JPS5946731B2 - Electric processing equipment - Google Patents

Electric processing equipment

Info

Publication number
JPS5946731B2
JPS5946731B2 JP5965477A JP5965477A JPS5946731B2 JP S5946731 B2 JPS5946731 B2 JP S5946731B2 JP 5965477 A JP5965477 A JP 5965477A JP 5965477 A JP5965477 A JP 5965477A JP S5946731 B2 JPS5946731 B2 JP S5946731B2
Authority
JP
Japan
Prior art keywords
machining
fluid
workpiece
electrode
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5965477A
Other languages
Japanese (ja)
Other versions
JPS53145194A (en
Inventor
哲朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5965477A priority Critical patent/JPS5946731B2/en
Publication of JPS53145194A publication Critical patent/JPS53145194A/en
Publication of JPS5946731B2 publication Critical patent/JPS5946731B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/36Supply or regeneration of working media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 この発明は放電加工や電解加工のように電極と被加工物
を微小な加工間隙をおいて対向させ、この間隙に絶縁性
の液体または電解液のような加工液を供給すると共に上
記電極と被加工物間に通電し加工する通電加工装置に関
するものである。
Detailed Description of the Invention The present invention involves making an electrode and a workpiece face each other with a small machining gap as in electric discharge machining or electrolytic machining, and injecting a machining fluid such as an insulating liquid or an electrolyte into this gap. The present invention relates to an energization processing device that supplies electricity and processes the workpiece by passing current between the electrode and the workpiece.

従来一般に知られているこの種装置においては電極と被
加工物を接近あるいは開離させる1軸だけの方向の運動
だけで加工を行うが、この場合、電極と被加工物の相対
位置は電気的な間隙を越えることがなく、例えば、絞り
型などのように雄型と雌型のクリアランスが0.1〜2
wlBにもなる場合には、雄型と雌型を別々に作るか、
第1図に示されるように電極1で被加工物2を加工すべ
く送、り込むz軸方向(矢印Z)に垂直あるいは平行に
被加工物2と電極1を相対的に移動させて任意のクリア
ランスを得る方法が提案されている。すなわち電極1の
外周3を動かして外周3に対応する被加工物2の内周4
を加工するために外周3をまず位置PoからP、に移動
させ被加工物2の内周4に接触させる。この時同時に電
極1上の外点A、B、CもまたPoからP4に相当する
変位ベクトルむ分だけ移動する。次に各点A、B、C、
をその原位置を中心にしてベクトルdlに等しい半径で
回転することにより、電極1と被加工物2の間のz軸に
垂直あるいは平行な平面におけるクリアランスはすべて
ベクトルむの長さに等しい距離となる。同様な動作をく
りかえし各位置において行えば電極1の被加工物2に対
向する面はすべて等距離に加工されるというもので、雄
型を直接電極として用いて雌型を加工するために現物合
わせ加工の特長が生かされ、きわめて加工精度が高くか
つ生産性が優れているという特徴が認められている。と
ころで、一般に通電加工においては、極間に生成する被
加工粉あるいは電解スラッジの除去のため第2図に示し
たごとく加工液を電極あるいは被加工物に、あらかじめ
液化H、、H2、H3・・・をあけ、タンク5からポン
プ6によりしぼりバルブ□を介して噴射あるいは吸引す
るようにしており、加工物の形状にもよるが、多数の液
化をあけている。
Conventionally known devices of this type perform machining by moving the electrode and the workpiece toward or away from each other in a single axis, but in this case, the relative positions of the electrode and the workpiece are electrically controlled. For example, when the clearance between the male and female molds is 0.1 to 2, as in a drawing mold, etc.
If it also becomes wlB, make male and female types separately, or
As shown in Fig. 1, the workpiece 2 and the electrode 1 can be moved relative to each other perpendicularly or parallel to the Z-axis direction (arrow Z) in which the electrode 1 is fed to machine the workpiece 2. A method of obtaining clearance has been proposed. That is, by moving the outer circumference 3 of the electrode 1, the inner circumference 4 of the workpiece 2 corresponding to the outer circumference 3 is moved.
In order to process the workpiece, the outer circumference 3 is first moved from position Po to P and brought into contact with the inner circumference 4 of the workpiece 2. At this time, the external points A, B, and C on the electrode 1 also move by the displacement vector corresponding to P4 from Po. Next, each point A, B, C,
By rotating with a radius equal to the vector dl around its original position, the clearance between the electrode 1 and the workpiece 2 in a plane perpendicular or parallel to the z-axis is all equal to the length of the vector dl. Become. If the same operation is repeated at each position, all surfaces of electrode 1 facing workpiece 2 will be processed at the same distance. It is recognized for its characteristics of extremely high processing accuracy and excellent productivity, taking advantage of the features of processing. By the way, in general, in electrical machining, in order to remove the workpiece powder or electrolytic sludge generated between the electrodes, the machining fluid is applied to the electrode or the workpiece in advance by liquefying H, H2, H3, etc., as shown in Figure 2. - is opened, and the pump 6 injects or suctions from the tank 5 through the squeeze valve □, and depending on the shape of the workpiece, a large number of liquefied liquids are opened.

