JPH01205916A - Working error correction control in diesinking electric discharge machining - Google Patents

Working error correction control in diesinking electric discharge machining

Info

Publication number
JPH01205916A
JPH01205916A JP2751088A JP2751088A JPH01205916A JP H01205916 A JPH01205916 A JP H01205916A JP 2751088 A JP2751088 A JP 2751088A JP 2751088 A JP2751088 A JP 2751088A JP H01205916 A JPH01205916 A JP H01205916A
Authority
JP
Japan
Prior art keywords
machining
gap
electrode
predetermined
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2751088A
Other languages
Japanese (ja)
Other versions
JP2667183B2 (en
Inventor
Akiyoshi Imanaga
昭慈 今永
Mitsuaki Haneda
光明 羽田
Takeshi Araya
荒谷 雄
Masakazu Kishi
岸 雅一
Takashi Ishii
隆 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP63027510A priority Critical patent/JP2667183B2/en
Publication of JPH01205916A publication Critical patent/JPH01205916A/en
Application granted granted Critical
Publication of JP2667183B2 publication Critical patent/JP2667183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve the precision in the electric discharge machining by carrying out the position setting between an electrode and a workpiece before working by utilizing the characteristic in which the gap under the gap detection condition in the minute electric discharge converges to a specified value and diagnosing and correction-controlling the gap error or the working depth error generated during the electric discharge machining. CONSTITUTION:An electrode 1 is fed in a prescribed depth direction from a prescribed position for a workpiece 2, and the workpiece 2 is worked by controlling the feed of the electrode. Midway in the working, the switching to the gap detection condition for obtaining a specific value of the gap is performed, and the gap is converged, generating the minute electric discharge for a prescribed time. Then, the position of the electrode is measured, and the error quantity of the working gap for a prescribed value in planning the working or the error quantity of the working depth is calculated from the result of the measurement by a gap error correcting circuit 10. The electrode feed quantity is controlled so that the error quantity is corrected, and then working is restarted. Therefore, the electric discharge working with high precision can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放電加工前に行う電極と工作物との位置合せ
誤差をなくすと同時に、放電加工中に生じる間隙変化に
よる加工誤差を診断し、それを正確に補正制御する方法
に関するもので、特に形彫り放電加工の高精度化な好適
なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention eliminates alignment errors between an electrode and a workpiece before electrical discharge machining, and at the same time diagnoses machining errors due to gap changes that occur during electrical discharge machining. The present invention relates to a method for accurately correcting and controlling it, and is particularly suitable for increasing the precision of die-sinking electrical discharge machining.

〔従来の技術〕[Conventional technology]

形彫り放電加工機は、金型産業を中心とする種種の産業
界で広く利用されており、中でも多目的加工の制御が可
能なN(制御式放電加工機が多く普及しつつある。従来
技術としては例えば特公昭61−58255号公報、特
開昭58−160018号公報記載の技術がある。
Die-sinker electrical discharge machines are widely used in various industries, centering on the mold industry, and among them, N (controlled electrical discharge machines), which can control multi-purpose machining, are becoming more and more popular. For example, there are techniques described in Japanese Patent Publication No. 61-58255 and Japanese Patent Application Laid-open No. 58-160018.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般にNC制御式放電加工機は第8図に示すように、放
電加工を行う機械本体とその一連の制御を行うNG制御
装置内蔵の制御電源本体とに大別される。ベツド3にX
軸とY軸の駆動機構を内蔵したx、Yテーブル4が搭載
され、かつその上部には加工槽5が配置され、その中に
加工対象製品の工作物2が取り付けられるようになって
いる。
In general, as shown in FIG. 8, an NC-controlled electrical discharge machine is roughly divided into a machine main body that performs electrical discharge machining and a control power supply main body that has a built-in NG control device that performs a series of controls. X on bed 3
An x- and Y-table 4 with built-in axis and Y-axis drive mechanisms is mounted, and a processing tank 5 is disposed above the table, into which a workpiece 2 to be processed is attached.

また、Z軸の電極送り機構が内蔵されたクイル6は支柱
7によって支持され、そのタイル先端部に電極が取り付
けられている。8は加工液供給装置で、加工槽5内に加
工液を満すと共に、放電加工によって生じる加工生成物
(加工屑や加工液の分解物など)を適宜排出させるため
に、電極1と工作物2との放電加工を近傍部にも適量の
加工液が供給できるようになっている。一方、制御電源
本体9に内蔵されたNG制御装置9aは、任意の加工条
件の設定、登録や加工電源回路9Cの制御が行えると同
時に、3軸駆動制御回路9bを経由して電極1と工作物
2との位置決め制御、さらにZ軸の電極送り機構の駆動
及び加工中の電極位置の制御、X軸、Y軸のテーブル機
構の駆動及び揺動制御など、放電加工で必要な一連の制
御を行うことができるようになっている。
Further, a quill 6 having a built-in Z-axis electrode feeding mechanism is supported by a support 7, and an electrode is attached to the tip of the tile. Reference numeral 8 denotes a machining fluid supply device, which is used to fill the machining tank 5 with machining fluid and to appropriately discharge machining products (machining waste, decomposition products of machining fluid, etc.) generated by electrical discharge machining. An appropriate amount of machining fluid can be supplied to the vicinity of the electrical discharge machining process. On the other hand, the NG control device 9a built in the control power supply main body 9 can set and register arbitrary machining conditions and control the machining power supply circuit 9C, and at the same time connects the electrode 1 and machining via the 3-axis drive control circuit 9b. It performs a series of controls necessary for electric discharge machining, including positioning control with object 2, driving the Z-axis electrode feed mechanism, controlling the electrode position during machining, and driving and swinging the table mechanism on the X- and Y-axes. It is now possible to do so.

このように構成されたNC制御式放電加工機を使用して
従来から放電加工が行われているが、近年の産業の高度
化に伴い、高能率加工はもとより、特に高精度加工に対
する要求が高まっている。
Electrical discharge machining has traditionally been performed using NC-controlled electrical discharge machines configured in this way, but as industry has become more sophisticated in recent years, the demand for high-efficiency machining and especially high-precision machining has increased. ing.

放電加工による成形品の加工精度は仕上げ加工工程で大
半が決まるが、加工に関係する要因が多くあるため、各
因子の特性及び相互関係を十分に把握しないと効果的な
加工の高精度化を図ることができない、加工精度に関係
する要因は数表1に示すように、(1)機械的要因(2
)制御的要因(3)放電加工現象的要因(4)温度的要
因(5)その他要因に分類することができる。
Most of the machining accuracy of molded products by electric discharge machining is determined by the finishing process, but since there are many factors related to machining, it is necessary to fully understand the characteristics and interrelationships of each factor to effectively improve the accuracy of machining. As shown in Table 1, the factors related to machining accuracy that cannot be determined are (1) mechanical factors (2)
) control factors, (3) electrical discharge machining phenomenon factors, (4) temperature factors, and (5) other factors.

表1 これらの要因に対して、その対策が物理的に容易なもの
と困難なものとがあり、特に(3)項については放電加
工特有の現象が絡んでいるため、その対応策がやっかい
である。中でも、放電加工中に生じる加工間隙変化によ
る加工誤差は、高精度加工を粗害する大きな要因として
指摘されている。
Table 1 Some of these factors are physically easy to countermeasure, while others are difficult. In particular, item (3) is difficult to countermeasure because it involves phenomena specific to electric discharge machining. be. Among these, machining errors due to machining gap changes that occur during electrical discharge machining have been pointed out as a major factor that degrades high-precision machining.

