JPH01205049A - Member made of heat-resistant and high strength sintered al alloy - Google Patents

Member made of heat-resistant and high strength sintered al alloy

Info

Publication number
JPH01205049A
JPH01205049A JP2778688A JP2778688A JPH01205049A JP H01205049 A JPH01205049 A JP H01205049A JP 2778688 A JP2778688 A JP 2778688A JP 2778688 A JP2778688 A JP 2778688A JP H01205049 A JPH01205049 A JP H01205049A
Authority
JP
Japan
Prior art keywords
alloy
sintered
aging treatment
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2778688A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Hiroyuki Horimura
弘幸 堀村
Noriaki Matsumoto
松本 規明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2778688A priority Critical patent/JPH01205049A/en
Priority to CA000584522A priority patent/CA1330400C/en
Priority to US07/278,581 priority patent/US5022918A/en
Priority to EP88311390A priority patent/EP0319295B1/en
Priority to DE3888308T priority patent/DE3888308T2/en
Publication of JPH01205049A publication Critical patent/JPH01205049A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the title member by quenching an Al alloy contg. specific amounts of Fe, Cr and Zr into powder, subjecting it to molding and sintering and thereafter to an aging treatment at a specific temp. CONSTITUTION:The molten metal of the Al alloy contg., by weight, 1-5% Fe, 5-12% Cr and 0.5-3% Zr is quenched at the cooling speed of about 10<2>-10<6> deg.C/sec by an inert gas atomizing method, a centrifugal spraying method, etc., and is solidified into the powder shape to reduce the size of the intermetallic compounds of Al-Cr, Al-Zr and Cr-Zr deposited at the time of solidification. the Al alloy powder is pressurized and molded into a green compact it is thereafter sintered and the sintered manufactures are subjected to an aging treatment at 350-500 deg.C. The size of the intermetallic compounds in the sintered Al alloy is fined into <=10mum, by which the machine member made of sintered Al alloy having excellent high temp. strength can be obtd.

Description

【発明の詳細な説明】 LIP立旦旦史1 本発明は、高温で強度低下が少なく熱間加工性の良好な
るAl合金粉末を焼結することによって形成される部材
に係り、特に内燃機関の連接棒およびバルブ(弁)の如
く高温に加熱される箇所に好適に使用される耐熱高強度
焼結AJI合金製部材に関するものである。
Detailed Description of the Invention The present invention relates to a member formed by sintering Al alloy powder, which has good hot workability with little strength loss at high temperatures, and is particularly applicable to internal combustion engines. This invention relates to a heat-resistant, high-strength sintered AJI alloy member that is suitably used in locations that are heated to high temperatures, such as connecting rods and valves.

良米且盟 耐熱性の優れたAf1合金として、SLを18〜25重
量%も含むピストン用合金(通称、アルシル)が知られ
ている。この高SL含有AJ合金は鋳造用合金であって
、溶解法によれば、粗大な初晶Sλが晶出して必要な強
度が得られないため、改良処理(例、溶湯中にNaを添
加する)を行なって初晶S^の微細化を計っている。し
かしながら、その微細化効果には限界があるところから
、高Sλ含有過共晶Al合金粉末をアトマイジング法で
製造することにより初晶SLの粒径を数μm程度に押え
、その圧粉成形体を熱間押出し加工して高強度の焼結A
l合金製部材を得る方法が提案されている。この粉末冶
金用AJ金合金は高温強度。
An alloy for pistons (commonly known as Alsil) containing 18 to 25% by weight of SL is known as an Af1 alloy with good quality and excellent heat resistance. This high SL content AJ alloy is a casting alloy, and according to the melting method, coarse primary crystals Sλ crystallize and the necessary strength cannot be obtained. ) to refine the primary crystal S^. However, since there is a limit to its refining effect, the particle size of the primary crystal SL can be suppressed to about several μm by producing hypereutectic Al alloy powder containing high Sλ by the atomizing method, and the compacted powder is produced using the atomizing method. High strength sintered A by hot extrusion processing
A method of obtaining a member made of l-alloy has been proposed. This AJ gold alloy for powder metallurgy has high temperature strength.