ところが、常に電極と被加工物の相対位置が変化しつつ
加工される上記加工法0暢合、電極と被加工物の相対位
置によつて、各液化H4、H2、H3・・・の出液量は
非加工間隙G1において最大となり、加工間隙G2にお
いて最小となるという現象が起き、加工内容としては不
具合となる。すなわち加工間隙G2こそ最も加工粉の生
成量が多く、液量も多く心要であるのに、逆の現象が起
つており、アークの発生や、加工速度の低下となつて現
われるという大きな欠点があつた。この発明はこのよう
な点にかんがみてなされたもので加工間隙を介して加工
電極と被加工物を対向させると共に、上記加工電極と上
記被加工物に相対運動を与え、上記加工間隙を部分的に
狭めて該加工間隙で加工を行う通電加工装置において、
加工間隙における加工液流量を確保して加工を行い、更
に複数個の液孔各個について、液圧を検出して間隙長を
判別し、液流量の最適化制御を行わしめ、以つて液量不
足による異常アークあるいぱそれに併う加工速度の低下
を防ぎ、かつ液圧の過増大による異常消耗を防止するよ
うにした通電加工装置を提供するものである。
However, in the above-mentioned processing method in which the relative positions of the electrode and the workpiece are constantly changing, depending on the relative positions of the electrode and the workpiece, the liquids of each liquefied H4, H2, H3, etc. A phenomenon occurs in which the amount becomes the maximum in the non-machined gap G1 and the minimum in the machining gap G2, which causes a problem in the machining content. In other words, the machining gap G2 generates the largest amount of machining powder and has a large amount of liquid, which is critical, but the opposite phenomenon occurs, and it has the major drawback of generating arcs and reducing machining speed. It was hot. The present invention has been made in view of the above points, and the machining electrode and the workpiece are opposed to each other through a machining gap, and the machining electrode and the workpiece are given relative motion to partially close the machining gap. In an electrical processing device that performs processing in a processing gap narrowed to
Machining is performed by ensuring the flow rate of machining fluid in the machining gap, and the fluid pressure is detected for each of the multiple fluid holes to determine the gap length, and the fluid flow rate is optimized and controlled, thereby preventing insufficient fluid volume. An object of the present invention is to provide an electrical machining device which prevents abnormal arcing caused by such a problem and a decrease in machining speed that accompanies it, and also prevents abnormal consumption caused by an excessive increase in hydraulic pressure.

以下第3図に示すこの発明の一実施例について説明する
An embodiment of the present invention shown in FIG. 3 will be described below.