また、加工前に行う電極と工作物との位置決めで生じる
設定誤差も見過ごすことのできない要因の1つである。
Furthermore, setting errors that occur during positioning of the electrode and workpiece before machining are also one of the factors that cannot be overlooked.

このような間隙に係わる誤差が生じる状況について、こ
こでは穴加工を1つの例題にして具体的に説明する。
A situation in which such a gap-related error occurs will be specifically explained using hole machining as an example.

第9図及び数表2〜4は、加工対象品の加工仕様に対す
るその加工計画と条件選定、及びその加工工程に応じた
電極送り量と揺動半径の算出法の概要を示したものであ
る0表2は穴加工例、表3は加工計画、表4は電極送り
量と揺動半径の算出法を示す。
Figure 9 and Tables 2 to 4 outline the machining plan and condition selection for the machining specifications of the workpiece, and the method for calculating the electrode feed amount and swing radius according to the machining process. Table 2 shows an example of hole machining, Table 3 shows a machining plan, and Table 4 shows a calculation method for the electrode feed amount and swing radius.

表2 表3 CjJlO:技術データファイルよりm表4 また、第10図はこの穴加工に対する電極送り量を示し
た拡大図である。更に、第11図は、第8図に示したN
C制御式放電加工機を用いて実際に加工を実施するため
の加工動作のフローチャート例を示す、一般に放電加工
は荒加工から最終の仕上げ加工に至るまで数工程で行い
、各々の加工条件は、加工速度9面粗さ、電極消耗率、
極間ギャップ(加工間隙)などの緒特性が記載された加
工技術データファイルより適切な条件を選定する。
Table 2 Table 3 CjJlO: m from the technical data file Table 4 Also, Fig. 10 is an enlarged view showing the electrode feed amount for this hole drilling. Furthermore, FIG. 11 shows that N shown in FIG.
An example of a flowchart of machining operations for actually performing machining using a C-controlled electrical discharge machine is shown. Generally, electrical discharge machining is performed in several steps from rough machining to final finishing machining, and the machining conditions for each are as follows: Machining speed 9 surface roughness, electrode wear rate,
Appropriate conditions are selected from the machining technology data file that describes the characteristics such as the machining gap.

言うまでもなく、荒加工の条件は放電エネルギーが大き
いので高速加工が行え、仕上げ加工の条件では所要の面
粗さを得るために、その放電エネルギーが小さく低速加
工となる。また、電極消耗の影響をなくすために、極力
電極消耗率の小さい条件が選定されている。
Needless to say, under the conditions of rough machining, the discharge energy is large and high-speed machining can be performed, while under the conditions of finishing machining, the discharge energy is small and machining is performed at low speed in order to obtain the required surface roughness. In addition, in order to eliminate the influence of electrode wear, conditions are selected to minimize the electrode wear rate.

深さ方向の電極送り量と半径方向の揺動量は、表4に示
したように各加工条件における加工面粗さ値と極間ギャ
ップ値を加減算することによって求められ、この算出結
果に基づいて各々設定される。最初の加工では特に揺動
(r1=o)を行う必要がないが、使用する電極径が所
定値より小さければ、その所定値に対応するように揺動
量を加算することによって所定の加工を行うことができ
る。
The electrode feed amount in the depth direction and the amount of oscillation in the radial direction are determined by adding and subtracting the machined surface roughness value and the gap gap value under each machining condition, as shown in Table 4, and based on this calculation result. Each is set. There is no particular need to perform rocking (r1=o) in the first machining, but if the diameter of the electrode used is smaller than a predetermined value, the predetermined machining is performed by adding the amount of rocking to correspond to the predetermined value. be able to.

このようにして計画した加工内容をプログラム化して、
それをNC制御式放電加工機に入力し、また、所定形状
の電極と工作物を所定位置に設置する。そしてこの加工
準備が整ってから実際の加工運転に入り、第11図に示
したフローチャートのように加工動作が実行される。深
さ方向の基準面は、加工対象物に応じて設定するが、説
明を分りやすくするため、ここでは第10図に示したよ
うに加工穴の工作物表面としている。加工前に行うこの
基準面設定は、電極と工作物との接触感知による方法が
従来から利用され、ここでも同じ方法で行っている。放
電加工はこの基準面より深さ方向に行われ、その加工の
進行に追従した加工間隙をある適正な範囲内に保つよう
に電極位置を制御する。加工間隙を制御する方法として
は、極間の平均加工電圧を検出してこれを一定に制御す
る方法が簡便で従来から広く用いられている。この他に
もいくつかの制御方法があるが、いずれにしても加工間
隙を適正な範囲に保つようにしなければ、放電現象が乱
れて正常な放電加工を持続することができない。第11
図の中でステップには加工工程(第8図参照)の順位を
示し、ここではに=1〜6となる。この時の電極送り量
の目襟値ZkはZz〜Zeで、最終上げ加工のZe(Z
、)に到達するまで順次加工を繰り返し行うようになっ
ている。
By programming the machining details planned in this way,
The information is input into an NC-controlled electric discharge machine, and an electrode of a predetermined shape and a workpiece are installed at a predetermined position. After this preparation for machining is completed, actual machining operation begins, and the machining operation is executed as shown in the flowchart shown in FIG. The reference plane in the depth direction is set depending on the workpiece to be machined, but in order to make the explanation easier to understand, here it is set as the workpiece surface of the machined hole as shown in FIG. 10. This reference plane setting, which is performed before machining, has traditionally been performed by sensing contact between an electrode and a workpiece, and the same method is used here. Electric discharge machining is performed in the depth direction from this reference plane, and the electrode position is controlled so that the machining gap that follows the progress of the machining is kept within a certain appropriate range. As a method of controlling the machining gap, a method of detecting the average machining voltage between the machining poles and controlling it to a constant value is simple and has been widely used in the past. There are several other control methods, but in any case, unless the machining gap is maintained within an appropriate range, the discharge phenomenon will be disturbed and normal discharge machining cannot be maintained. 11th
In the figure, the steps indicate the order of the processing steps (see FIG. 8), and in this case, the steps are 1 to 6. The target value Zk of the electrode feed amount at this time is Zz~Ze, and the final raising machining Ze (Z
The processing is repeated in sequence until reaching , ).