ヤング率を向上させるために2重量%以上のFeを添加
しているが、AJ中にFe、SLが共存すると針状のA
JIs Fe、Altx Fe!SL等の金属間化合物
が析出して熱間鍛造加工性が阻害され、焼結性、耐応力
JIX!II割れ特性が低下するという問題がある。
Although 2% by weight or more of Fe is added to improve Young's modulus, if Fe and SL coexist in AJ, acicular A
JIs Fe, Altx Fe! Intermetallic compounds such as SL precipitate and inhibit hot forging workability, resulting in poor sinterability and stress resistance JIX! There is a problem in that the II cracking properties deteriorate.

、また、近年Aj−8F8等のAll −Fe系合金に
ついての研究が行われているが、AfJ−Fe合金は時
効処理によって強化することができず、他の合金元素と
の組合せが模索されている。
In addition, in recent years, research has been conducted on All-Fe alloys such as Aj-8F8, but AfJ-Fe alloys cannot be strengthened by aging treatment, and combinations with other alloying elements are being explored. There is.

[1<  しよ とする・ 本発明は斯かる技術的背景の下に創案されたものであり
、時効処理によって強化された耐熱高強度焼結へρ合金
製部材を提供することをその目的とする。
[1< The present invention was created against this technical background, and its purpose is to provide a ρ alloy member for heat-resistant, high-strength sintering that is strengthened by aging treatment. do.

・ を °するための  rよび この目的は、急冷凝固組織を有する下記組成のへ1合金
粉末を焼結した部材であって、温度350〜500℃で
時効処理が施されている耐熱^強度焼結へg合金製部材
を提供することによって達成される。
・The purpose of this is to produce a heat-resistant ^ strength sintered member that has been sintered with He1 alloy powder having the following composition and has a rapidly solidified structure, and has been subjected to aging treatment at a temperature of 350 to 500°C. This is achieved by providing a g-alloy member.

へΩ合金粉末の組成・・・Fe=1〜5重量%。Composition of Ω alloy powder: Fe = 1 to 5% by weight.

Or = 5〜12fl!i%、Zr=0.5〜3重量
%、残部=AJ)と不可避不純物。
Or = 5~12fl! i%, Zr=0.5 to 3% by weight, remainder=AJ) and inevitable impurities.

Cr、Zrを含むAl1合金では、急冷によって1)−
Cr系、AfJ−Zr系、Cr−Zr系の金属間化合物
がα相中に過飽和に固溶し、時効によって前記金属間化
合物が析出して硬化する、所謂時効硬化が起る。また、
固溶限界を越えるCr。
In Al1 alloy containing Cr and Zr, 1)-
Cr-based, AfJ-Zr-based, and Cr-Zr-based intermetallic compounds form a supersaturated solid solution in the α phase, and the intermetallic compounds precipitate and harden due to aging, which is what is called age hardening. Also,
Cr exceeding the solid solubility limit.

Zrを含む11合金を溶融状態から急冷凝固させた後時
効処理を行えば、Al−Cr系、1l−Zr系、 0r
−7r系の金属間化合物が微細に分散品出2分散析出し
た組織を得ることができ、マトリックス中へのCr、Z
rの固溶による強化、および金属間化合物の晶出、析出
による強化を計ることが可能である。
If 11 alloys containing Zr are rapidly cooled and solidified from a molten state and then subjected to aging treatment, Al-Cr series, 1l-Zr series, 0r
It is possible to obtain a structure in which -7r-based intermetallic compounds are finely dispersed and precipitated.
It is possible to measure strengthening by solid solution of r and strengthening by crystallization and precipitation of intermetallic compounds.