第3図において、1は電極、2は被加物であり、この電
極1と被加工物2のZ軸方向における間隙長は、油圧シ
リンダー8及びその油量を制御するサーボバルブ9等で
構成される油圧サーボ機構によつて制御される。被加工
物2はX−Yクロステーブル10上に載せられておりク
ロステーブル10はボールネジ11X,11y及びこれ
に接続されたギヤボツクス12x,12yを介しで駆動
モーター13x,13yに接続されており、加工中にZ
軸方向以外でも被加工物2との相対位置を変えながら加
工することができる。電極1と被加工物2には、加工用
電源14が接続されており、これは直流電源15と郡に
直列に接続されたスイツチング素子16と電流制限抵抗
17及びパルスの発生を制御するための発振回路18に
より構成さ民即ち電極1と被加工物2間(以下極間と称
す)に断続したパルス電流を供給することができ、以つ
て電極1により被加工物2を加工できる。油圧サーボ機
構は、極間の状態すなわち短絡、正常放電極間解放など
の現象を極間電圧Vを検出して判断することができ、規
準電圧E,との差を検出し、短絡あるいは、極間インピ
ーダンスが低下した時極間々隙を開離し、正常であれば
停止、極間開放状態であれば、接近を行わしむるように
している。さらに主軸19に取付けられた位置検出素子
20によつてZ軸における電極位置の検出を行い、さら
に上記極問状態検出出力Esとのアナログ演算によりZ
軸方向のサーボを行わしむる回路21が設けられ、X−
Y平面における動きと互いに関連を持ちながら電極と被
加工物の相対位置を位置制御装置22によつて制御して
いる。一般に位置制御装置22には、数値制御や倣い制
御装置などを用いる。加槽23内には加工液24が満た
されており、加工間隙Gl,G2,G3には常に液孔H
l,H2,H3・・・を通じて加工液が、供胎されてい
る。各液孔とポンプ6との間には各々液流量制御素子E
l.E2,E3・・・が挿入されており更に各液流量制
御素子ElE2,E3には、各々流量制限抵抗Rl,R
2,R3・・・が並列に接続されている。また、各素子
El,E2,E3は流量制御回路25により制御される
。更に各孔の液圧は、液圧検出素子Kl,K2,K3に
より計測され該信号は上記流量制御回路25に伝達され
ている。ここで液流量制御回路25について第4図を用
いて説明する。
In FIG. 3, 1 is an electrode and 2 is a workpiece. The gap length between the electrode 1 and the workpiece 2 in the Z-axis direction is determined by a hydraulic cylinder 8 and a servo valve 9 that controls the oil amount. It is controlled by a hydraulic servo mechanism. The workpiece 2 is placed on an X-Y cross table 10, and the cross table 10 is connected to drive motors 13x, 13y via ball screws 11X, 11y and gearboxes 12x, 12y connected thereto. Inside Z
Machining can be performed while changing the relative position with respect to the workpiece 2 even in directions other than the axial direction. A processing power source 14 is connected to the electrode 1 and the workpiece 2, which includes a DC power source 15, a switching element 16 connected in series, a current limiting resistor 17, and a power source for controlling pulse generation. The oscillation circuit 18 can supply an intermittent pulsed current between the electrode 1 and the workpiece 2 (hereinafter referred to as the gap), so that the electrode 1 can process the workpiece 2. The hydraulic servo mechanism can determine the state of the electrodes, such as short circuit, normal discharge, and other phenomena by detecting the voltage V between the electrodes. When the inter-electrode impedance decreases, the inter-electrode gap is opened, and if normal, the inter-electrode gap is stopped, and when the inter-electrode impedance is open, the inter-electrode gap is closed. Further, the position detection element 20 attached to the main shaft 19 detects the electrode position on the Z axis, and furthermore, the Z axis is detected by analog calculation with the extreme state detection output Es.
A circuit 21 for servoing in the axial direction is provided, and
The relative position of the electrode and the workpiece is controlled by a position control device 22 in relation to the movement in the Y plane. Generally, the position control device 22 uses a numerical control device, a tracing control device, or the like. The tank 23 is filled with machining fluid 24, and there are always fluid holes H in the machining gaps Gl, G2, and G3.
Processing liquid is supplied through 1, H2, H3, and so on. A liquid flow rate control element E is provided between each liquid hole and the pump 6.
l. E2, E3... are inserted, and each liquid flow rate control element ElE2, E3 has a flow rate limiting resistor Rl, R, respectively.
2, R3... are connected in parallel. Further, each element El, E2, E3 is controlled by a flow rate control circuit 25. Furthermore, the hydraulic pressure in each hole is measured by hydraulic pressure detection elements Kl, K2, K3, and the signals are transmitted to the flow rate control circuit 25. Here, the liquid flow rate control circuit 25 will be explained using FIG. 4.

第4図において、E2及びE3はある液圧値に相当する
電圧であつて、この電圧と液圧検出素子K,の出力電圧
をコンパレータ26,27で比較することによりコンパ
レータ26の出力はE3に相当する液圧、例えば0.1
kg/CdよりKの出力が大の時論理レベル21′とし
て出力され27の出力はE2相当例えば0.01kg/
CdよりKの出力が大の時同様に,12として出力され
る。これらの出力はANDゲート28.29及びNNO
T素子30及び0Rゲート31により論理判断され、遅
延回路32を通して液流量制御素子E1を駆動する増幅
器33に入力されるとともに28,29,30,31で
構成される論理回路に接続されている。なお図示はされ
ていないが液圧検出素子K2,K3と液流量制御素子E
2,E3間にも上述同様の回路が接続されている。この
ような回路構成において、流量制限抵抗Rl,R2,R
3だけによる加工液の流れにより、各液孔位置における
極間間隙が広いか狭いかを低液圧検出用の規準電圧E3
との比較により判別し、もし極間間隙が狭い所はその液
流量制御素子Eを駆動する。また広い場合は液供給は必
要ないものと認めてそのままの状態を維持する。一担液
流量制御素子Eが動作した后は適正圧力の検出用の規準
電圧E2との比較により液流量制御素子Eの駆動を続行
するか、停止するかを判断する。すなわち該極間々隙が
広くなつた場合は、上記の説明と同様液流量制御素子E
の駆動を停止する。この際液流量制御素子Eの断続時に
液圧が定常値に至るまでに、若干の時間が必要となるた
め、遅延回路32が設けてある。液流量制御素子Eとし
ては、定流量特性バルブを用い、加工が行われるべき極
間々隙に適当量の加工液が液圧によらず常に一定に供給
されるようになつている。また制御回路25を特別に設
けることなく液流量制御素子El,E2,E3として定
流量特性素子を用いるだけの方法でも、同様の効果があ
るが液供給の必要のない開放状態の間隙でも液が流れる
ため、この液の流れが加工中の間隙に干渉し、加工が不
安定になる場合がある。
In FIG. 4, E2 and E3 are voltages corresponding to a certain hydraulic pressure value, and by comparing these voltages with the output voltage of the hydraulic pressure detection element K by comparators 26 and 27, the output of the comparator 26 becomes E3. Corresponding hydraulic pressure, e.g. 0.1
When the output of K is greater than kg/Cd, it is output as logic level 21', and the output of 27 is equivalent to E2, for example 0.01 kg/
Similarly, when the output of K is greater than Cd, it is output as 12. These outputs are AND gates 28, 29 and NNO
The signal is logically determined by the T element 30 and the 0R gate 31, and is inputted to the amplifier 33 that drives the liquid flow rate control element E1 through the delay circuit 32, and is also connected to the logic circuit composed of 28, 29, 30, and 31. Although not shown, the liquid pressure detection elements K2 and K3 and the liquid flow rate control element E
A circuit similar to that described above is also connected between E2 and E3. In such a circuit configuration, the flow rate limiting resistors Rl, R2, R
The reference voltage E3 for low fluid pressure detection determines whether the gap between the poles at each fluid hole position is wide or narrow due to the flow of machining fluid only by E3.
If the gap between the electrodes is narrow, the liquid flow rate control element E is driven. If the area is wide, it is assumed that liquid supply is not necessary and the current state is maintained. After the carrier liquid flow rate control element E has been operated, it is determined whether to continue or stop driving the liquid flow rate control element E by comparing it with a reference voltage E2 for detecting an appropriate pressure. That is, when the gap between the poles becomes wider, the liquid flow rate control element E
Stops driving. At this time, since it takes some time for the liquid pressure to reach a steady value when the liquid flow rate control element E is turned on and off, a delay circuit 32 is provided. As the liquid flow rate control element E, a constant flow rate valve is used so that an appropriate amount of machining liquid is constantly supplied to the gap between the poles where machining is to be performed, regardless of the hydraulic pressure. Also, a method of simply using constant flow rate characteristics elements as the liquid flow rate control elements El, E2, and E3 without providing a special control circuit 25 has the same effect, but the liquid does not flow even in an open gap where there is no need for liquid supply. Since the liquid flows, the flow of this liquid may interfere with the gap during machining, making machining unstable.

しかし効果は十分にあり、簡便に実施する方法として適
している。以上述べてきたように、この発明によれば、
加工間隙を介して加工電極と被加工物を対向させると共
に、上記加工電極と上記被加工物に相対運動を与え、上
記加工間隙を部分的に狭めて該加工間隙において加工を
行う通電加工であつて、かつ上記加工電極または被加工
物の少なくとも一方に設けられた複数個の加工液供給孔
から上記加工間隙に加工液を供給し、上記加工電極と被
加工物間に上記加工液を介して通電しながら加工するも
のにおいて、上記複数個の加工液供給孔のそれぞれに対
して、加工液供給孔の液圧を検出する液圧検出素子及び
、この液圧検出素子の出力信号に応じ、液圧が増大した
ならば加工液量を増大させ、液圧が減少したならば加工
液量を減少させるように加工液供給孔の加工液量を制御
する液流量制御素子を設けたから、加工が行われている
か、または行われてしかるべき極間々隙に達している個
所における加工液供給量を一定に保ち間隙長の変化によ
つて該間隙の液圧が変化しても一定の流量になるように
して適切な加工粉の排除を行わせることができ、全く放
電の発生しえない間隙については、これを極めて低流量
の状態にしておき、余分な加工液の供給を防ぐとともに
いつ加工可能な状態になつても、それをすみやかに検出
できるために、常に加工間隙に適切な加工液供給がなさ
れる。なお以上においては、放電加工を例にして説明し
てきたが、電解加工においても同様であつて、この際加
工液に気体混入を行つた場合一間隙の広い所ではほとん
ど気体のみが吹き出されるため、みかけ上の比抵抗が増
加し、加工がほとんどなされず、よつて積分効果も発生
しないために、きわめて高い精度にできるとともに、加
工すべき間隙では、電流密度が上るために、加工面のす
べてにわたつて均一な面に仕上るという利点がある。ま
た電極面積が大きくても、実際に加工が行われる際の該
当面積は少いため小容量の加工電源であつても該加工面
における電流密度が高くできる。また、電流密度の大な
ることはとりもなおさず、電解ギヤツプが狭くできるこ
とにつながり、電極に対する形状稍度の向上が期待でき
るという特長がある。以上のようにこの発明によれば、
加工間隙長に適した加工液が供給されるので、液量不足
による異常アークやこれに伴う加工速度の低下が防止さ
れ,また液圧の過増大による異常消粍がなくなる等諸効
果がある。
However, it is sufficiently effective and suitable as a method that can be easily implemented. As stated above, according to this invention,
The machining electrode and the workpiece are opposed to each other through a machining gap, and relative motion is applied to the machining electrode and the workpiece to partially narrow the machining gap and machining is performed in the machining gap. and supplying machining fluid to the machining gap from a plurality of machining fluid supply holes provided in at least one of the machining electrode and the workpiece, and passing the machining fluid between the machining electrode and the workpiece. In machines that perform machining while being energized, a fluid pressure detection element detects the fluid pressure in the machining fluid supply hole for each of the plurality of machining fluid supply holes, and a fluid pressure detection element detects the fluid pressure in the machining fluid supply hole, and the fluid A liquid flow rate control element is provided to control the amount of machining fluid in the machining fluid supply hole so that the amount of machining fluid increases when the pressure increases and decreases when the fluid pressure decreases. The amount of machining fluid supplied at the point where the machining fluid is being processed or has reached the appropriate gap is kept constant so that the flow rate remains constant even if the fluid pressure in the gap changes due to changes in the gap length. In the gaps where no electrical discharge can occur, the flow rate is kept extremely low to prevent excess machining fluid from being supplied and to ensure that machining is possible at any time. Even if the condition occurs, it can be detected immediately, so that an appropriate machining fluid is always supplied to the machining gap. The above explanation has been given using electric discharge machining as an example, but the same applies to electrolytic machining, because if gas is mixed into the machining fluid, almost only gas will be blown out in a wide gap. , the apparent resistivity increases, almost no machining is done, and therefore no integral effect occurs, making it possible to achieve extremely high accuracy. It has the advantage of producing a uniform surface over the whole area. Furthermore, even if the electrode area is large, the corresponding area during actual machining is small, so even with a small capacity machining power source, the current density on the machining surface can be high. In addition, the large current density leads to a narrow electrolytic gap, which is expected to improve the shape consistency of the electrode. As described above, according to this invention,
Since machining fluid suitable for the machining gap length is supplied, abnormal arcing due to insufficient fluid volume and the associated decrease in machining speed are prevented, and abnormal erosion due to excessive increase in fluid pressure is eliminated, among other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクリアランス加工の原理を示す断面図、第2図
は従来の通電加工装置の要部を示す断面図、第3図はこ
の発明の一実施例を示す構成図、第4図は上記第3図に
示される液流量制御回路の一実施例を示す回路図である
。 図において、Kl,K2,K3は液圧検出素子、Rl,
R2,R3は流量制限抵抗、El,E2,E3は液流量
制御素子、6はポンプ、25は流量制御回路である。
Fig. 1 is a sectional view showing the principle of clearance machining, Fig. 2 is a sectional view showing the main parts of a conventional electrical processing device, Fig. 3 is a configuration diagram showing an embodiment of the present invention, and Fig. 4 is the above FIG. 4 is a circuit diagram showing one embodiment of the liquid flow rate control circuit shown in FIG. 3; In the figure, Kl, K2, K3 are hydraulic pressure detection elements, Rl,
R2 and R3 are flow rate limiting resistors, El, E2 and E3 are liquid flow rate control elements, 6 is a pump, and 25 is a flow rate control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 加工間隙を介して加工電極と被加工物を対向させる
と共に、上記加工電極と上記被加工物に相対運動を与え
、上記加工間隙を部分的に狭めて該加工間隙において加
工を行う通電加工であつて、かつ上記加工電極または被
加工物の少なくとも一方に設けられた複数個の加工液供
給孔から上記加工間隙に加工液を供給し、上記加工電極
と被加工物間に上記加工液を介して通電しながら加工す
るものにおいて、上記複数個の加工液供給孔のそれぞれ
に対して、加工液供給孔の液圧を検出する液圧検出素子
及び、この液圧検出素子の出力信号に応じ、液圧が増大
したならば加工液量を増大させ、液圧が減少したならば
加工液量を減少させるように加工液供給孔の加工液量を
制御する液流量制御素子を設けたことを特徴とする通電
加工装置。
1. Electrical machining in which a machining electrode and a workpiece are opposed to each other through a machining gap, a relative movement is given to the machining electrode and the workpiece, the machining gap is partially narrowed, and machining is performed in the machining gap. and supplying machining fluid to the machining gap from a plurality of machining fluid supply holes provided in at least one of the machining electrode and the workpiece, and passing the machining fluid between the machining electrode and the workpiece. A hydraulic pressure detection element for detecting the hydraulic pressure of the machining fluid supply hole for each of the plurality of machining fluid supply holes, and according to an output signal of the fluid pressure detection element, It is characterized by the provision of a liquid flow rate control element that controls the amount of machining fluid in the machining fluid supply hole so that the amount of machining fluid is increased when the fluid pressure increases, and is decreased when the fluid pressure decreases. Electrical processing equipment.
JP5965477A 1977-05-23 1977-05-23 Electric processing equipment Expired JPS5946731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5965477A JPS5946731B2 (en) 1977-05-23 1977-05-23 Electric processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5965477A JPS5946731B2 (en) 1977-05-23 1977-05-23 Electric processing equipment

Publications (2)

Publication Number Publication Date
JPS53145194A JPS53145194A (en) 1978-12-18
JPS5946731B2 true JPS5946731B2 (en) 1984-11-14

Family

ID=13119394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5965477A Expired JPS5946731B2 (en) 1977-05-23 1977-05-23 Electric processing equipment

Country Status (1)

Country Link
JP (1) JPS5946731B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175928A (en) * 1983-03-23 1984-10-05 Inoue Japax Res Inc Working liquid supplying device of electric discharge machine for parting line working
JPS6094222A (en) * 1983-10-27 1985-05-27 Fanuc Ltd Wire electrode cooling device in wire cut electric discharge machine
DE3419629C2 (en) * 1984-05-11 1986-05-28 Aktiengesellschaft für industrielle Elektronik AGIE Losone bei Locarno, Losone, Locarno Adaptive control method for the control of operating parameters in electrical discharge machining and electrical discharge machining for this purpose
JPS6171919A (en) * 1984-09-17 1986-04-12 Inoue Japax Res Inc Electric discharge machine

Also Published As

Publication number Publication date
JPS53145194A (en) 1978-12-18

Similar Documents

Publication Publication Date Title
US3288699A (en) Apparatus for electrochemical shaping
US4798929A (en) Wire electric discharge machining apparatus
EP1658915B1 (en) Methods and systems for monitoring and controlling electroerosion
US5919381A (en) Bipolar electrical discharge machine which detects misfire
US8236162B2 (en) Electroerosion machining system and method for electrode wear compensation
KR910003052B1 (en) Electric discharge machining method and device
JPS5946731B2 (en) Electric processing equipment
JPH0716825B2 (en) Wire electric discharge machine
US3435177A (en) Servo control circuit for electrical discharge machining apparatus
US4861450A (en) Power supply system for electrolytic processing apparatus
JPS5531512A (en) Controlling method of spark machining
JPH03196916A (en) Changing over device for polarity in electric discharging machine
JPS59169717A (en) Electric discharge machining device
US5369239A (en) Method and apparatus for sink-type electrical discharge machining with control of pyrographite buildup
JPH01234114A (en) Power supply device for electric discharge machining
SU1098738A1 (en) Electrode tool
SU854662A1 (en) Electrochemical working method
Crichton et al. Theoretical, Experimental and Computational aspects of the electrochemical arc machining process
JPH03166021A (en) Method of electric discharge machining
JPS61136731A (en) Wire spark erosion machine
JP2000071123A (en) Electrical discrge machining method, and its device
JP2969027B2 (en) EDM method
RU2263010C1 (en) Method for electrochemical dimensional working of blanks in flow- through electrolyte
JPS6059099B2 (en) Electrical discharge machining method and device
JPH0138615B2 (en)