このような方法で加工を実した場合、間隙に係わる誤差
が生じる。1つは加工前に生じる基準面の設定誤差であ
り、他の一つは加工中に生じる加工間隙変化による誤差
である。接触感知による位置決め設定は、電極表面の端
部に形成しやすいパリや工作物の表面に付着したゴミ、
ホコリ及び他の介在物の影響を受けやすく、その誤差量
が数μmに及ぶこともあり、正確な基準面出しがきわめ
て困難である。接触感知以外の他の位置決め方法として
、例えば特公昭61−58255号公報に開示されてい
るように、高圧電圧の印加によるコロナ放電を利用した
検知法がある。この検知法を用いれば、上記のような問
題点を回避することが可能であるが、通常の放電加工電
圧よりもきわめて高い1oOov程度の特別な高圧電源
及び制御装置が必要になり、かつ安定性にも注意を要す
る。さらに空気中でのコロナ放電を利用することは可能
であっても、液中及び加工途中での利用はその現象が異
ってしまうので空気中と同じ取り扱いが困難である。
When machining is carried out using such a method, errors related to the gap will occur. One is a setting error of the reference plane that occurs before machining, and the other is an error caused by a change in machining gap that occurs during machining. Positioning settings based on contact sensing eliminate dust that tends to form on the edges of the electrode surface, dirt that adheres to the surface of the workpiece, etc.
It is susceptible to the influence of dust and other inclusions, and the amount of error can reach several micrometers, making accurate reference leveling extremely difficult. As a positioning method other than touch sensing, there is a detection method that utilizes corona discharge by applying a high voltage, as disclosed in Japanese Patent Publication No. 61-58255, for example. If this detection method is used, it is possible to avoid the above problems, but it requires a special high-voltage power supply and control device with a voltage of about 1oOov, which is much higher than the normal electrical discharge machining voltage, and it also requires stability. Also requires caution. Furthermore, even if it is possible to utilize corona discharge in air, the phenomenon is different when using it in liquid or during processing, so it is difficult to handle it in the same way as in air.

一方、放電加工中の加工間隙は常に一定ではなく、種々
の加工条件によって増減し、かつ加工生成物の影響によ
る放電加工現象の変化に応じて上下変動している。この
ため、あらかじめ設定した加工間隙(GAP)にはなら
ず、この設定値との相違量が加工誤差に結び付くことに
なる。第12図は及び表5は、第11図に示した方法で
加工した時のステップに加工後の電極位置と間隙誤差の
状況を示したものである。
On the other hand, the machining gap during electrical discharge machining is not always constant, but increases and decreases depending on various machining conditions, and fluctuates up and down in response to changes in electrical discharge machining phenomena due to the influence of machining products. For this reason, the preset machining gap (GAP) is not achieved, and the amount of difference from this set value will lead to machining errors. FIG. 12 and Table 5 show the electrode positions and gap errors after processing in the steps when processing was performed using the method shown in FIG. 11.

表5 設定値Gkに対する実際の間隙値G&が過大であれば(
G h < G a ) 、加工過多になり、反対に過
小であれば(G b > G a ) 、加工不足にな
ってしまう。
Table 5 If the actual gap value G& with respect to the set value Gk is excessive (
If G h < Ga ), over-machining will occur, and on the other hand, if G b > Ga ), there will be insufficient machining.

設定値との相違量は、放電及び加工現象に大きく左右さ
れ、数μmから数十μmにも及ぶことがある、したがっ
て、従来技術ではこのような間隙変化による加工誤差を
解消することがきわめて困難であり、加工の高精度化を
図ることができない。
The amount of difference from the set value is greatly affected by electrical discharge and machining phenomena, and can range from several μm to several tens of μm. Therefore, with conventional technology, it is extremely difficult to eliminate machining errors caused by such gap changes. Therefore, high precision machining cannot be achieved.

加工誤差を測定及び補正する方法としては、例えば特開
昭58−160018号公報に開示されているように、
加工を途中で中断し、m定プローブを用いて加工深さを
実測した後、所望深さとの誤差を補正加工する方法があ
る。しかし、加工直後の加工穴底部には加工生成物があ
るのでその影響を受けやすく、正確な測定が困難と考え
られる。このため、この加工生成物の除去作業あるいは
特別な除去装置が必要となり、また、上記の方法は大じ
かけな測定装置が必要となるので、機能的、経済的な面
でも問題がある。
As a method for measuring and correcting machining errors, for example, as disclosed in Japanese Patent Application Laid-Open No. 160018/1980,
There is a method in which the machining is interrupted midway, the machining depth is actually measured using an m constant probe, and then the error from the desired depth is corrected. However, since there is a processed product at the bottom of the processed hole immediately after processing, it is likely to be affected by this, making accurate measurement difficult. For this reason, a removal operation or a special removal device for this processed product is required, and the above method also requires a large-scale measuring device, which poses problems in terms of functionality and economy.

そこで、本発明者は加工間隙誤差をなくすための制御方
法について種々検討した結果、ある微少放電の間隙検出
条件での間隙が特定な値に収束する特性を見い出し、さ
らに、この特性を利用して、加工前の電極と工作物との
位置合せ設定を行い、また放電加工中に生じる加工間隙
誤差を診断し。
Therefore, as a result of various studies on control methods to eliminate machining gap errors, the present inventor discovered a characteristic in which the gap converges to a specific value under certain micro-discharge gap detection conditions, and further utilized this characteristic. , to set the alignment between the electrode and workpiece before machining, and to diagnose machining gap errors that occur during electrical discharge machining.

それを正確に補正制御する方法を発明した。We have invented a method to accurately correct and control it.

本願発明の目的は、加工前の位置合せ誤差や加工中の間
隙誤差を解消して放電加工の高精度化を図ることにあり
、その有効な制御法を提供するものである。
An object of the present invention is to improve the accuracy of electric discharge machining by eliminating alignment errors before machining and gap errors during machining, and to provide an effective control method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、加工開始前に、所定の位置に各々設定した
電極と工作物との間隙が特定値になる間隙検出条件で所
定時間微小放電させて、その位置検出より加工深さ方向
の基準面設定を行った後、所定の加工を開始し、その後
さらに、最初の荒加工から仕上げ加工の終了に至る加工
途中で、電極送りが指定の深さに達した地点での加工中
の電極位置を測定し、その加工条件から、間隙が特定値
になる間隙検出条件に切り換え、微小放電を所定時間生
じさせながら間隙を収束させた後、その時の電極位置を
測定し、この両方の測定値の変化量より、加工計画時の
所定値に対する加工間隙の誤差量あるいは加工深さの誤
差量を算出し、その誤差量を補正するように電極送り量
を制御してその後の加工を再開するようにして達成され
る。また上記と同様に基準面設定を行った後、所定の加
工を開始し、その後さらに、最初の荒加工から仕上げ加
工の終了に至るステップの過程で、深さ方向の電極位置
が指定の目標値に達してそのステップの加工後を終えた
後に、間隙が特定値になる間隙検出条件に切り換え、微
小放電を所定時間生じさせながら間隙を収束させた後、
その時の電極位置を測定して、その測定値より前記ステ
ップの加工後の深さを求めた後、さらに加工計画時の加
工深さとの誤差量を算出し、この算出結果から補正加工
が必要と判断された場合に、その誤差量を補正するよう
に電極送り量を制御して補正加工を行うようにしても達
成される。
The above purpose is to generate a small discharge for a predetermined time under gap detection conditions such that the gap between the electrodes set at predetermined positions and the workpiece becomes a specific value before starting machining, and then detect the position and use it to create a reference surface in the machining depth direction. After making the settings, start the specified machining, and then check the electrode position during machining at the point where the electrode feed reaches the specified depth during machining from the initial rough machining to the end of finishing machining. Then, from the machining conditions, switch to the gap detection conditions where the gap becomes a specific value, and after converging the gap while generating a micro discharge for a predetermined time, measure the electrode position at that time, and check the change in both measured values. The amount of error in the machining gap or the error in the machining depth is calculated from the predetermined value at the time of machining planning, and the electrode feed rate is controlled to correct the error amount and subsequent machining is restarted. achieved. In addition, after setting the reference surface in the same way as above, the specified machining is started, and then, in the process of steps from the initial rough machining to the end of finishing machining, the electrode position in the depth direction is set to the specified target value. After reaching and finishing the post-machining of that step, switch to the gap detection condition where the gap becomes a specific value, and after converging the gap while generating a micro discharge for a predetermined time,
After measuring the electrode position at that time and calculating the depth after machining in the above step from the measured value, the amount of error between the machining depth and the machining depth at the time of machining planning is calculated, and from this calculation result, it is determined that correction machining is necessary. This can also be achieved by performing correction processing by controlling the electrode feed amount to correct the amount of error when it is determined.