ここで留意すべきは、前記金属間化合物が粗大化すると
材料強度が損われるため、溶融状態から常温に到るまで
の冷却速度を大きくする必要がある点である。要求され
る冷却条件は冷却速度102〜b 金属間化合物および時効による析出金属間化合物の大き
さを10μm以下に抑えることができる。実際問題とし
て、102〜b な冷却速度を溶解法によって得るのは難しく、細孔から
流出する溶融金属に不活性ガスを噴射させるアトマイズ
法、あるいは遠心噴霧法等によって急冷凝固させた粉末
を製造し、粉末冶金法で製品部材を得る必然性がある。
It should be noted here that when the intermetallic compound becomes coarse, the strength of the material is impaired, so it is necessary to increase the cooling rate from the molten state to room temperature. The required cooling conditions are a cooling rate of 102-b. The size of the intermetallic compound and the intermetallic compound precipitated by aging can be suppressed to 10 μm or less. As a practical matter, it is difficult to obtain a cooling rate of 102~b by the melting method, and the powder is rapidly solidified by the atomization method, in which an inert gas is injected into the molten metal flowing out of the pores, or the centrifugal spray method. , it is necessary to obtain product parts using powder metallurgy.

Δ夕中に添加する合金元素の添加理由は以下の通りであ
る。
The reason for adding the alloying element added in the evening is as follows.

■Fe (1〜5重量%)・・・Feは常温強度、高温
強度、ヤング率の向上に寄与する。ただし、1重量%未
満では添加効果が小さく、5重量%を越えると切欠き感
受性が高くなり、伸び率が過小になる。
(2) Fe (1 to 5% by weight): Fe contributes to improving room temperature strength, high temperature strength, and Young's modulus. However, if it is less than 1% by weight, the effect of addition is small, and if it exceeds 5% by weight, the sensitivity to notches becomes high and the elongation rate becomes too small.

■Cr(5〜12重量%)・・・Crは常温強度および
高温強度の向上、クリープ特性の改善を計るために添加
される。ただし、5重量%未満では温度300〜400
℃における強度が低く、12重量%を越えると熱間加工
性が低下し、伸び率が過小になる。
(2) Cr (5 to 12% by weight): Cr is added to improve the room temperature strength and high temperature strength, as well as the creep properties. However, if it is less than 5% by weight, the temperature is 300-400%.
The strength at °C is low, and if it exceeds 12% by weight, hot workability decreases and the elongation rate becomes too small.

■Zr(0,5〜3重量%)・・・Zrは、展延性。■Zr (0.5 to 3% by weight)...Zr is malleable.

クリープ特性を改善するために添加される。ただし、0
.5重量%未満では改善効果が少なく、3重世%を越え
ると展延性が低下する。
Added to improve creep properties. However, 0
.. If it is less than 5% by weight, there will be little improvement effect, and if it exceeds 3% by weight, the spreadability will decrease.

次に、本発明組成のAJ!合金粉末を用いた焼結晶の製
造方法例について説明する。
Next, AJ! of the composition of the present invention! An example of a method for manufacturing sintered crystals using alloy powder will be described.

■粉末の製造・・・1≦Fe≦5重M%、5≦Cr≦1
2重ω%、0.5≦Zr≦3重量%なる組成範囲のCr
、 Fe、 Zrを含むAJ合金粉末(粒径105μm
未満)を、Heガスを用いたアトマイズ法、遠心噴霧法
、ロール急冷法等により冷却速度102〜101’C/
秒なる条件を満たすように製造する。
■Production of powder...1≦Fe≦5% by weight, 5≦Cr≦1
Cr in a composition range of double ω%, 0.5≦Zr≦3% by weight
AJ alloy powder containing , Fe, and Zr (particle size 105 μm
) at a cooling rate of 102 to 101'C/
Manufactured to meet the following conditions:

■圧粉成形・・・得られた粉末を、冷間静水圧プレス成
形法(CIP法)により圧力4.000に9 f/aA
として、寸法5011+1φX 100履の押出し加工
用素材を得る。
■Powder compacting...The obtained powder is pressed to a pressure of 4.000 at 9 f/aA using the cold isostatic press method (CIP method).
As a result, a material for extrusion processing with a size of 5011+1φ×100 shoes is obtained.

■熱間押出し加工(焼結)・・・圧粉体である押出し加
工用素材を温度450℃で1時間の脱ガスを行なった後
、温度450℃、押出し比12なる条件で熱間押出し加
工する。なお、成形品の酸化防止を考慮するならば、ア
ルゴンガス、窒素ガス等の非酸化性雰囲気中で熱間押出
し加工を行うのが好ましい。
■Hot extrusion processing (sintering): After degassing the extrusion material, which is a green compact, at a temperature of 450°C for 1 hour, hot extrusion processing is performed at a temperature of 450°C and an extrusion ratio of 12. do. In addition, in consideration of preventing oxidation of the molded product, it is preferable to carry out the hot extrusion process in a non-oxidizing atmosphere such as argon gas or nitrogen gas.

墓」し阻」− 前記製造方法に則って得た本発明例としての焼結晶(A
、B、C)および同様な方法で得た比較例としての焼結
晶(a、b、c、d、e、f、g。
Grave "Shiban" - Sintered crystal (A
, B, C) and comparative examples of baked crystals (a, b, c, d, e, f, g) obtained by the same method.

h)(いずれも表1参照)を試料として、温度300℃
、  400℃、550℃にそれぞれ10時間保持する
三通りの時効処理を施したもの、および時効処理を施さ
なかったものについて引張り試験を行い、表2の試験結
果を得た。
h) (see Table 1) at a temperature of 300°C.
A tensile test was conducted on the specimens that had been subjected to three types of aging treatment by holding them at 400°C and 550°C for 10 hours each, and those that had not been subjected to aging treatment, and the test results shown in Table 2 were obtained.

表1 表2 *σ−・・・引張り強度(醇f/Mn’ )*ε ・・
・伸び率(%) 〈試験結果の評価〉 ■試料A、8および試料a、bの対比から、Feff1
が増すと時効処理の有無にかかわらず引張り強度が向上
して伸び率が低下することが判る。
Table 1 Table 2 *σ-...Tensile strength (f/Mn')*ε...
・Elongation rate (%) <Evaluation of test results> ■From the comparison of samples A and 8 and samples a and b, Feff1
It can be seen that as the tensile strength increases, the tensile strength improves and the elongation rate decreases, regardless of the presence or absence of aging treatment.

■試料B、C,Cの対比からCrff1が増すと、時効
処理の有無にかかわらず引張り強度が向上して伸び率が
低下することが判る。
(2) Comparison of samples B, C, and C shows that as Crff1 increases, the tensile strength improves and the elongation rate decreases regardless of whether or not aging treatment is performed.

■試料3.dの対比から、Zrの添加は時効処理の有無
にかかわらず引張り強度を増し、特に温度400°Cで
時効処理したものについて強度向上効果が大きいことが
判る。
■Sample 3. From the comparison of d, it can be seen that the addition of Zr increases the tensile strength regardless of the presence or absence of aging treatment, and the strength-improving effect is particularly large for those subjected to aging treatment at a temperature of 400°C.

■試料c、hと他の試料との対比から、Cr添加量が少
ないと時効処理による強度向上効果が少く、温度550
℃に加熱したときの引張り強度の低下Mが大きいことが
判る。
■Comparing samples c and h with other samples, it was found that when the amount of Cr added is small, the strength improvement effect due to aging treatment is small, and at a temperature of 550
It can be seen that the decrease M in tensile strength when heated to ℃ is large.

■全試料について時効処理の有無による差異を見ると、
時効処理温度300℃では引張り強度の向上を期待でき
ず、時効処理温度550℃では引張り強度が低下するこ
とが判る。
■Looking at the differences between all samples depending on whether or not they were aged,
It can be seen that no improvement in tensile strength can be expected at an aging treatment temperature of 300°C, and that the tensile strength decreases at an aging treatment temperature of 550°C.

