions with high load capacity for shafts and shafts that can rotate in forward and reverse directions while in operation. There are no examples.

(課題を解決するための手段) 本発明は上記の欠点を改善するために提案されたもので
、正逆回転を可能とする動圧軸受において、負荷容量を
最大にとれる最適軸受形状を与えることを目的としてい
る。
(Means for Solving the Problems) The present invention was proposed in order to improve the above-mentioned drawbacks, and it is an object of the present invention to provide an optimal bearing shape that can maximize load capacity in a hydrodynamic bearing that allows forward and reverse rotation. It is an object.

上記目的を達成するため、本発明は静止した軸受部と回
転可能な軸部とを備え、軸と軸受との間に流体を介在さ
せ、両者を非接触状態で回転させる動圧型軸受において
、軸部の周面に設けられている溝としてヘリングボーン
型グループが1対半以上あり、軸の直径りと長さしとの
比(L/D)が1〜2の範囲にある動圧軸受において、
溝部分の割合が軸の表面積に対して0.4〜0.6であ
り、溝の深さを6、軸受との隙間をCとするとδ/Cが
t、OS〜1.3の範囲であり、溝部と軸回転方向との
なす第1の角度B、−148@〜160°、第2の角度
Bi=35°〜43°の範囲であり、かつ軸受の長さを
Lとし、溝部の中間領域部の長さをLnとするとt、、
 /Lが0.47〜0.53であることを特徴とする動
圧軸受を発明の要旨とするものである。
To achieve the above object, the present invention provides a hydrodynamic bearing that includes a stationary bearing part and a rotatable shaft part, and in which a fluid is interposed between the shaft and the bearing so that the two rotate in a non-contact state. In a hydrodynamic bearing in which there are one and a half or more herringbone type grooves as grooves provided on the circumferential surface of the shaft, and the ratio of shaft diameter to length (L/D) is in the range of 1 to 2. ,
If the ratio of the groove portion to the surface area of the shaft is 0.4 to 0.6, the depth of the groove is 6, and the gap with the bearing is C, then δ/C is t, and in the range of OS ~ 1.3. The first angle B between the groove and the shaft rotation direction is in the range of -148@~160°, the second angle Bi is in the range of 35°~43°, and the length of the bearing is L, and the groove If the length of the intermediate region is Ln, then t.
The gist of the invention is a dynamic pressure bearing characterized in that /L is 0.47 to 0.53.

(作用) 本発明は軟土のように構成されているので、負荷容量の
高い、かつ安定した正逆回転可能な動圧軸受を提供する
ことができる。
(Function) Since the present invention is constructed like soft earth, it is possible to provide a hydrodynamic bearing that has a high load capacity and is capable of stable forward and reverse rotation.

(実施例) 次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行ううろことは言うまでも
ない。
(Example) Next, an example of the present invention will be described. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第1図は本発明の実施例でヘリングボーン状の溝が1対
半設けられたものを示している。図において、1は軸部
、2は軸受部、3はへリングボーン状の溝、4はランド
部、5は潤滑流体を封入する隙間、Cは軸部と軸受部と
の隙間の大きさ、δは溝部の深さ、B1及びBffは領
域I及び領域■における溝部と軸回転方向とのなす第1
.第2の角度、Dは軸の直径、Wlはランド部の周方向
幅、Wgは溝部の周方向幅である0本発明例のような構
造にすると軸のいずれの方向の回転によっても常に潤滑
流体を軸受内部へ向かって押しこむことができる。
FIG. 1 shows an embodiment of the present invention in which one and a half herringbone grooves are provided. In the figure, 1 is the shaft portion, 2 is the bearing portion, 3 is a herringbone groove, 4 is the land portion, 5 is the gap for sealing the lubricating fluid, C is the size of the gap between the shaft portion and the bearing portion, δ is the depth of the groove, and B1 and Bff are the first depths formed by the groove and the axis rotation direction in region I and region
.. The second angle, D is the diameter of the shaft, Wl is the circumferential width of the land portion, and Wg is the circumferential width of the groove portion.0 With a structure like the example of the present invention, the shaft is always lubricated by rotation in any direction. Fluid can be forced inside the bearing.

例えば、軸が正回転(図中+ω力方向の場合には潤滑油
を領域■は■に向かって押し込み、領域■はIに向かっ
て押し込むため圧力を発生するが、領域■は負圧になる
ため油膜が破断し、圧力発生かない、また軸が逆回転(
−ω方向)の場合には、領域■と■で圧力を発生し、領
域Iでは発生しない。
For example, if the shaft rotates in the positive direction (+ω force direction in the figure), the lubricating oil will be pushed into area ■ towards ■, and area ■ will be pushed towards I, which will generate pressure, but area ■ will have negative pressure. Therefore, the oil film ruptures, no pressure is generated, and the shaft rotates in the opposite direction (
-ω direction), pressure is generated in regions (2) and (2), but not in region I.

以上のようにして正逆回転が可能となるのである。さら
に、−船釣に適用されることの多いL/D=1〜2の範
囲において、負荷容量を最大にとれる最適軸受形状にお
いて、従来のへリングボーン型軸受の負荷容量と比較し
た。
As described above, forward and reverse rotation is possible. Furthermore, in the range of L/D = 1 to 2, which is often applied to boat fishing, the optimal bearing shape that can maximize the load capacity was compared with the load capacity of a conventional herringbone type bearing.

その結果、軸受の負荷容量は従来のへリングボーン型軸
受と遜色のないことが確認できた。
As a result, it was confirmed that the load capacity of the bearing was comparable to that of conventional herringbone bearings.

第2図は横軸にラジアル偏心量、縦軸に負荷容量をとっ
て示した特性曲線で、破線は従来例、実線は本発明を示
す。
FIG. 2 is a characteristic curve in which the horizontal axis represents the radial eccentricity and the vertical axis represents the load capacity, where the broken line represents the conventional example and the solid line represents the present invention.

ここに r ラジアル偏心量tr−− r−c” C:軸受隙間(静止状態) D=軸受直径 ω:回転角速度 e、、:実際のラジアル偏心量 f:実際の負荷容量 μ:潤滑油の粘性係数 で定義される無次元量である。Here r Radial eccentricity tr-- r-c” C: Bearing clearance (static state) D = bearing diameter ω: rotational angular velocity e, ,: Actual radial eccentricity f: Actual load capacity μ: Viscosity coefficient of lubricating oil is a dimensionless quantity defined by .

ここで、安定性の目安となる負荷容量を最大にする最適
軸受形状は以下の通りである。
Here, the optimal bearing shape that maximizes the load capacity, which is a measure of stability, is as follows.

αζ略0.4〜0.6 δ Δ−−−1.05〜1.3 β、 = 148°〜160” /7+1− 35@〜43” t、、 /Lζ略0.47〜0.53 (発明の効果) 本発明は、軸部の周面に溝としてヘリングボーン型グル
ープを1対半以上設け、その時の形状寸法を溝部分の割
合が軸の表面積に対して0.4〜0.6であり、溝の深
さをδ、軸受との隙間をCとするとδ/Cが1.05〜
1.3の範囲であり、溝部と軸回転方向とのなす第1の
角度B、=148@〜160”、第2の角度Bn=35
°〜43”の範囲であり、かつ軸受の長さをLとし、溝
部の中間領域部の長さをり、とするとt、、 /Lが0
.47〜0.53であることによって、負荷容量の高い
安定した正逆回転可能な動圧軸受を提供することができ
る。
αζ approx. 0.4~0.6 δ Δ−−−1.05~1.3 β, = 148°~160" /7+1- 35@~43" t,, /Lζ approx. 0.47~0.53 (Effects of the Invention) The present invention provides one and a half or more herringbone-type groups as grooves on the circumferential surface of the shaft, and the shape and dimensions at this time are such that the ratio of the groove portion to the surface area of the shaft is 0.4 to 0. 6, and if the depth of the groove is δ and the gap with the bearing is C, then δ/C is 1.05~
1.3, the first angle B between the groove and the shaft rotation direction = 148 @ ~ 160'', the second angle Bn = 35
If the length of the bearing is L and the length of the intermediate region of the groove is L, then t, /L is 0.
.. 47 to 0.53, it is possible to provide a dynamic pressure bearing with a high load capacity and stable forward and reverse rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例、第2図は本発明の実施例の正
逆回転タイプを従来タイプとのラジアル負荷容量の比較
グラフであり、第3図は従来例を示す。 l・・・軸部     2・・・軸受部3・・・溝 第1図 第2図 ラシ゛アL41e+c琶 εr
FIG. 1 is a comparison graph of the radial load capacity of an embodiment of the present invention, FIG. 2 is a graph comparing the forward/reverse rotation type of the embodiment of the present invention with a conventional type, and FIG. 3 is a graph of the conventional example. l...Shaft part 2...Bearing part 3...Groove Figure 1 Figure 2 Radius L41e+c琶 εr

Claims (1)

【特許請求の範囲】[Claims] 静止した軸受部と、周面に1封手以上あるヘリングボー
ン状溝を設け、軸の直径Dと長さLとの比がL/D=1
〜2の範囲である軸部とを備え、軸と軸受との間に流体
を介在させ、両者を非接触状態で正逆回転が可能である
動圧型軸受であって、溝部分の割合が軸の表面積に対し
て0.4〜0.6であり、溝の深さをδ、軸受との隙間
をCとするとδ/Cが1.05〜1.3の範囲であり、
溝部と軸回転方向とのなす第1の角度B_ I =148
°〜160°、第2の角度B_II=35°〜43°の範
囲であり、かつ軸受の長さをLとし、溝部の中間領域部
の長さをL_IIとするとL_II/Lが0.47〜0.5
3であることを特徴とる動圧軸受。
A stationary bearing part and a herringbone groove with one or more seals are provided on the circumferential surface, and the ratio of the shaft diameter D to the length L is L/D=1
This is a dynamic pressure type bearing, which has a shaft part in the range of 2 to 2, and allows fluid to be interposed between the shaft and the bearing so that they can rotate forward and backward without contact. If the depth of the groove is δ and the gap with the bearing is C, then δ/C is in the range of 1.05 to 1.3,
First angle B_ I = 148 between the groove and the shaft rotation direction
If the length of the bearing is L and the length of the intermediate region of the groove is L_II, L_II/L is 0.47 to 160°, and the second angle B_II is in the range of 35° to 43°. 0.5
3. A hydrodynamic bearing characterized by:
JP3015288A 1988-02-12 1988-02-12 Dynamical pressure bearing Pending JPH01206111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3015288A JPH01206111A (en) 1988-02-12 1988-02-12 Dynamical pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3015288A JPH01206111A (en) 1988-02-12 1988-02-12 Dynamical pressure bearing

Publications (1)

Publication Number Publication Date
JPH01206111A true JPH01206111A (en) 1989-08-18

Family

ID=12295784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3015288A Pending JPH01206111A (en) 1988-02-12 1988-02-12 Dynamical pressure bearing

Country Status (1)

Country Link
JP (1) JPH01206111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068586A1 (en) * 1999-05-07 2000-11-16 Sumitomo Electric Industries, Ltd. Dynamic pressure bearing and spindle motor with the bearing
CN100343541C (en) * 2002-08-27 2007-10-17 株式会社小松制作所 Bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068586A1 (en) * 1999-05-07 2000-11-16 Sumitomo Electric Industries, Ltd. Dynamic pressure bearing and spindle motor with the bearing
US6502989B1 (en) 1999-05-07 2003-01-07 Sumitomo Electric Industries, Ltd. Dynamic pressure bearing and spindle motor with the bearing
CN100343541C (en) * 2002-08-27 2007-10-17 株式会社小松制作所 Bearing device

Similar Documents

Publication Publication Date Title
JP2516967B2 (en) Bearing device
JP6076971B2 (en) Sliding parts
JP7366945B2 (en) sliding parts
KR910010080A (en) Dynamic Pressure Fluid Bearings
TWI704295B (en) Grooved dynamic pressure gas radial bearing
GB1431688A (en) Thrust bearing
EP0935086A3 (en) Gas lubricated slow speed seal
JPS60237223A (en) Radiation type friction bearing assembly
WO2016183786A1 (en) Mixed-type dynamic pressure gas radial bearing
TW201704651A (en) Hybrid dynamic pressure gas thrust bearing comprising two outer discs, an inner disc interposed between the two outer discs, and a foil-type elastic element arranged between each of the outer discs and the inner disc
Lijesh et al. Design and development of permanent magneto-hydrodynamic hybrid journal bearing
JPH01206111A (en) Dynamical pressure bearing
Mehta et al. Stability analysis of finite offset-halves pressure dam bearing
JPS60121308A (en) Dynamic pressure type composite bearing device
US3754800A (en) Hydrostatic bearing
Mehta et al. Static and dynamic characteristics of four-lobe pressure-dam bearings
Wang et al. Effect of slip position on the hydrodynamic performance of liquid film seal
JPS63106416A (en) Dynamic pressure bearing
JPS5737116A (en) Spindle device
CN213332381U (en) Envelope-line-based mechanical sealing structure with bidirectional rotating fluid dynamic pressure rhombic grooves
JPH017849Y2 (en)
Arakawa et al. Hydrodynamic bearing with non-uniform spiral grooves for high-speed HDD spindle
JPH0781584B2 (en) Bearing device
JPH01206110A (en) Dynamical pressure bearing
JPS6152414A (en) Dynamic-pressure type fluid bearing unit