本願筒1の請求項に係る形彫り放電加工による加工誤差
補正制御法は、各種の制御が可能なNG制御式放電加工
機を用いて、工作物に対して所定の位置より電極を所定
の深さ方向に送り、かつその電極送りを制御しながら工
作物の加工を行う最中に生じる加工誤差を補正制御する
方法において、所定の加工途中で、間隙が特定値になる
間隙検出条件に切換え、微小放電を所定時間生じさせな
がら間隙を収束させた後、その時の電極位置を測定し、
さらにその測定結果より、加工計画時の所定値に対する
加工間隙の誤差量あるいは加工深さの誤差量を算出し、
その誤差量を補正するように電極送り量を制御してその
後の加工を再開するようにしたことを特徴とする。
The machining error correction control method by die-sinking electric discharge machining according to claim 1 of the present application uses an NG control type electric discharge machine capable of various controls to move an electrode from a predetermined position to a predetermined depth with respect to a workpiece. In a method for correcting and controlling machining errors that occur during machining of a workpiece while controlling the electrode feed in the horizontal direction, switching to a gap detection condition in which the gap becomes a specific value in the middle of a predetermined machining, After converging the gap while generating a micro discharge for a predetermined period of time, the electrode position at that time is measured,
Furthermore, based on the measurement results, the amount of error in the machining gap or the amount of error in the machining depth with respect to the predetermined value at the time of machining planning is calculated,
The present invention is characterized in that the electrode feed amount is controlled so as to correct the amount of error, and subsequent machining is restarted.

本願第2請求項に係る形彫り放電加工における加工誤差
補正制御法は、各種の制御が可能なNG制御式放電加工
機を用いて、工作物に対して所定の位置より電極を所定
の深さ方向に送り、がっ、荒加工から仕上げ加工まで一
連の加工ステップ順に電極送りを制御しながら工作物の
加工を行う最中に生じる加工誤差を補正制御する方法に
おいて、加工開始前に、所定の位置に各々設定した電極
と工作物との間隙が特定値になる間隙検出条件で所定時
間微小放電させて、その位置検出より加工深さ方向の基
準面設定を行った後、所定の加工を開始し、その後さら
に、前記加工過程で指定したステップの加工途中で、電
極送りが指定の深さに達した地点での加工中の電極位置
を測定し、その加工条件から1間隙が特定値になる間隙
検出条件に切換え、微小放電を所定時間先じさせながら
間隙を収束させた後、その時の電極位置を測定し、この
両方の測定値の変化量より、加工計画時の所定値に対す
る加工間隙の誤差量あるいは加工深さの誤差量を算出し
、その誤差量を補正するように電極送り量を制御してそ
の後の加工を再開するようにしたことを特徴とする。
The machining error correction control method in die-sinker electrical discharge machining according to claim 2 of the present application uses an NG control type electrical discharge machine capable of various controls to move an electrode from a predetermined position to a predetermined depth with respect to a workpiece. In a method for correcting and controlling machining errors that occur during machining of a workpiece while controlling electrode feed in the order of a series of machining steps from rough machining to finishing machining, a predetermined A small discharge is caused for a predetermined period of time under the gap detection conditions where the gap between the electrode and the workpiece set at each position becomes a specific value, and after setting the reference plane in the machining depth direction from the position detection, the specified machining is started. Then, in the middle of machining the step specified in the machining process, the electrode position during machining is measured at the point where the electrode feed reaches the specified depth, and one gap becomes a specific value based on the machining conditions. After switching to the gap detection condition and converging the gap while causing a micro discharge in advance for a predetermined time, measure the electrode position at that time, and from the amount of change in both measured values, calculate the machining gap relative to the predetermined value at the time of machining plan. The present invention is characterized in that the amount of error or the amount of error in machining depth is calculated, the electrode feed amount is controlled to correct the amount of error, and subsequent machining is restarted.

上記各請求項の発明においては、加工間隙誤差量あるい
は加工深さ誤差量の算出とその補正制御を最終ステップ
の加工途中で行い、また、必要に応じて指定したステッ
プの加工途中でも行えるように構成することが好ましい
In each of the above claimed inventions, the calculation of the machining gap error amount or the machining depth error amount and its correction control are performed during the final step of machining, and can also be performed during the machining of a specified step if necessary. It is preferable to configure.

本願第3請求項に係る加工誤差補正制御法は、各種の制
御が可能なNC制御式放電加工機を用いて、工作物に対
して所定の位置より電極を所定の深さ方向に送り、かつ
、荒加工から仕上げ加工まで一連の加工ステップ順に電
極送りを制御しながら工作物の加工を行う最中に生じる
加工誤差を補正制御する方法において、加工開始前に、
特定の位置に各々設定した電極と工作物との間隙が所定
値になる間隙検出条件で所定時間微小放電させて、その
位置検出より深さ方向の基準面設定を行った後、所定の
加工を開始し、その後さらに、前記荒加工から仕上げ加
工の終了に至る各ステップの過程で、深さ方向の電極位
置が指定の目標値に達してそのステップの加工を終えた
後に、間隙が特定値になる間隙検出条件に切換え、微小
放電を所定時間先じさせながら間隙を収束させた後、そ
の時の電極位置を測定し、その測定値より前記ステップ
の加工後の加工深さを求めた後、さらに加工計画時の所
定値に対する加工深さの誤差量を算出し、この算出結果
から補正加工が必要と判断された場合に、その誤差量を
補正するように電極送り量を制御して補正加工を行うよ
うにしたことを特徴とする。この際、補正加工を最終ス
テップの加工後に行い、また必要に応じて指定したステ
ップ加工後にも行えるように構成することが好ましい。
The machining error correction control method according to claim 3 of the present application uses an NC-controlled electric discharge machine capable of various controls to feed an electrode from a predetermined position to a predetermined depth direction with respect to a workpiece, and , in a method for correcting and controlling machining errors that occur during machining of a workpiece while controlling electrode feed in the order of a series of machining steps from rough machining to finishing machining, before starting machining,
A small discharge is caused for a predetermined period of time under the gap detection conditions in which the gap between the electrodes set at specific positions and the workpiece becomes a predetermined value, and after setting the reference surface in the depth direction from the position detection, the predetermined machining is performed. Then, in the process of each step from the rough machining to the end of finishing machining, after the electrode position in the depth direction reaches a specified target value and the machining of that step is completed, the gap reaches a specific value. After changing the gap detection condition to The amount of error in the machining depth with respect to the predetermined value at the time of machining planning is calculated, and if it is determined that correction machining is necessary from this calculation result, the electrode feed rate is controlled to correct the error amount and correction machining is performed. It is characterized by the fact that it is made to do. At this time, it is preferable to perform the correction processing after the final step processing, and also to perform the correction processing after the specified step processing as necessary.