WJ口1ユ 複数161の試料B(表1参照)につき温度25℃。WJ mouth 1 unit Temperature 25° C. for multiple 161 samples B (see Table 1).

100℃、200℃、300℃、400℃、500℃の
各温度(時効処理温度)に1時間加熱保持し、冷却した
後、その表面硬度(マイクロ・ビッカース硬度Hv  
)を調べ、その結果を第1図に示した。
The surface hardness (micro-Vickers hardness Hv
), and the results are shown in Figure 1.

く試験結果の評価〉 加熱温度350℃以上で硬度の上界が認められ、加熱温
度450℃で極大硬さに達し、加熱温度500℃でも十
分大きな硬度の上昇が認められる。
Evaluation of test results> The upper limit of hardness is observed at a heating temperature of 350°C or higher, maximum hardness is reached at a heating temperature of 450°C, and a sufficiently large increase in hardness is observed even at a heating temperature of 500°C.

11口1ユ 複数個の試料B(表1参照)につき、加熱温度(時効処
理温度)を400℃、450℃、500℃とし、各温度
での保持時間の差が表面硬度(マイクロ・ビッカース硬
度f−Iy  )に与える影響を調べその結果を第2図
に示した。
For multiple samples B (see Table 1) of 11 mouths and 1 unit, the heating temperature (aging temperature) was set to 400°C, 450°C, and 500°C, and the difference in holding time at each temperature was determined as the surface hardness (micro-Vickers hardness). The effect on f-Iy) was investigated and the results are shown in FIG.

〈試験結果の評価〉 加熱温度400℃では保持時間10時間で極大硬さHv
 217に達し、加熱温度450℃では保持時間1時間
で極大硬さH,214に達し、加熱温度500℃では保
持時間15分で極大硬さ)−1v211に達する。
<Evaluation of test results> At a heating temperature of 400°C, the maximum hardness Hv was reached after a holding time of 10 hours.
At a heating temperature of 450°C, the maximum hardness H, 214 is reached after a holding time of 1 hour, and at a heating temperature of 500°C, a maximum hardness of -1v211 is reached after a holding time of 15 minutes.

加熱温度を高く設定するよりも低く設定した方が大きな
極大硬さを得られるが、長い保持時間を必要とするため
、加熱温度を高く保持時間を短くするのが生産性を向上
させる上で有利であり、加熱温度の違いによる極大硬さ
の差もさほど大きくはない。なお、圧粉体を加熱して熱
間加工を行う間に時効硬化が進行することは明らかであ
り、素材の予熱時間および加工に要する時間と加工温度
によっては別途時効処理を行う必要はない。
A higher maximum hardness can be obtained by setting the heating temperature lower than by setting it higher, but it requires a longer holding time, so it is advantageous to increase the heating temperature and shorten the holding time to improve productivity. Therefore, the difference in maximum hardness due to the difference in heating temperature is not so large. Note that it is clear that age hardening progresses while the green compact is heated and hot worked, and there is no need to perform a separate aging treatment depending on the preheating time of the material, the time required for processing, and the processing temperature.

l用匁1」 以上の説明から明らかなように、Fe=1〜5重量%、
 Cr = 5〜12ffi1%、Zr=0.5〜3重
儂%のEe、 Cr、7rを含むAl1合金粉末の焼結
晶である本発明部材は適温のl:e、 Cr、 Zrを
含み、時効硬化処理が施されているが故に常温から高温
に到る範囲で大きな強度を得ることができる
As is clear from the above explanation, Fe = 1 to 5% by weight,
The present invention member, which is a sintered crystal of Al1 alloy powder containing Ee, Cr, and 7r with Cr = 5-12ffi1% and Zr = 0.5-3% Because it is hardened, it can obtain great strength from room temperature to high temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明組成範囲のへ1合金焼結品の時効処理温
度と表面硬度(Hv)との関係を示すグラフ、第2図は
本発明組成範囲のへ1合金粉末焼結品の時効処理温度、
保持時間と表面硬度(Hv)との関係を示すグラフであ
る。
Fig. 1 is a graph showing the relationship between aging temperature and surface hardness (Hv) of a sintered product of He1 alloy in the composition range of the present invention, and Fig. 2 is a graph showing the relationship between aging treatment temperature and surface hardness (Hv) of a sintered product of He1 alloy powder in the composition range of the present invention. processing temperature,
It is a graph showing the relationship between retention time and surface hardness (Hv).

Claims (1)

【特許請求の範囲】 急冷凝固組織を有する下記組成のAl合金粉末を焼結し
た部材であつて、温度350〜500℃で時効処理が施
されている耐熱高強度焼結Al合金製部材。 Al合金粉末の組成: [Fe・・・1〜5重量%、Cr・・・5〜12重量% Zr・・・0.5〜3重量%、残部・・・Alと不可避
不純物]
[Scope of Claims] A heat-resistant, high-strength sintered Al alloy member, which is a member obtained by sintering Al alloy powder having the following composition and having a rapidly solidified structure, and which is subjected to aging treatment at a temperature of 350 to 500°C. Composition of Al alloy powder: [Fe...1 to 5% by weight, Cr...5 to 12% by weight, Zr...0.5 to 3% by weight, balance...Al and inevitable impurities]
JP2778688A 1987-12-01 1988-02-10 Member made of heat-resistant and high strength sintered al alloy Pending JPH01205049A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2778688A JPH01205049A (en) 1988-02-10 1988-02-10 Member made of heat-resistant and high strength sintered al alloy
CA000584522A CA1330400C (en) 1987-12-01 1988-11-30 Heat-resistant aluminum alloy sinter and process for production of the same
US07/278,581 US5022918A (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same
EP88311390A EP0319295B1 (en) 1987-12-01 1988-12-01 Heat-resistant aluminum alloy sinter and process for production of the same
DE3888308T DE3888308T2 (en) 1987-12-01 1988-12-01 Heat-resistant, sintered aluminum alloy and process for its production.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2778688A JPH01205049A (en) 1988-02-10 1988-02-10 Member made of heat-resistant and high strength sintered al alloy

Publications (1)

Publication Number Publication Date
JPH01205049A true JPH01205049A (en) 1989-08-17

Family

ID=12230659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2778688A Pending JPH01205049A (en) 1987-12-01 1988-02-10 Member made of heat-resistant and high strength sintered al alloy

Country Status (1)

Country Link
JP (1) JPH01205049A (en)

Similar Documents

Publication Publication Date Title
JPS63501883A (en) Aluminum-lithium alloy and method of manufacturing the same
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2013515169A (en) Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
US20040261916A1 (en) Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components
JPH02232324A (en) Production of parts made of aluminum alloy keeping high fatigue strength even after being kept in high temperature for hours
KR100415270B1 (en) Copper Base Alloy, and Methods for Producing Casting and Forging Employing Copper Base Alloy
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
US6083328A (en) Casting rolls made of hardenable copper alloy
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
JPH01149936A (en) Heat-resistant al alloy for powder metallurgy
JPH01205049A (en) Member made of heat-resistant and high strength sintered al alloy
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPH0238653B2 (en) PURASUCHITSUKUKANAGATAYODOGOKINOYOBISONOSEIZOHOHO
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
JPH1112675A (en) Production of aluminum alloy for hot forging and hot forged product
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPS6283453A (en) Manufacture of aluminum alloy ingot for extrusion
JP3621889B2 (en) Method for producing Al-Si alloy material
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
RU2819677C1 (en) Method of producing deformed semi-finished products from aluminium alloy
KR920007884B1 (en) Copper alloy and a process for the production of a continous casting mould by this copper alloy
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment