JPH01205020A - Method for operating steel manufacturing furnace - Google Patents

Method for operating steel manufacturing furnace

Info

Publication number
JPH01205020A
JPH01205020A JP2849888A JP2849888A JPH01205020A JP H01205020 A JPH01205020 A JP H01205020A JP 2849888 A JP2849888 A JP 2849888A JP 2849888 A JP2849888 A JP 2849888A JP H01205020 A JPH01205020 A JP H01205020A
Authority
JP
Japan
Prior art keywords
ladle
temp
steel
tapping
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2849888A
Other languages
Japanese (ja)
Inventor
Shigetomi Noshita
野下 滋富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2849888A priority Critical patent/JPH01205020A/en
Publication of JPH01205020A publication Critical patent/JPH01205020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To simply reflect effect of ladle heating to decision of steel-tapping temp. by predicting molten steel heat capacity conducted to ladle refractory based on temp. of the ladle refractory assumed from heating atmospheric temp. of the ladle and correcting the steel-tapping temp. from steel manufacturing furnace. CONSTITUTION:Just before steel-tapping from the steel manufacturing furnace (does not show in the figure), the ladle 1 just before receiving the steel is heated to the prescribed temp. by burning fuel with a burner 2, in order to hold the molten steel temp. to sufficiently high. Then, the heating atmospheric temp. T1 of the ladle 1 with a thermocouple 5 or combustion exhaust temp. T3 with a thermocouple 6 arranged at exhausting cylinder 3, is measured. By this mea sured value, the surface temp. T2 of the lade refractory 7 is approximately assumed. Further, based on characteristic of the ladle refractory 7 with this surface temp. T2, the heat content of the ladle, that is, the molten steel heat capacity conducted to the ladle refractory 7 after steel-tapping is predicted. By this conducted heat capacity, temp. descending rate of the molten stele in the ladle 1 can be predicted and the steel-tapping temp. is corrected based on this.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、製鋼工程において受鋼直前に加熱した取鍋
に転炉等から出鋼する製鋼炉操業方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for operating a steelmaking furnace in which steel is tapped from a converter or the like into a heated ladle immediately before receiving steel in a steelmaking process.

〔従来技術〕[Prior art]

転炉からの溶鋼を受けて各鋳型に溶鋼を注入する取鍋は
、溶鋼温度を十分高く保持しておく必要があるため、受
鋼直前に加熱される。
The ladle that receives the molten steel from the converter and injects it into each mold is heated immediately before receiving the molten steel because it is necessary to maintain the molten steel temperature sufficiently high.

従来においては、例えば特開昭51−95934号公報
に示されているように、取鍋内張り(耐火物)の加熱到
達温度にのみ注意が払われており、加熱到達温度を例え
ば内張り表面温度800℃以上とすべきであり、これが
800°C以下であるならば取鍋内に収容した溶鋼の温
度降下が大きくなり、次工程の安定した操業が期し難い
とされている。即ち、従来においては、できる限り高温
まで加熱しておけば好ましいという程度にとどまってい
た。
Conventionally, as shown in JP-A-51-95934, for example, attention has been paid only to the heating temperature reached by the ladle lining (refractory), and the heating temperature reached is, for example, the lining surface temperature 800. If it is below 800°C, the temperature of the molten steel contained in the ladle will drop significantly, making it difficult to expect stable operation in the next process. That is, in the past, it was preferable to heat the material to as high a temperature as possible.

〔この発明が解決しようとする課題〕[Problems to be solved by this invention]

しかしながら、このような従来技術は次のような問題点
を抱えている。即ち、最近の酸素富化燃焼による135
0°C〜1400″C程度にまでも昇温可能な取鍋加熱
においては、単に800″C以上に加熱するのみでなく
、その加熱による着熱効果即ち取鍋内溶鋼温度降下を予
測し、その予測に基づいて出鋼温度を必要最低限まで引
き下げることが強く望まれている。これは、出鋼温度が
製鋼歩留り、耐火物や媒溶剤原単位等の製鋼コストに直
結するからである。
However, such conventional technology has the following problems. That is, 135 due to recent oxygen-enriched combustion.
In ladle heating that can raise the temperature to about 0°C to 1400"C, we not only simply heat it to 800"C or more, but also predict the heat transfer effect due to that heating, that is, the drop in the temperature of the molten steel in the ladle. It is strongly desired to lower the tapping temperature to the necessary minimum based on this prediction. This is because the tapping temperature is directly linked to the steelmaking yield, and the steelmaking costs such as the unit consumption of refractories and solvents.

従来技術においては、このような出鋼温度への反映が考
慮されていないので、高温加熱の効果を十分には活用で
きていない。
In the conventional technology, such a reflection on the tapping temperature is not taken into account, so the effect of high temperature heating cannot be fully utilized.

この発明は、このような事情に鑑みて提案されたもので
、その目的は、簡易な方法で取鍋加熱の効果を出鋼温度
決定に十分に反映し得る製鋼炉操業方法を提供すること
にある。
This invention was proposed in view of the above circumstances, and its purpose is to provide a method for operating a steelmaking furnace in which the effect of ladle heating can be fully reflected in the determination of tapping temperature in a simple manner. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の製鋼炉操業方法は、製鋼炉出鋼直前に加熱が行
われる取消の加熱雰囲気温度あるいは燃焼排ガス温度を
測定し、この測定値によって取鍋耐火物の温度を近似的
に推定し、この近似的に推定された取消耐火物温度によ
り、出鋼後に取鍋耐火物に抜熱される溶鋼熱量を予測し
、製鋼炉出tiA温度を補正するようにしたものである
The steelmaking furnace operating method of the present invention measures the heating atmosphere temperature or combustion exhaust gas temperature in which heating is performed immediately before tapping the steelmaking furnace, approximately estimates the temperature of the ladle refractory from this measured value, and Based on the approximately estimated canceled refractory temperature, the amount of heat of molten steel transferred to the ladle refractory after tapping is predicted, and the steelmaking furnace exit tiA temperature is corrected.

ここで、温度測定対象を直接、取鍋耐人物表面としない
理由は、取鍋耐大物表面の状況が一定でなく、また放射
温度計では水冷を要するので、水蒸気爆発の恐れがある
からであり、本発明者は多数の取鍋加熱試験の結果、加
熱雰囲気温度、燃焼排ガス温度および耐火物表面温度の
間には、加熱条件一定のもとて相関があるとの知見を得
たからでる。
The reason for not directly measuring the temperature on the ladle-resistant surface is that the condition of the ladle-resistant surface is not constant, and since radiation thermometers require water cooling, there is a risk of a steam explosion. This is because, as a result of numerous ladle heating tests, the present inventors have found that there is a correlation among the heating atmosphere temperature, combustion exhaust gas temperature, and refractory surface temperature under constant heating conditions.

加熱雰囲気温度や燃焼排ガス温度の測定であれば、簡易
な熱電対で十分な精度が保証され、かつ燃料流量制御用
と共用可能な信軌性がある。
When measuring heating atmosphere temperature or combustion exhaust gas temperature, a simple thermocouple guarantees sufficient accuracy and has reliability that can be used for controlling fuel flow rate.

〔実 施 例〕〔Example〕

以下、この発明を図示する実施例に基づいて説明する。 The present invention will be described below based on illustrated embodiments.

第1図に示すように、転炉出鋼直前に、取鍋1は、バー
ナ2.排気筒3を有する蓋4が取付けられ、バーナ2に
より加熱される。このような取消1内と排気筒3内に熱
電対5,6を挿入し、取鍋1の加熱雰囲気温度TI、燃
焼排ガス温度T3を測定し、取鍋耐火物7の表面温度T
2を推定する。
As shown in FIG. 1, just before tapping from the converter, the ladle 1 is moved to the burner 2. A lid 4 with an exhaust pipe 3 is attached and heated by a burner 2. Thermocouples 5 and 6 are inserted into the inside of the refractory 1 and the exhaust pipe 3, and the heating atmosphere temperature TI of the ladle 1 and the combustion exhaust gas temperature T3 are measured, and the surface temperature T of the ladle refractory 7 is measured.
Estimate 2.

各温度は、第2図に示すようと、常に ’T’、>T2>T、の関係にあり、がつこれらの間に
は加熱パターンが同一であれば一定の関係があり、例え
ば’r、  :Tz  :’rff=、3o:2’7:
24である。従って、T+、TaによりT2を推定する
ことができる。
As shown in Fig. 2, each temperature always has a relationship of 'T', >T2>T, and there is a certain relationship between these if the heating pattern is the same, for example 'r , :Tz :'rff=,3o:2'7:
It is 24. Therefore, T2 can be estimated from T+ and Ta.

耐火物7の温度匂配は、耐火物の熱的特性および加熱パ
ターンによりほぼ決まるから、耐火物表面温度T2を推
定することにより耐火物7の含熱量すなわち抜熱される
溶鋼熱量を推定できる。そして、この抜熱量により、取
鍋的溶鋼温度降下量を予測することができ、これに基づ
いて転炉出鋼温度を補正する。第3図に示すように、耐
火物表面温度T2が高く抜熱量が少なければ、転炉出鋼
温度を低くする。
Since the temperature distribution of the refractory 7 is almost determined by the thermal characteristics and heating pattern of the refractory, by estimating the refractory surface temperature T2, the heat content of the refractory 7, that is, the amount of heat removed from the molten steel can be estimated. Based on this amount of heat removed, it is possible to predict the amount of drop in temperature of molten steel in the ladle, and the converter tapping temperature is corrected based on this. As shown in FIG. 3, if the refractory surface temperature T2 is high and the amount of heat removed is small, the converter tapping temperature is lowered.

さらに、詳述すれば、第2図において加熱時間む、にお
ける排ガス温度T3は約750°Cであり、この時の耐
火物表面温度T2は約850 ’Cであり、排ガス温度
T3を転炉操作室に刻々表示させる。
Furthermore, in detail, the exhaust gas temperature T3 during the heating time in FIG. 2 is about 750°C, the refractory surface temperature T2 at this time is about 850'C, and the exhaust gas temperature T3 is displayed in the room moment by moment.

転炉操作室では、T3に対する出鋼温度補正グラフ、例
えば第3図を作成しておき、これを基に出鋼温度を適正
に補正し、可及的に低い出鋼温度とする。
In the converter operation room, a tapping temperature correction graph for T3, for example, FIG. 3, is prepared, and based on this, the tapping temperature is appropriately corrected to make the tapping temperature as low as possible.

〔考案の効果] 前述のとおり、本発明の製鋼炉操業方法は、取鍋の加熱
雰囲気温度あるいは燃焼排ガス温度により、取消耐火物
温度を推定し、これを基に製鋼炉出鋼温度を補正するよ
うにしたため、簡易な方法で可及的に低い製鋼炉出鋼温
度コントローラに反映させることができる。
[Effect of the invention] As described above, the steelmaking furnace operating method of the present invention estimates the refractory temperature based on the heating atmosphere temperature of the ladle or the combustion exhaust gas temperature, and corrects the steelmaking furnace tapping temperature based on this. As a result, the temperature can be reflected in the steelmaking furnace tapping temperature controller to be as low as possible using a simple method.

これにより、製鋼炉における製鋼歩留り、耐火物や媒溶
剤原単位等の製鋼コストの低減を図ることができる。
Thereby, it is possible to reduce the steelmaking yield in the steelmaking furnace and the steelmaking costs such as the unit consumption of refractories and solvents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる取鍋を示す断面図、第2図は取
鍋加熱時の各温度の関係を示すグラフ、第3図は出鋼温
度補正値のグラフである。 ■・・取消、2・・バーナ、3・・排気筒、4・・蓋、
5.6・・熱電対、7・・取消耐火物、T、  ・・加
熱雰囲気温度、T2 ・・耐火物表面温度、T、・・燃
焼排ガス温度。
FIG. 1 is a sectional view showing a ladle used in the present invention, FIG. 2 is a graph showing the relationship between various temperatures during heating of the ladle, and FIG. 3 is a graph of the tapping temperature correction value. ■...Cancel, 2...Burner, 3...Exhaust pipe, 4...Lid,
5.6...Thermocouple, 7...Cancelled refractory, T,...Heating atmosphere temperature, T2...Refractory surface temperature, T,...Combustion exhaust gas temperature.

Claims (1)

【特許請求の範囲】[Claims] (1)製鋼炉出鋼直前に加熱が行われる取鍋の加熱雰囲
気温度あるいは燃焼排ガス温度を測定し、この測定値に
よって取鍋耐火物の温度を近似的に推定し、この近似的
に推定された取鍋耐火物温度により、出鋼後に取鍋耐火
物に抜熱される溶鋼熱量を予測し、製鋼炉出鋼温度を補
正することを特徴とする製鋼炉操業方法。
(1) Measure the heating atmosphere temperature or combustion exhaust gas temperature of the ladle that is heated immediately before tapping the steel in the steelmaking furnace, and approximately estimate the temperature of the ladle refractory using this measured value. A method for operating a steelmaking furnace, characterized in that the amount of heat transferred to the ladle refractory after tapping is predicted based on the temperature of the ladle refractory, and the steelmaking furnace tapping temperature is corrected.
JP2849888A 1988-02-09 1988-02-09 Method for operating steel manufacturing furnace Pending JPH01205020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2849888A JPH01205020A (en) 1988-02-09 1988-02-09 Method for operating steel manufacturing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2849888A JPH01205020A (en) 1988-02-09 1988-02-09 Method for operating steel manufacturing furnace

Publications (1)

Publication Number Publication Date
JPH01205020A true JPH01205020A (en) 1989-08-17

Family

ID=12250335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2849888A Pending JPH01205020A (en) 1988-02-09 1988-02-09 Method for operating steel manufacturing furnace

Country Status (1)

Country Link
JP (1) JPH01205020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179425A (en) * 1999-12-27 2001-07-03 Kawasaki Steel Corp Method for heating ladle
JP2007167858A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Method for predicting steel tapping temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179425A (en) * 1999-12-27 2001-07-03 Kawasaki Steel Corp Method for heating ladle
JP4613380B2 (en) * 1999-12-27 2011-01-19 Jfeスチール株式会社 Ladle heating method
JP2007167858A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Method for predicting steel tapping temperature

Similar Documents

Publication Publication Date Title
US5981917A (en) Ladle preheat indication system
JPH01205020A (en) Method for operating steel manufacturing furnace
JPS60194004A (en) Method for controlling combustion of hot stove
JP2002266011A (en) Method for estimating furnace condition in blast furnace
TWI789807B (en) Converter blowing control method and converter blowing control system
KR20030050868A (en) Estimation method for blast furnace hearth refractory thickness
JPS5819435A (en) Controlling method for continuous heating furnace
JP3074933B2 (en) Alloying control device
Parsunkin et al. Information employed in fuel-conserving control of metal heating
JP2001303120A (en) Method for measuring temperature on surface in inside of refining vessel
JP2003240446A (en) Method for heating and drying refractory buildup
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JPH0557425A (en) Heat insulating cover for ladle
JPS5818401B2 (en) Continuous heating furnace control method
JP3334528B2 (en) Method and apparatus for measuring temperature of molten metal
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
SU1640175A1 (en) Method of control of metal melting process in induction crucible furnace
JP2002013881A (en) Slag level detecting method and method for controlling lance based on it
JPH03197612A (en) Method for refining molten metal
TW202202629A (en) Converter blowing control method and converter blowing control system
Mohanty et al. Improving ladle thermal performance for energy conservation
JPH0275463A (en) Temperature managing method for molten steel
Mohanty et al. Dynamic model for ladle preheater performance evaluation
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPH06106333A (en) Drying and heating method for ladle