〔作用〕[Effect]

上記したように本願発明では、加工前の電極と工作物と
の位置合せ設定(基準面設定)を、間隙が特定値になる
間隙検出条件で所定時間微小放電させて位置検出を行う
ようにしたので、正確な基準面設定ができ、従来の接触
感知法で生じやすい誤差を解消することができる。さら
に、放電加工中に生じる間隙誤差を診断し、それを補正
制御するようにしたので、間隙変化による加工誤差が解
消されて高精度な加工結果を得ることができる。
As described above, in the present invention, position detection is performed by setting the alignment between the electrode and the workpiece before machining (reference plane setting) by causing a minute discharge for a predetermined period of time under the gap detection condition that the gap becomes a specific value. Therefore, it is possible to set an accurate reference plane and eliminate errors that tend to occur with conventional contact sensing methods. Furthermore, since gap errors occurring during electrical discharge machining are diagnosed and corrected and controlled, machining errors due to gap changes are eliminated and highly accurate machining results can be obtained.

〔実施例〕〔Example〕

以下、本発明の内容を実施例で具体的に説明する。第1
図は1本発明の内容を示す加工動作のフローチャート例
であり、また、第2図、第3図は、第1図に開示した間
隙誤差補正の内容説明である。
Hereinafter, the content of the present invention will be specifically explained using examples. 1st
1 is an example of a flowchart of a machining operation showing the contents of the present invention, and FIGS. 2 and 3 are explanations of the contents of the gap error correction disclosed in FIG. 1.

数表6はこのフローにおける処理条件である。Table 6 shows the processing conditions in this flow.

表6 放電加工機の全体構成を示す。図において、fl電極と
工作物2に接続された加工電源9は、NC制御装置11
によって指令された所定の加工条件及び間隙検出条件に
対応するパルス電圧、ilt流を出力する。極間電圧検
出回路24は、電極1と工作物との間で生じる放電の極
間電圧を検出し、その検出信号をNC制御装置11と電
極送りサーボ制御回路16に送信し、放電状態の良否を
判別させる。電極1は、Z軸のパルスサーボモータ13
に連結された電極送り機構12の先端部に設置されてお
り、増巾器15を介して電極送りサーボ制御回路16に
よって駆動制御されている。その電極送りサーボ制御回
路16は、NC制御装置11からの指令信号で動作する
と共に、各加工条件での放電状態の判別結果に従って電
極位置を適正に制御する。この他にも、指定された加工
条件及び間隙検出条件で電極を周期的上下運動させる機
能を持っている。パルスサーボモータ13に連結された
パルスエンコーダ14は、電極1の位置指令に対するそ
の移動位置を検出し、その検出信号が電極送りサーボ制
御回路16及びNC制御装置11にフィードバックされ
る0間隙誤差補正回路10は、NC制御装置による間隙
検出指令に応じて間隙誤差あるいは加工深さ誤差を診断
し、その診断結果がNC制御装置に送信される。
Table 6 shows the overall configuration of the electrical discharge machine. In the figure, the processing power source 9 connected to the fl electrode and the workpiece 2 is connected to the NC control device 11.
A pulse voltage and an ilt current corresponding to predetermined machining conditions and gap detection conditions commanded by are output. The inter-electrode voltage detection circuit 24 detects the inter-electrode voltage of the discharge generated between the electrode 1 and the workpiece, sends the detection signal to the NC control device 11 and the electrode feed servo control circuit 16, and determines whether the discharge state is good or not. Let them determine. The electrode 1 is a Z-axis pulse servo motor 13
It is installed at the tip of an electrode feed mechanism 12 connected to the electrode feed mechanism 12 , and is driven and controlled by an electrode feed servo control circuit 16 via an amplifier 15 . The electrode feed servo control circuit 16 operates in response to a command signal from the NC control device 11, and appropriately controls the electrode position according to the result of discriminating the discharge state under each machining condition. In addition, it has a function to periodically move the electrode up and down under specified processing conditions and gap detection conditions. A pulse encoder 14 connected to a pulse servo motor 13 detects the movement position of the electrode 1 in response to a position command, and a zero gap error correction circuit feeds the detection signal back to the electrode feed servo control circuit 16 and the NC control device 11. 10 diagnoses a gap error or machining depth error in response to a gap detection command from the NC control device, and the diagnosis result is transmitted to the NC control device.

X、Yテーブル4上に設置された工作物2は、X、Yテ
ーブル機構に搭載され、かつX、Yテーブル駆動制御回
路23によって制御される。電極との位置合せや工作物
を揺動させる一連の制御指令はNC制御装置11より送
信されている。駆動用のパルスモータ18,19と移動
検出用のパルスエンコーダ20,21は、前記したZ軸
と同様な機能を持っている。加工槽5には加工液供給装
置より加工液が供給及び循環(図示せず)され、同時に
放電加工近停部にも適量の加工液が供給され、加工生成
物が加工間隙内から適宜排出できるようになっている。
The workpiece 2 placed on the X, Y table 4 is mounted on the X, Y table mechanism, and is controlled by the X, Y table drive control circuit 23. A series of control commands for positioning with the electrodes and swinging the workpiece are transmitted from the NC control device 11. The pulse motors 18 and 19 for driving and the pulse encoders 20 and 21 for movement detection have the same function as the Z axis described above. Machining fluid is supplied and circulated (not shown) to the machining tank 5 from a machining fluid supply device, and at the same time, an appropriate amount of machining fluid is also supplied to the electric discharge machining near stop section, so that machining products can be appropriately discharged from the machining gap. It looks like this.

本実施例では、加工前に深さ方向の基準面設定を所定の
位置(従来と同じ加工穴の工作物表面)で行うため、ま
ず、間隙が特定な値になる間隙検出条件で電極と工作物
との間に微小放電を所定時間生じさせる。ここでいう間
隙検出条件とは、最良面加工を行う時のような放電エネ
ルギーがきわめて小さい条件で、かつ印加電圧も通常の
加工条件と同一レベルでよい、所定時間(例えば20〜
60秒程度)微少放電させることによって間隙が一定(
gc)となる、そして、間隙が一定となった地点での電
極位置からgc を差し引いた地点が加工対象製品の工
作物表面で、基準面となる。このようにして正確な基準
面設定を行った後、所定の加工を開始する。その所定の
加工は従来通り(第11図参照)であるが5本発明では
、第1図に示したように、加工途中で間隙誤差を診断し
てそれの誤差量を補正制御する。間隙誤差補正制御は補
正指令に従って、第2図、第3図に示したように行う。
In this example, before machining, the reference plane in the depth direction is set at a predetermined position (the same workpiece surface of the machined hole as in the conventional method). A micro discharge is generated between the device and the object for a predetermined period of time. The gap detection conditions here are conditions where the discharge energy is extremely small, such as when performing best surface machining, and the applied voltage may be at the same level as normal machining conditions, for a predetermined period of time (for example, 20 to 30 minutes).
The gap is kept constant (about 60 seconds) by causing a slight discharge (about 60 seconds).
gc), and the point obtained by subtracting gc from the electrode position at the point where the gap becomes constant is the workpiece surface of the product to be processed, and becomes the reference plane. After setting the reference plane accurately in this way, a predetermined process is started. The predetermined machining is conventional (see FIG. 11), but in the present invention, as shown in FIG. 1, the gap error is diagnosed during the machining process and the error amount is corrected and controlled. Gap error correction control is performed as shown in FIGS. 2 and 3 in accordance with the correction command.

まず、加工中(ステップにの条件)のどの地点で開始す
るかを判別させ、例えば加工中の電極送り量Z&が所定
の目標値Zkからβ手前(βの値としては例えばその加
工下での面粗さ値R+*axk)に達した地点とすれば
よい、この地点での加工中の電極位!Za値を算出後、
間隙が特定値gcになる間隙検出条件に切り換えて、図
中に示すように電極の上下運動による断続的な微小放電
を所定時間生じさせながら間隙を収束させ、収束後の電
極位置Z4を上記と同じように算出する。ffl極位置
は放電現象の変化に応じて時々刻々と変動しているので
、安定な測定位置(例えばタイミング時間t□の地点)
を定め、その位置での値を数回測定して平均化するとよ
い。間隙が特定値に収束するのにある程度の時間を要す
るのは、この前段階での加工生成物が残留しているため
で、それを十分に排出する必要があり、電極の上下運動
はその排出促進を図る役目をしている。収束所要時間t
cは約30〜60秒であることを実験で確認している。
First, it is determined at what point during machining (step conditions) the electrode feed amount Z& is β short of a predetermined target value Zk (the value of β is, for example, The electrode position during processing at this point should be the point where the surface roughness value R+*axk) has been reached! After calculating the Za value,
Switch to the gap detection condition where the gap becomes a specific value gc, converge the gap while causing intermittent micro discharges for a predetermined time by vertical movement of the electrode as shown in the figure, and set the electrode position Z4 after convergence as above. Calculate in the same way. Since the ffl pole position fluctuates from moment to moment according to changes in the discharge phenomenon, a stable measurement position (for example, the point at timing time t□) is required.
It is recommended to determine the value at that position, measure the value several times, and average it. The reason why it takes a certain amount of time for the gap to converge to a specific value is because the processing products from the previous stage remain, and it is necessary to sufficiently remove them. Its role is to promote this. Convergence time t
It has been experimentally confirmed that c is approximately 30 to 60 seconds.

その後、測定した両者の電極位置の変化量ΔG。After that, the amount of change ΔG in both electrode positions was measured.

=Za  Zaより、加工中の間隙値G1を算出(GM
Δg4+gc)L、さらに、加工計画時の間隙値Gkと
の間隙誤差量ΔGkを図中に示したように算出(ΔG 
k= G h−G a )する、そして、算出した間隙
誤差量を電極送り量に補正(ΔGk=ΔZ□)して加工
を再開する。補正後の電極送量Z/1はZh+ΔZoh
となる。
= Za Calculate the gap value G1 during machining from Za (GM
Δg4+gc)L, and the gap error amount ΔGk from the gap value Gk at the time of machining planning is calculated as shown in the figure (ΔG
Then, the calculated gap error amount is corrected to the electrode feed amount (ΔGk=ΔZ□) and processing is restarted. The electrode feeding amount Z/1 after correction is Zh + ΔZoh
becomes.

このように補正制御することによって、加工中に生じた
間隙変化による加工誤差を解消することができ、従来法
に比べて加工精度が大幅に向上する。上記の間隙誤差の
診断及びその補正制御は最終ステップの加工途中で行い
、また、それに先立つ中間補正も指定のステップの加工
途中で行うようにすることができる。なお、ここでは特
に記述しなかったが、同様な方法で加工中の深さHa及
び加工深さ誤差ΔHohの算出も行うことができる。
By performing correction control in this manner, machining errors due to gap changes that occur during machining can be eliminated, and machining accuracy is significantly improved compared to conventional methods. The above-mentioned gap error diagnosis and correction control can be performed during the machining of the final step, and the intermediate correction preceding it can also be performed during the machining of a specified step. Although not specifically described here, the depth Ha during machining and the machining depth error ΔHoh can also be calculated using a similar method.

第5図及び第6図、第7図は本発明の他の実施例である
。間隙検出条件による基準面設定は、第1図で述べた通
りであるが、加工誤差の診断をここではステップにの加
工後に行い、かつ補正加工の要否を判断させるようにし
である。すなわち、第6図に示すように、指定ステップ
にの加工後に、間隙が特定値になる間隙検出条件に切り
換え、前記と同様に電極の上下運動による断続的な微小
放電を所定時間生じさせて、収束後の電極位置Z4値を
算出(測定)する。そして、加工された深さH&を算出
(Ha=Zi+gc)後、加工計画時の加工深さHh 
との誤差量AHOkを算出(ΔHa h = HkHa
)する、さらにこの算出結果から補正加工の要否を判断
し、Hk>Haの場合は加工深さ不足で、その誤差量を
電極送り量に補正(八Ha k=ΔZah)して加工を
再開する。補正後の電極送り量Z’にはzk+ΔZOh
となる。Hh < Haの場合には補正加工を行う必要
がない。このように補正制御することによって間隙変化
による加工誤差が解消でき、かつ、制御の簡素化を図る
ことができる。上記の加工誤差の診断(?l11定)及
び補正制御は最終ステップの加工後に行い、また、必要
に応じて指定したステップの加工後に行えばよい。
FIGS. 5, 6, and 7 show other embodiments of the present invention. The reference plane setting based on the gap detection conditions is as described in FIG. 1, but the diagnosis of machining errors is performed here after step machining, and the necessity of correction machining is determined. That is, as shown in FIG. 6, after machining at the specified step, the gap detection conditions are changed to such that the gap becomes a specific value, and intermittent micro-discharge is generated for a predetermined period of time by the vertical movement of the electrode in the same way as above. Calculate (measure) the electrode position Z4 value after convergence. After calculating the machining depth H& (Ha=Zi+gc), the machining depth Hh at the time of machining plan is calculated.
Calculate the error amount AHOk (ΔHa h = HkHa
), then determine whether correction machining is necessary based on this calculation result, and if Hk > Ha, the machining depth is insufficient, and the error amount is corrected to the electrode feed amount (8 Ha k = ΔZah) and machining is restarted. do. The corrected electrode feed amount Z' is zk + ΔZOh
becomes. If Hh < Ha, there is no need to perform correction processing. By performing correction control in this manner, machining errors due to gap changes can be eliminated, and control can be simplified. The above machining error diagnosis (?l11 constant) and correction control may be performed after the final step of machining, or, if necessary, after machining of a designated step.

尚1次表7は処理条件である。Note that Table 7 below shows the processing conditions.

表7 なお、本発明は、実施例に示した丸穴形状に限らず多種
多用の形状及び複数列の形状の加工に対しても実施する
ことができる。
Table 7 Note that the present invention is not limited to the round hole shape shown in the embodiment, but can also be applied to machining a wide variety of shapes and shapes with multiple rows.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明はある微小放電の間隙検出条
件での間隙が特定な値に収束する特性を利用して、加工
前の電極と工作物との位置合せ設定を行い、また、放電
加工中に生じる間隙誤差あるいは加工深さ誤差を診断し
、それを補正制御するようにしたので、正確な基準面設
定でき、従来の接触感知法で生じやすい誤差が解消され
、さらに、従来技術では困難であった間隙変化による加
工誤差が解消されて高精度な加工結果を得ることができ
る。さらに本発明の制御法は、簡便な制御回路で迅速、
かつ正確に行うことができるので、従来のような加工を
中断しての加工誤差測定やその手間が省け、また特別な
測定機器を用いる必要がなくなり、記能的、経済的な効
果がある。
As described above, the present invention utilizes the characteristic that the gap converges to a specific value under certain microdischarge gap detection conditions to set the alignment between the electrode and the workpiece before machining. Since gap errors or machining depth errors that occur during machining are diagnosed and corrected, it is possible to set an accurate reference surface, eliminate errors that tend to occur with conventional contact sensing methods, and further improve The difficult machining errors caused by gap changes are eliminated, and highly accurate machining results can be obtained. Furthermore, the control method of the present invention uses a simple control circuit to quickly and
Moreover, since it can be carried out accurately, the conventional method of interrupting machining to measure machining errors and its labor can be eliminated, and there is no need to use special measuring equipment, resulting in both operational and economical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例を示す加工動作のフロー図
、第2図は第1図に開示した間隙誤差補正制御の詳細フ
ロー図、第3図は第2図のフローによる加工成果の経時
変化を示す特性図、第4図は本発明を実施するNG制御
装置の全体構成を示す装置レイアウト図、第5図は本発
明の他の実施例を示す加工動作のフロー図、第6図は第
5図に開示した加工深さ誤差測定及び補正制御の詳細フ
ロー図、第7図は第6図のフローによる加工成果の経時
変化を示す特性図、第8図は従来から使用されているN
C制御式放電加工機の斜視図、第9図は穴加工例におけ
る加工条件を定義する寸法定義説明図、第10図は加工
穴と電極送り量を示した加工穴近傍の拡大断面図、第1
1図は従来の実施例を示す加工動作のフロー図、第12
図は第11図に開示した方法で加工した時の電極位置と
間隙誤差の状況を示す説明図である。 1・・・電極、2・・・工作物、4・・・XY子テーブ
ル5・・・加工槽、8・・・加工液供給装置、9・・・
加工電源、10・・・間隙誤差補正制御回路、11・・
・NG制御装置、12・・・電極送り機構、13・・・
パルスサーボモータ、14,20,21・・・パルスエ
ンコーダ。 15.22・・・増「11器、16・・・電極送りサー
ボ制御回路、17・・・XY子テーブル構、18,19
・・・パルスモータ、23・・・XY子テーブル動制御
回路、第 2 回 第 3  口 4!過許間T 第 4 の t −t 極           /3− ノvルス
j−j<T−タ2゛Lイ¥物       /4.20
.2J −1でルスLレコータ。 4  X工テーアル      ls、22  す宣巾
器7  カロエ故虎      3,19 へ°ルスモ
ータノ0  に)免tJ補正Δ御回路    23  
 XYチーフル馬C會11 ff?l f詐回路// 
  Nc*すmuヒ       24−*Atl’t
jrkk 回ht2  電オセ送り+にη1 第 S 目 第 6 図 第 7 口 第 8  凹 第 10 日 ど l−を極 2・・工作物 α・今)を逍込上! 第 II  図 早 12  図 I・・・を詩 2・・・1作物
Fig. 1 is a flowchart of machining operation showing one embodiment of the present invention, Fig. 2 is a detailed flowchart of gap error correction control disclosed in Fig. 1, and Fig. 3 is a machining result according to the flow of Fig. 2. FIG. 4 is a device layout diagram showing the overall configuration of the NG control device implementing the present invention. FIG. 5 is a flow diagram of processing operation showing another embodiment of the present invention. The figure is a detailed flowchart of the machining depth error measurement and correction control disclosed in Figure 5, Figure 7 is a characteristic diagram showing the change in machining results over time according to the flow of Figure 6, and Figure 8 is a diagram of the conventionally used method. I'm N
A perspective view of a C-controlled electric discharge machine, FIG. 9 is a dimension definition explanatory diagram that defines the machining conditions in an example of hole machining, FIG. 10 is an enlarged sectional view near the machined hole showing the machined hole and electrode feed amount, and FIG. 1
Figure 1 is a flow diagram of machining operations showing a conventional example;
The figure is an explanatory diagram showing the electrode position and gap error when processed by the method disclosed in FIG. 11. DESCRIPTION OF SYMBOLS 1... Electrode, 2... Workpiece, 4... XY child table 5... Processing tank, 8... Processing liquid supply device, 9...
Processing power supply, 10... Gap error correction control circuit, 11...
・NG control device, 12... Electrode feeding mechanism, 13...
Pulse servo motor, 14, 20, 21... pulse encoder. 15.22...Additional device 11, 16...Electrode feed servo control circuit, 17...XY child table structure, 18, 19
...Pulse motor, 23...XY child table motion control circuit, 2nd 3rd port 4! Tolerance interval T 4th t -t pole /3- Novrus j-j<T-ta 2゛L i\ object /4.20
.. Luss L recorder with 2J-1. 4.
XY Chiful horse C meeting 11 ff? l f fraud circuit //
Nc*sumuhi 24-*Atl't
jrkk times ht2 Electric pressure feed + η1 Sth No. 6 Figure No. 7 Mouth No. 8 Concave No. 10 Day L- is loaded with pole 2... workpiece α now)! Figure II Early 12 Figure I... is a poem 2...1 crop

Claims (1)

【特許請求の範囲】 1、各種の制御が可能なNC制御式放電加工機を用いて
、工作物に対して所定の位置より電極を所定の深さ方向
に送り、かつその電極送りを制御しながら工作物の加工
を行う最中に生じる加工誤差を補正制御する方法におい
て、所定の加工途中で、間隙が特定値になる間隙検出条
件に切換え、微小放電を所定時間生じさせながら間隙を
収束させた後、その時の電極位置を測定し、さらにその
測定結果より、加工計画時の所定値に対する加工間隙の
誤差量あるいは加工深さの誤差量を算出し、その誤差量
を補正するように電極送り量を制御してその後の加工を
再開するようにしたことを特徴とする形彫り放電加工に
おける加工誤差補正制御法。 2、各種の制御が可能なNC制御式放電加工機を用いて
、工作物に対して所定の位置より電極を所定の深さ方向
に送り、かつ、荒加工から仕上げ加工まで一連の加工ス
テップ順に電極送りを制御しながら工作物の加工を行う
最中に生じる加工誤差を補正制御する方法において、加
工開始前に、所定の位置に各々設定した電極と工作物と
の間隙が特定値になる間隙検出条件で所定時間微小放電
させて、その位置検出より加工深さ方向の基準面設定を
行つた後、所定の加工を開始し、その後さらに、前記加
工過程で指定したステップの加工途中で、電極送りが指
定の深さに達した地点での加工中の電極位置を測定し、
その加工条件から、間隙が特定値になる間隙検出条件に
切換え、微小放電を所定時間生じさせながら間隙を収束
させた後、その時の電極位置を測定し、この両方の測定
値の変化量より、加工計画時の所定値に対する加工間隙
の誤差量あるいは加工深さの誤差量を算出し、その誤差
量を補正するように電極送り量を制御してその後の加工
を再開するようにしたことを特徴とする形彫り放電加工
における加工誤差補正制御法。 3、各種の制御が可能なNC制御式放電加工機を用いて
、工作物に対して所定の位置より電極の所定の深さ方向
に送り、かつ、荒加工から仕上げ加工まで一連の加工ス
テップ順に電極送りを制御しながら工作物の加工を行う
最中に生じる加工誤差を補正制御する方法において、加
工開始前に、所定の位置に各々設定した電極と工作物と
の間隙が所定値になる間隙検出条件で所定時間微小放電
させて、その位置検出より深さ方向の基準面設定を行つ
た後、所定の加工を開始し、その後さらに、前記荒加工
から仕上げ加工の終了に至る各ステップの過程で、深さ
方向の電極位置が指定の目標値に達してそのステップの
加工を終えた後に、間隙が特定値になる間隙検出条件に
切換え、微小放電を特定時間生じさせながら間隙を収束
させた後、その時の電極位置を測定し、その測定値より
前記ステップの加工後の加工深さを求めた後、さらに加
工計画時の所定値に対する加工深さの誤差量を算出し、
この算出結果から補正加工が必要と判断された場合に、
その誤差量を補正するように電極送り量を制御して補正
加工を行うようにしたことを特徴とする形彫り放電加工
における加工誤差補正制御法。
[Claims] 1. Using an NC-controlled electric discharge machine capable of various controls, an electrode is fed from a predetermined position to a predetermined depth direction with respect to a workpiece, and the electrode feed is controlled. In this method, in the process of correcting and controlling machining errors that occur during machining of a workpiece, the gap detection conditions are changed so that the gap becomes a specific value in the middle of a predetermined machining process, and the gap is converged while generating a micro discharge for a predetermined period of time. After that, the electrode position at that time is measured, and from the measurement result, the error amount of the machining gap or the error amount of the machining depth with respect to the predetermined value at the time of machining plan is calculated, and the electrode feed is performed to correct the error amount. A machining error correction control method in die-sinker electrical discharge machining, characterized by controlling the amount and restarting subsequent machining. 2. Using an NC-controlled electric discharge machine that can perform various controls, feed the electrode from a predetermined position to a predetermined depth direction of the workpiece, and perform a series of machining steps from rough machining to finishing machining in order. In a method of correcting and controlling machining errors that occur during machining of a workpiece while controlling electrode feed, the gap between the electrodes set at predetermined positions and the workpiece becomes a specific value before machining starts. After making a small discharge for a predetermined time under the detection conditions and setting a reference plane in the machining depth direction by detecting the position, the predetermined machining is started. Measures the electrode position during machining at the point where the feed reaches the specified depth,
From the machining conditions, switch to the gap detection conditions where the gap becomes a specific value, and after converging the gap while generating a micro discharge for a predetermined time, measure the electrode position at that time, and from the amount of change in both measured values, It is characterized by calculating the error amount of the machining gap or the error amount of the machining depth with respect to the predetermined value at the time of machining planning, and controlling the electrode feed amount to correct the error amount and restarting the subsequent machining. A machining error correction control method in die-sinker electrical discharge machining. 3. Using an NC-controlled electric discharge machine that can perform various controls, feed the workpiece from a predetermined position to a predetermined depth direction of the electrode, and perform a series of machining steps from rough machining to finishing machining. In a method of correcting and controlling machining errors that occur during machining of a workpiece while controlling electrode feed, the gap between the electrodes set at predetermined positions and the workpiece becomes a predetermined value before the start of machining. After causing a micro discharge for a predetermined time under detection conditions and setting a reference plane in the depth direction by detecting the position, a predetermined machining is started, and then the process of each step from the rough machining to the end of finishing machining. Then, after the electrode position in the depth direction reached the specified target value and the machining of that step was completed, the gap detection conditions were changed to such that the gap becomes a specific value, and the gap was converged while generating a micro discharge for a specific time. After that, the electrode position at that time is measured, and the machining depth after the machining in the step is determined from the measured value, and then the error amount of the machining depth with respect to the predetermined value at the time of machining planning is calculated,
If it is determined that correction processing is necessary from this calculation result,
A machining error correction control method in die-sinking electrical discharge machining, characterized in that correction machining is performed by controlling an electrode feed amount so as to correct the amount of error.
JP63027510A 1988-02-10 1988-02-10 Machining error correction control method in Die-sinker EDM Expired - Fee Related JP2667183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027510A JP2667183B2 (en) 1988-02-10 1988-02-10 Machining error correction control method in Die-sinker EDM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027510A JP2667183B2 (en) 1988-02-10 1988-02-10 Machining error correction control method in Die-sinker EDM

Publications (2)

Publication Number Publication Date
JPH01205916A true JPH01205916A (en) 1989-08-18
JP2667183B2 JP2667183B2 (en) 1997-10-27

Family

ID=12223129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027510A Expired - Fee Related JP2667183B2 (en) 1988-02-10 1988-02-10 Machining error correction control method in Die-sinker EDM

Country Status (1)

Country Link
JP (1) JP2667183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847352A (en) * 1996-10-31 1998-12-08 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrical discharge machining

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114821A (en) * 1981-12-29 1983-07-08 Fanuc Ltd Electric discharge machining
JPS58160018A (en) * 1982-03-19 1983-09-22 Mitsubishi Electric Corp Electric discharge device
JPS5969822U (en) * 1982-10-29 1984-05-11 日立精工株式会社 Electric discharge machining control device
JPS61279429A (en) * 1985-06-03 1986-12-10 Mitsubishi Electric Corp Electric discharge machining controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114821A (en) * 1981-12-29 1983-07-08 Fanuc Ltd Electric discharge machining
JPS58160018A (en) * 1982-03-19 1983-09-22 Mitsubishi Electric Corp Electric discharge device
JPS5969822U (en) * 1982-10-29 1984-05-11 日立精工株式会社 Electric discharge machining control device
JPS61279429A (en) * 1985-06-03 1986-12-10 Mitsubishi Electric Corp Electric discharge machining controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847352A (en) * 1996-10-31 1998-12-08 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrical discharge machining

Also Published As

Publication number Publication date
JP2667183B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
EP0352635B1 (en) Numerically controlled grinding machine
JPH02100830A (en) Method and its device for electric discharge machining completion decision
US20020162824A1 (en) Process and device for machining a three-dimensional piece by electroerosive milling
JPH0120014B2 (en)
JP3575087B2 (en) Electric discharge machine
US4970362A (en) Wire-cutting electric discharge machining device
JPH01205916A (en) Working error correction control in diesinking electric discharge machining
JPH04348869A (en) Correction device for angular grinding wheel
JPS58137529A (en) Positioning method for discharge machining
JP2977864B2 (en) Non-contact machining method and apparatus
KR950005427A (en) Apparatus and method for three-dimensional electrochemical machining with simplely shaped rotating tool electrodes
JPH01205917A (en) Detection of working error in diesinking electric discharge machining
JPH01234117A (en) Machining error correction control method in die milling spark erosion machining
JPS58160018A (en) Electric discharge device
JP4017292B2 (en) Machining condition setting method and apparatus for electric discharge machine
JPH10314187A (en) Manufacturing device of dental prosthetic matter
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP2002178226A (en) Electric discharge machining method
JP2005279847A (en) Die sinking method and die sinking electric discharge machine
JP2001162448A (en) Device and method for electric discharge machining
JPH0671687B2 (en) Electric discharge machine
JP2002331426A (en) Depth designating machining method in thin hole electric discharge machine and thin hole electric discharge machine having depth designating machining means
JPS5946731B2 (en) Electric processing equipment
JP2686094B2 (en) Electric discharge machine
JPH0259239A (en) Numerically controlled machine tool with electro-discharge machine function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees