JP2001303120A - Method for measuring temperature on surface in inside of refining vessel - Google Patents

Method for measuring temperature on surface in inside of refining vessel

Info

Publication number
JP2001303120A
JP2001303120A JP2000117375A JP2000117375A JP2001303120A JP 2001303120 A JP2001303120 A JP 2001303120A JP 2000117375 A JP2000117375 A JP 2000117375A JP 2000117375 A JP2000117375 A JP 2000117375A JP 2001303120 A JP2001303120 A JP 2001303120A
Authority
JP
Japan
Prior art keywords
temperature
furnace
refractory
high thermal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000117375A
Other languages
Japanese (ja)
Inventor
Naoto Sasaki
直人 佐々木
Kenichiro Naito
憲一郎 内藤
Shinya Kitamura
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000117375A priority Critical patent/JP2001303120A/en
Publication of JP2001303120A publication Critical patent/JP2001303120A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for restraining the adverse effect due to a high temperature on a wall refractory in a furnace to the minimum limit in a refining method by controlling the surface temperature of the refractory and/or the temperature in a space part for preventing the sticking of skull. SOLUTION: A material 1 having high heat conductivity is buried into the refractory for the furnace wall, and further, according to the temperature and/or rising/lowering speed of the temperature measured with a thermocouple 3 disposed in the inner part of this material 1, the secondary combustion ratio in the furnace or the firing power of a fuel burner is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転炉等の精錬容器
の内側表面の温度測定方法に関する。
The present invention relates to a method for measuring the temperature on the inner surface of a smelting vessel such as a converter.

【0002】[0002]

【従来の技術】転炉や真空脱ガス装置などの精錬容器を
用いた溶鉄の精錬処理において、上吹きガス、底吹きガ
ス、脱ガス反応により発生するガスのエネルギーによる
溶鉄の飛散(=スピッティング)が発生し、炉内壁に地
金が付着し、歩留悪化、操業障害、付着地金による溶鉄
汚染の問題等が生じている。
2. Description of the Related Art In the refining process of molten iron using a refining vessel such as a converter or a vacuum degassing device, the molten iron is scattered (= spitting) due to the energy of a top blown gas, a bottom blown gas, and a gas generated by a degassing reaction. ) Occurs, the metal is adhered to the inner wall of the furnace, and the yield is deteriorated, the operation is impaired, and the molten metal is contaminated by the metal.

【0003】そこで、地金の付着防止や溶融を目的とし
て、COガスの二次燃焼や燃料バーナーにより炉内の温
度を上昇させ、地金の付着防止および溶融を行う方法が
開示されている(例えば、特開平3−240912号公
報、特開平6−248323号公報、特開平6−734
32号公報など)。これらの方法において、地金の付着
防止や溶融は可能であるが、一方で、二次燃焼率や燃料
バーナー火力が過度となった場合、炉壁耐火物が長時間
高温下にさらされ、耐火物の溶損による炉寿命の低下な
どの悪影響を生じている。
[0003] Therefore, for the purpose of preventing adhesion and melting of the metal, a method of preventing the adhesion and melting of the metal by increasing the temperature in the furnace by secondary combustion of CO gas or a fuel burner has been disclosed ( For example, JP-A-3-240912, JP-A-6-248323, JP-A-6-7334
No. 32 publication). In these methods, it is possible to prevent adhesion and melting of metal, but on the other hand, if the secondary combustion rate or fuel burner becomes excessive, the furnace wall refractories are exposed to high temperatures for a long time, It has adverse effects such as shortening of furnace life due to melting of the material.

【0004】[0004]

【発明が解決しようとする課題】本発明では、地金の付
着防止および溶融方法における前述の課題に対し、炉壁
耐火物への悪影響を低減せしめることを可能にする精錬
容器の内側表面温度の測定方法を提供することを目的と
する。
SUMMARY OF THE INVENTION According to the present invention, there is provided a method for preventing the adhesion of ingots and the above-mentioned problems in the melting method. It is intended to provide a measuring method.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、以下の
方法にある。 (1)炉壁耐火物内に10W/m・k 以上の高熱伝導率を有
する材料を炉内壁側に耐火物を配して埋設し、さらに、
該材料内部の少なくとも1箇所に設置した熱電対で測定
された温度および/または温度の上昇下降速度から、耐
火物の炉内側表面温度および/または耐火物表面に付着
した地金の炉内側表面温度を推定することを特徴とす
る、精錬容器の内側表面の温度測定方法。 (2)10W/m・k 以上の高熱伝導率を有する材料と炉壁
耐火物との境界を、断熱材で覆ったことを特徴とする
(1)記載の精錬容器の内側表面の温度測定方法。 (3)10W/m・k 以上の高熱伝導率を有する材料とし
て、Fe、Mo、W、Cuの1種類または2種類以上を
組み合わせたものを用いることを特徴とする(1)また
は(2)記載の精錬容器の内側表面の温度測定方法。
The gist of the present invention resides in the following method. (1) A material having a high thermal conductivity of 10 W / m · k or more is buried in the refractory on the furnace wall side with the refractory disposed on the furnace wall side.
From the temperature measured by a thermocouple installed at least at one position inside the material and / or the rate of temperature rise / fall, the temperature of the inside surface of the refractory and / or the temperature of the inside surface of the metal adhered to the surface of the refractory A method for measuring the temperature of the inner surface of a smelting vessel, characterized by estimating the temperature (2) The method for measuring the temperature of the inner surface of a smelting vessel according to (1), wherein the boundary between the material having a high thermal conductivity of 10 W / m · k or more and the refractory on the furnace wall is covered with a heat insulating material. . (3) As a material having a high thermal conductivity of 10 W / m · k or more, one or a combination of two or more of Fe, Mo, W, and Cu is used (1) or (2). The method for measuring the temperature of the inner surface of a smelting vessel as described in the above.

【0006】[0006]

【発明の実施の形態】金属の精錬容器では、炉壁耐火物
には熱放散を防止するため、一般的に熱伝導率が低い材
料が用いられている。従って、炉内の温度変化や炉内壁
に付着した地金厚みの変化に対する応答性が低く、炉内
壁の耐火物に対する熱負荷を検知することは容易ではな
い。そのため、COガスの二次燃焼や燃料バーナーによ
り炉内の温度を上昇させ、地金の付着防止および溶融を
行う方法においては、炉壁耐火物への熱負荷が過度とな
り、炉壁耐火物が長時間高温下にさらされ、耐火物の溶
損による炉寿命の低下などの悪影響が生じやすい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a metal refining vessel, a material having a low thermal conductivity is generally used for the furnace wall refractory to prevent heat dissipation. Therefore, the responsiveness to a temperature change in the furnace or a change in the thickness of the metal adhered to the furnace inner wall is low, and it is not easy to detect a thermal load on the refractory on the furnace inner wall. Therefore, in the method of raising the temperature inside the furnace by secondary combustion of CO gas or a fuel burner to prevent adhesion and melting of the metal, the heat load on the furnace wall refractory becomes excessive, and the furnace wall refractory becomes Exposure to high temperature for a long time tends to cause adverse effects such as shortening of furnace life due to melting of refractories.

【0007】本発明の実施の形態を図1に基づいて説明
する。本発明では、ウェアレンガ5と表面を鉄皮7で被
覆したパーマレンガ6からなる炉壁耐火物に、10W/m・
k 以上の高熱伝導率を有する材料1(以降、高熱伝導体
と呼ぶ)を埋設し、さらに、該材料1の内部に設置され
た熱電対3で測定された温度および/または温度の上昇
下降速度から、精錬容器の内側表面温度を測定する方法
を提供する。この測定された表面温度に応じて、炉内の
二次燃焼率または燃料バーナー火力の制御を行うことに
より、炉内壁耐火物への悪影響を最小限に抑えることが
可能となる。熱電対3の測定値から内側表面温度を推定
する方法の例としては、たとえば、下記(1)式を基に
した非定常伝熱解析から求める方法がある。 ∂t/∂τ=α(∂2 t/∂x2 ) ・・・(1) ただし、t:温度(K)、τ:時間(sec) 、α:温度伝
導率(m2 /sec) x:距離(m) 温度伝導率は材質によって適切な値を用い、熱伝達が生
じるところでは、当該する熱伝達を考慮する。(1)式
は1次元の熱伝導を考慮した式であるが、用途に応じ
て、より精密な測定が必要とされる場合は、2次元以上
の伝熱を考慮することが望ましい。この非定常伝熱解析
の場合は、ある時刻に測定された温度から得られる値よ
りも、ある時間での温度変化から得られた値の方が信頼
度が増す。
An embodiment of the present invention will be described with reference to FIG. According to the present invention, a furnace wall refractory made of a wear brick 5 and a perm brick 6 whose surface is covered with a steel shell 7 has a resistance of 10 W / m ·
A material 1 having a high thermal conductivity of not less than k (hereinafter referred to as a high thermal conductor) is embedded, and the temperature and / or the temperature rise / fall rate measured by the thermocouple 3 installed inside the material 1 Provides a method for measuring the internal surface temperature of a smelting vessel. By controlling the secondary combustion rate or the fuel burner thermal power in the furnace according to the measured surface temperature, it is possible to minimize the adverse effect on the furnace wall refractories. As an example of the method of estimating the inner surface temperature from the measured value of the thermocouple 3, there is, for example, a method of obtaining the temperature from an unsteady heat transfer analysis based on the following equation (1). ∂t / ∂τ = α (∂ 2 t / ∂x 2 ) (1) where t: temperature (K), τ: time (sec), α: temperature conductivity (m 2 / sec) x : Distance (m) An appropriate value is used for the temperature conductivity depending on the material, and where heat transfer occurs, the heat transfer concerned is considered. Equation (1) is an equation taking into account one-dimensional heat conduction. However, if more precise measurement is required depending on the application, it is desirable to consider two-dimensional or more heat transfer. In the case of this transient heat transfer analysis, the value obtained from the temperature change at a certain time has higher reliability than the value obtained from the temperature measured at a certain time.

【0008】高熱伝導体の熱伝導率としては、10W/m・
k 未満では炉内の温度変化や炉内壁に付着した地金厚み
の変化に対する応答性が低く、表面温度の測定に好まし
くない。また、熱伝導率は高いほど良いが、使用温度範
囲や必要な応答速度に応じて材質を選択することが望ま
しい。
The thermal conductivity of the high thermal conductor is 10 W / m ·
If it is less than k, the responsiveness to a change in the furnace temperature or a change in the thickness of the metal adhered to the furnace inner wall is low, which is not preferable for measuring the surface temperature. The higher the thermal conductivity, the better, but it is desirable to select a material according to the operating temperature range and the required response speed.

【0009】高熱伝導体を用いずに耐火物のみの温度分
布を測定しても、その応答速度は極めて遅く、実用的で
はないが、高熱伝導体を用いることによって、耐火物表
面温度の変化に対して敏感な、その内部の温度分布とそ
の経時変化から、精密な推定が可能となる。
[0009] Even if the temperature distribution of only the refractory is measured without using a high thermal conductor, the response speed is extremely slow and not practical. It is possible to make a precise estimation from the temperature distribution inside the sensor and its change with time, which is sensitive to the above.

【0010】このようにして精度良く精錬容器の内側表
面温度を測定することによって、炉内温度が上昇し過ぎ
たり、付着地金の厚みが薄くなり過ぎたりするなど、炉
壁耐火物への熱負荷が過度となった場合は、それに敏感
に応答し、炉壁耐火物への過度の熱負荷を検知すること
ができる。
[0010] By accurately measuring the inner surface temperature of the refining vessel in this way, the heat on the furnace wall refractories, such as the furnace temperature rises too much, the thickness of the deposited metal becomes too thin, etc. When the load becomes excessive, it responds sensitively to detect an excessive thermal load on the furnace wall refractory.

【0011】また、設置する熱電対の数については、少
なくとも1箇所であるが、非定常伝熱条件下で炉内壁表
面の熱負荷状況をさらに精度良く測定するためには、複
数箇所に設置することが望ましい。また1箇所にしか設
置しない場合は、温度の時間変化つまり温度の上昇下降
速度から炉内壁表面の温度を推定することが望ましい。
図2に、COガスの二次燃焼により地金の付着防止およ
び溶融を行う場合に、精錬容器である転炉16の炉口傾
斜部に高熱伝導体11を複数(図では3個)埋め込むこ
とによって、炉壁表面の温度を測定し、炉壁に及ぼす悪
影響を最小限に抑える例を示す。
The number of thermocouples to be installed is at least one. However, in order to more accurately measure the heat load condition on the inner wall surface of the furnace under unsteady heat transfer conditions, the thermocouples are installed at a plurality of locations. It is desirable. When the furnace is installed at only one place, it is desirable to estimate the temperature of the furnace inner wall surface from the temperature change over time, that is, the temperature rise / fall speed.
In FIG. 2, a plurality (three in FIG. 2) of high thermal conductors 11 are embedded in the inclined portion of the furnace opening of the converter 16 which is a smelting vessel when the prevention and melting of the metal are performed by the secondary combustion of the CO gas. This shows an example in which the temperature of the furnace wall surface is measured to minimize the adverse effect on the furnace wall.

【0012】さらに、高熱伝導体の境界を断熱材2で覆
うことにより、炉内から炉外への伝熱方向に対して、垂
直の方向の伝熱によるノイズの影響を小さくできる。こ
こで境界とは高熱伝導体と耐火物との境界をさす。ただ
し、この境界のうち、高熱伝導体の炉内側の端と耐火物
との間に断熱材を設けると、炉内から高熱伝導体への熱
伝導を妨げるので、好ましくない。また、境界を断熱材
で覆っていない場合は、炉内壁耐火物とその中に埋設し
た高熱伝導率を有する材料の間での熱移動量が大きくな
り、炉内壁表面の熱負荷状況の把握が困難となる。
Further, by covering the boundary of the high thermal conductor with the heat insulating material 2, the influence of noise due to heat transfer in a direction perpendicular to the heat transfer direction from the inside of the furnace to the outside of the furnace can be reduced. Here, the boundary refers to the boundary between the high thermal conductor and the refractory. However, it is not preferable to provide a heat insulating material between the inside of the furnace of the high thermal conductor and the refractory at this boundary, since heat conduction from the inside of the furnace to the high thermal conductor is prevented. If the boundary is not covered with heat insulating material, the amount of heat transfer between the refractory inside the furnace wall and the material with high thermal conductivity embedded in it will increase, and it will be possible to grasp the heat load condition on the surface of the furnace inner wall. It will be difficult.

【0013】また、10W/m・k 以上の高熱伝導率を有す
る材料として、Fe、Mo、W、Cuを用いることが望
ましい。これらの材料は他の材料に比べて、融点および
熱伝導率が高いという特徴を有しているためである。さ
らに使用温度範囲によっては、融点などの制約からこれ
らの材料のうち2種類以上を組み合わせて用いても良
い。
It is desirable to use Fe, Mo, W, and Cu as materials having a high thermal conductivity of 10 W / m · k or more. This is because these materials have characteristics of higher melting point and higher thermal conductivity than other materials. Further, depending on the operating temperature range, two or more of these materials may be used in combination due to restrictions such as a melting point.

【0014】加えて、光ファイバーなどを用いて、地金
または耐火物の表面温度を、測定することができれば、
耐火物内部に埋め込んだ高熱伝導体の温度勾配から地金
の厚みを推定することも可能となる。地金厚みを精度良
く推定することができれば、不必要に地金を除去するこ
ともなく、エネルギーを節約することができ、また、二
次燃焼を用いて温度上昇を行っている場合は回収ガスの
CO濃度の低下を防ぐこともできる。
In addition, if the surface temperature of the metal or refractory can be measured using an optical fiber or the like,
It is also possible to estimate the thickness of the metal from the temperature gradient of the high thermal conductor embedded inside the refractory. If the metal thickness can be accurately estimated, energy can be saved without unnecessary metal removal, and if the temperature is increased using secondary combustion, the recovered gas Can also be prevented from lowering the CO concentration.

【0015】[0015]

【実施例】(実施例1)まず図3に示す装置を用い、高
熱伝導体の温度分布の変化と表面温度および地金厚みと
の関係を調べた。用いた高熱伝導体は純度99%のMo
で直径50mmφ、長さ300mmφの円柱である。この円
柱の熱伝導率は全体で一律に−3.5×10-2×T+1
35W/m・k (ただし、Tは温度(℃)で、500℃から
1700℃まで)で評価した。その結果、図4に示すよ
うに地金表面温度と地金厚みに対して、高熱伝導体が高
い追従性を持つことが確認された。この測定結果を元
に、高熱伝導体内の2点以上の温度分布から、非定常伝
熱モデルを用いて表面温度と地金厚みを推定する簡易的
なプログラムAを構築した。さらに、1点以上の温度の
上昇下降速度から非定常伝熱モデルを用いて表面温度と
地金厚みを推定する簡易的なプログラムBを構築した。
以降の実施例では表面温度と地金厚みの推定に、これら
のプログラムを用いた。
EXAMPLE 1 First, using the apparatus shown in FIG. 3, the relationship between the change in the temperature distribution of the high thermal conductor, the surface temperature and the thickness of the metal was examined. The high thermal conductor used was 99% pure Mo.
Is a cylinder having a diameter of 50 mmφ and a length of 300 mmφ. The thermal conductivity of this cylinder is uniformly -3.5 × 10 −2 × T + 1.
The evaluation was performed at 35 W / m · k (where T is a temperature (° C.) from 500 ° C. to 1700 ° C.). As a result, as shown in FIG. 4, it was confirmed that the high thermal conductor had a high follow-up property with respect to the metal surface temperature and the metal thickness. Based on the measurement results, a simple program A for estimating the surface temperature and the metal thickness from the temperature distribution at two or more points in the high thermal conductor using an unsteady heat transfer model was constructed. Further, a simple program B for estimating the surface temperature and the metal thickness from one or more temperature rising and falling speeds using an unsteady heat transfer model was constructed.
In the following examples, these programs were used for estimating the surface temperature and the metal thickness.

【0016】(実施例2−1)次に、6t規模の上底吹
き転炉において試験を行った。上吹きランスは12φの
4孔ランスを用い、酸素供給速度は1800〜3600
Nm3 /hr とした。底吹きは酸素と冷却用プロパンガスの
二重管羽口を用い、酸素を約100Nm3 /hr 供給した。
耐火物表面温度は炉内観察用の光ファイバーを用いて炉
内の光を放射温度計まで伝送して測温した。また、耐火
物に埋め込む高熱伝導体には実施例1で用いたものと同
じ、Moを用いた。図3と同じように耐火物表面から3
0mmの位置にMo棒の先端が位置するように埋め込み、
このMo棒の先端から、0mm、100mm、200mmの位
置に熱電対を設置した。耐火物表面温度の制御には上吹
きランスに組み込んだノズルを用い、加熱時には天然ガ
ス(10〜20Nm3 /hr)と酸素(50〜75Nm3 /hr)を
バーナーとして供給し、冷却時は窒素ガスを100〜3
00Nm3 /hr 吹き込んだ。
(Example 2-1) Next, a test was conducted in a 6t scale top and bottom blown converter. The upper blowing lance uses a 12φ 4-hole lance, and the oxygen supply rate is 1800-3600.
Nm 3 / hr. The bottom blow was performed using a double tube tuyere of oxygen and propane gas for cooling, and oxygen was supplied at about 100 Nm 3 / hr.
The surface temperature of the refractory was measured by transmitting light in the furnace to a radiation thermometer using an optical fiber for observation in the furnace. The same high thermal conductor as that used in Example 1 was used for the high thermal conductor embedded in the refractory. 3 from the refractory surface as in FIG.
Embed so that the tip of the Mo bar is located at 0 mm,
Thermocouples were set at 0 mm, 100 mm, and 200 mm from the end of the Mo bar. A nozzle incorporated in the upper lance is used to control the refractory surface temperature. Natural gas (10 to 20 Nm 3 / hr) and oxygen (50 to 75 Nm 3 / hr) are supplied as a burner during heating, and nitrogen is used during cooling. 100-3 gas
00Nm 3 / hr.

【0017】吹錬開始時点から、地金除去用の加熱/冷
却ノズルから約5分間に渡って酸素と天然ガスを吹い
た。この間、耐火物表面温度を光ファイバーを用いて放
射温度計で測定した結果を基準として、本発明によって
推定された温度の評価を行った。3点の温度分布から表
面温度をプログラムAで推定した場合、誤差はほぼ5%
であった。同じプログラムで温度分布を2点のみで測定
した場合は、誤差が8%となった。また、3点の温度の
上昇下降速度から表面温度をプログラムBで推定した場
合は誤差は5%以内におさまった。また、2点の温度上
昇下降速度からの推定では誤差は7%、1点では12%
となった。これ以降、耐火物の表面温度は3点の温度の
上昇下降速度を基に推定した。5分後に地金表面温度が
1600℃となったので、加熱用ガスの供給を止めた。
その後耐火物表面温度は徐々に上昇し吹錬停止3分前に
1650℃になった時点で冷却用の窒素を吹いた。その
結果、炉体絞り部から炉口部までの平均耐火物表面温度
は1400℃から1700℃の範囲に制御でき、地金付
着量もきわめて少なく(平均8mm)、耐火物溶損もなか
った。
From the start of blowing, oxygen and natural gas were blown from the heating / cooling nozzle for metal removal for about 5 minutes. During this time, the temperature estimated by the present invention was evaluated based on the result of measuring the surface temperature of the refractory with a radiation thermometer using an optical fiber. When the surface temperature is estimated by the program A from the three temperature distributions, the error is almost 5%.
Met. When the temperature distribution was measured at only two points by the same program, the error was 8%. In addition, when the surface temperature was estimated by the program B from the three temperature rise and fall speeds, the error was within 5%. In addition, the error is 7% in the estimation from the temperature rise and fall speeds at two points, and 12% at one point.
It became. Thereafter, the surface temperature of the refractory was estimated based on the temperature rise and fall speeds at three points. Five minutes later, the surface temperature of the base metal reached 1600 ° C., so the supply of the heating gas was stopped.
Thereafter, the temperature of the refractory surface gradually increased, and when it reached 1650 ° C. three minutes before stopping the blowing, nitrogen for cooling was blown. As a result, the average refractory surface temperature from the furnace body narrowed portion to the furnace mouth portion could be controlled in the range of 1400 ° C. to 1700 ° C., the amount of deposited metal was extremely small (average 8 mm), and there was no refractory erosion.

【0018】(実施例2−2)Moと耐火物の境界に図
3と同様の方法で、セラミックファイバー断熱材(密度
128kg/m3 熱伝導率500℃で0.1W/m・k)を配した
他は、実施例2−1と同様の装置で、同様の試験を行っ
た。3点の温度分布からプログラムAを用いた推定で
は、断熱材を用いることによって、誤差が4%に低減し
た。
EXAMPLE 2-2 A ceramic fiber heat insulating material (density: 128 kg / m 3, thermal conductivity: 0.1 W / m · k at 500 ° C.) was applied to the boundary between Mo and the refractory in the same manner as in FIG. A similar test was performed using the same apparatus as in Example 2-1 except for disposing. In the estimation using the program A from the three temperature distributions, the error was reduced to 4% by using the heat insulating material.

【0019】(実施例2−3)高熱伝導体として、Fe
(0.1%炭素鋼、熱伝導率は400℃で50、800
℃で30W/m・k)を用いた他は実施例2−1と同様の装置
で、同様の試験を行った。3点の温度分布からプログラ
ムAを用いた推定では、誤差が10%になった。熱伝導
率がMoに比べて低く、そのため熱応答性が悪化したた
めと考えられる。
(Example 2-3) As a high thermal conductor, Fe
(0.1% carbon steel, thermal conductivity 50, 800 at 400 ° C)
A similar test was performed using the same apparatus as in Example 2-1 except that 30 W / m · k at 30 ° C. was used. In the estimation using the program A from the three temperature distributions, the error was 10%. It is considered that the thermal conductivity was lower than that of Mo, so that the thermal responsiveness was deteriorated.

【0020】(実施例2−4)高熱伝導体の、炉内側5
分の3をMo、炉外側5分の2をFeとした他は、実施
例2−1と同様の装置で、同様の試験を行った。3点の
温度分布からプログラムAを用いた推定では、誤差が6
%になった。すべてMoの場合よりは精度は落ちるが、
材料費は安価ですむ。
(Example 2-4) Inside the furnace 5 of a high thermal conductor
A similar test was performed using the same apparatus as in Example 2-1 except that three thirds was Mo and two-fifths of the furnace outside were Fe. In the estimation using the program A from the three temperature distributions, the error is 6
%Became. Although the accuracy is lower than the case of Mo,
Material costs are low.

【0021】[0021]

【発明の効果】本発明によれば、炉内の温度変化や炉内
壁に付着した地金厚みの変化に対する応答性が高いた
め、炉壁耐火物への過度の熱負荷を検知することがで
き、地金の付着防止および溶融を炉内の二次燃焼率また
は燃料バーナー火力の制御性が向上する。
According to the present invention, it is possible to detect an excessive thermal load on the furnace wall refractory since the responsiveness to a change in the furnace temperature and a change in the thickness of the metal adhered to the furnace inner wall is high. In addition, the control of the secondary combustion rate in the furnace or the control of the fuel burner power is improved by preventing the adhesion of the metal and melting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炉壁耐火物に高熱伝導率を有する材料を埋設し
て、炉内壁表面への熱負荷を測定する方法の概要を示す
図。
FIG. 1 is a diagram showing an outline of a method of burying a material having high thermal conductivity in a furnace wall refractory and measuring a heat load on a furnace inner wall surface.

【図2】COガスの二次燃焼により地金の付着防止およ
び溶融を行う場合に、炉口傾斜部に高熱伝導体を複数埋
め込むことによって、炉壁表面の温度を測定し、炉壁に
及ぼす悪影響を最小限に抑える方法の概要を示す図。
FIG. 2 shows a method of measuring the temperature of a furnace wall surface by embedding a plurality of high thermal conductors in a furnace port inclined part when preventing and melting metal ingot by secondary combustion of CO gas. The figure which shows the outline of the method of minimizing an adverse effect.

【図3】表面温度及び地金厚みと高熱伝導体の温度分布
との関係を調べるための試験装置を示す図。
FIG. 3 is a view showing a test apparatus for examining the relationship between the surface temperature and the metal thickness and the temperature distribution of the high thermal conductor.

【図4】表面温度及び地金厚みと高熱伝導体の温度分布
との関係を示す図。
FIG. 4 is a diagram showing a relationship between a surface temperature, a metal thickness, and a temperature distribution of a high thermal conductor.

【符号の説明】[Explanation of symbols]

1 高熱伝導体 2 断熱材 3 熱電対 4 地金 5 ウェアレンガ 6 パーマレンガ 7 鉄皮 8 模擬地金 9 耐火物 10 バーナー 11 測温用高熱伝導体 12 地金付着防止用ランス 13 加熱/冷却用ノズル 14 加熱/冷却用ガス 15 吹酸用ランス(メインランス) 16 転炉 REFERENCE SIGNS LIST 1 high heat conductor 2 heat insulating material 3 thermocouple 4 ingot 5 wear brick 6 perm brick 7 iron skin 8 simulated ingot 9 refractory 10 burner 11 high heat conductor for temperature measurement 12 lance for preventing adhesion of ingot 13 heating / cooling Nozzle 14 Heating / cooling gas 15 Lance for blowing acid (Main lance) 16 Converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 信也 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K002 AF04 CA01 4K013 CE08 FA01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shinya Kitamura 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division, Nippon Steel Corporation 4K002 AF04 CA01 4K013 CE08 FA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属の精錬容器において、炉壁耐火物内
に使用温度において10W/m・k 以上の高熱伝導率を有す
る材料を炉内壁側に耐火物を配して埋設し、さらに、該
材料内部の少なくとも1箇所に設置した熱電対で測定さ
れた温度および/または温度の上昇下降速度から、耐火
物の炉内側表面温度および/または耐火物表面に付着し
た地金の炉内側表面温度を推定することを特徴とする、
精錬容器の内側表面の温度測定方法。
In a refining vessel made of metal, a material having a high thermal conductivity of 10 W / m · k or more at a use temperature is buried in a refractory of a furnace wall by arranging the refractory on a furnace inner wall side. From the temperature measured by a thermocouple installed at at least one position inside the material and / or the temperature rise / fall speed, the furnace inner surface temperature of the refractory and / or the furnace inner surface temperature of the metal adhering to the refractory surface is determined. Characterized by estimating,
A method for measuring the temperature of the inner surface of a smelting vessel.
【請求項2】 10W/m・k 以上の高熱伝導率を有する材
料と炉壁耐火物との境界を、断熱材で覆ったことを特徴
とする請求項1記載の精錬容器の内側表面の温度測定方
法。
2. The temperature of the inner surface of the refining vessel according to claim 1, wherein a boundary between the material having a high thermal conductivity of 10 W / m · k or more and the refractory of the furnace wall is covered with a heat insulating material. Measuring method.
【請求項3】 10W/m・k 以上の高熱伝導率を有する材
料として、Fe、Mo、W、Cuの1種類または2種類
以上を組み合わせたものを用いることを特徴とする請求
項1または2記載の精錬容器の内側表面の温度測定方
法。
3. A material having a high thermal conductivity of 10 W / m · k or more, wherein one or a combination of two or more of Fe, Mo, W, and Cu is used. The method for measuring the temperature of the inner surface of a smelting vessel as described in the above.
JP2000117375A 2000-04-19 2000-04-19 Method for measuring temperature on surface in inside of refining vessel Withdrawn JP2001303120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117375A JP2001303120A (en) 2000-04-19 2000-04-19 Method for measuring temperature on surface in inside of refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117375A JP2001303120A (en) 2000-04-19 2000-04-19 Method for measuring temperature on surface in inside of refining vessel

Publications (1)

Publication Number Publication Date
JP2001303120A true JP2001303120A (en) 2001-10-31

Family

ID=18628697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117375A Withdrawn JP2001303120A (en) 2000-04-19 2000-04-19 Method for measuring temperature on surface in inside of refining vessel

Country Status (1)

Country Link
JP (1) JP2001303120A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078475A (en) * 2005-09-13 2007-03-29 Kobe Steel Ltd Method of measuring hot metal temperature in blast furnace
JP2009186242A (en) * 2008-02-04 2009-08-20 Heraeus Electro Nite Japan Ltd Molten metal measuring probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078475A (en) * 2005-09-13 2007-03-29 Kobe Steel Ltd Method of measuring hot metal temperature in blast furnace
JP4664784B2 (en) * 2005-09-13 2011-04-06 株式会社神戸製鋼所 Estimation method of hot metal temperature in blast furnace
JP2009186242A (en) * 2008-02-04 2009-08-20 Heraeus Electro Nite Japan Ltd Molten metal measuring probe

Similar Documents

Publication Publication Date Title
CA2509893C (en) Container for molten metal, use of the container and method for determining an interface layer
US4442706A (en) Probe and a system for detecting wear of refractory wall
US3161499A (en) Metallurgical process control
JP2001303120A (en) Method for measuring temperature on surface in inside of refining vessel
CN203365358U (en) Experimental apparatus for adhering slag on blast furnace copper cooling stave
JP2008286609A (en) Temperature measuring device
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JPH0567893B2 (en)
JPS62217129A (en) Temperature measuring instrument for molten nonferrous metal
JP4081248B2 (en) Control method of the lower part of the blast furnace
JPS62278217A (en) Lance inlaying thermocouple for controlling slag level
JPH01288741A (en) Protective tube type temperature sensor
CN207570670U (en) A kind of temperature measuring equipment
JPH06249715A (en) Intermittent temperature measuring method for molten metal
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
JPH01205020A (en) Method for operating steel manufacturing furnace
RU2243265C2 (en) Method of detection of burn-out in cooled thermal unit
JP2002013881A (en) Slag level detecting method and method for controlling lance based on it
JPH0329313Y2 (en)
SU320127A1 (en) DEVICE FOR CONTINUOUS MEASUREMENT OF TEMPERATURE IN MELTING AND REFINING HEATERS
JP3745538B2 (en) Blast furnace operation method
Nanigian Improving accuracy and response of thermocouples in ovens and furnaces
CN108195471A (en) A kind of temperature measuring equipment and measuring method
JPS61217516A (en) Detection of slag level in converter
JP2020067197A (en) Method for inspecting refractory of atmospheric furnace and method for producing reduced iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703