JPH01204760A - Heating resistor device - Google Patents

Heating resistor device

Info

Publication number
JPH01204760A
JPH01204760A JP63029934A JP2993488A JPH01204760A JP H01204760 A JPH01204760 A JP H01204760A JP 63029934 A JP63029934 A JP 63029934A JP 2993488 A JP2993488 A JP 2993488A JP H01204760 A JPH01204760 A JP H01204760A
Authority
JP
Japan
Prior art keywords
film
heating resistor
metal silicide
silicon oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63029934A
Other languages
Japanese (ja)
Inventor
Tomohiro Nakamori
仲森 智博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63029934A priority Critical patent/JPH01204760A/en
Publication of JPH01204760A publication Critical patent/JPH01204760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To enable the title heating resistor device to withstand service for a long time by having high electric resistivity, a small temperature dependent characteristic of a resistant value, and efficient heat resistance, by a method wherein a heating resistor formed on a substrate has a laminated structure in which a metal silicide film and a silicon oxide film are alternately piled, and above-mentioned metal silicide film is made not less than two layers. CONSTITUTION:A glaze layer 2, a heating resistor 3, electric conductors 4 and 5 such as Au or the like, and a protective film 6 composed of a SiC film are formed on an alumina substrate 1 as insulating substrate. A part 3a between above-mentioned electric conductors 4 and 5 is a heating part. Then, the heating resistor 3 is made to have a laminated structure wherein a metal silicide film as an electric conductor and a silicon oxide film as an insulator are alternately piled, and not less than two layers of the metal silicide film are provided. Thereby, a characteristic as a whole differs from a property of each material comprising it, which comes to have characteristics of high electric resistivity and small temperature dependent property of a resistant value. This is a phenomenon caused by flowing of an electric current through a thinned silicon oxide film existing among the metal silicide films.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサーマルヘッド等に好適な発熱抵抗体装置に関
し、特に薄膜形の発熱抵抗体を備えた装−置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat generating resistor device suitable for a thermal head or the like, and particularly to a device equipped with a thin film type heat generating resistor.

〔従来の技術〕[Conventional technology]

従来より、この種の発熱抵抗体装置としては、例えば(
社)金属表面技術協会発行の「金属表面技術J  (V
ol、34 No、6.1983.P271−277 
)に開示されたものがある。第2図は斯かる従来例の要
部を示す断面図である。同図において、11は絶縁基板
、12はグレーズ層、13は発熱抵抗体としての窒化タ
ンタル(T” a 2 N >膜、14及び15はTa
2N膜13に電力を供給するための電気導体であり、電
気導体14と15の間の部分13aが発熱部となる。ま
た、16は’I’ a 2 N I漠13を酸化から保
護する保護層、17は耐摩耗層である。
Conventionally, this type of heating resistor device has been used, for example (
Metal Surface Technology J (V) published by Metal Surface Technology Association
ol, 34 No. 6.1983. P271-277
) has been disclosed. FIG. 2 is a sectional view showing the main parts of such a conventional example. In the figure, 11 is an insulating substrate, 12 is a glaze layer, 13 is a tantalum nitride (T" a 2 N > film) as a heating resistor, and 14 and 15 are Ta.
This is an electric conductor for supplying power to the 2N film 13, and a portion 13a between the electric conductors 14 and 15 becomes a heat generating portion. Further, 16 is a protective layer that protects the 'I' a 2 N I layer 13 from oxidation, and 17 is a wear-resistant layer.

ところで、サーマルヘッド用の発熱抵抗体として求めら
れる特性としては、耐熱性に優れ長期間の使用に耐え得
ること、電気抵抗率が高く十分な発熱Iが得られること
、及び温度変化に対して抵抗値が安定であること等があ
げられる。
By the way, the characteristics required for a heating resistor for a thermal head are that it has excellent heat resistance and can withstand long-term use, that it has high electrical resistivity and can provide sufficient heat generation I, and that it is resistant to temperature changes. One example is that the value is stable.

これに対して、Ta2Nは抵抗値の対温度特性は非常に
安定であるものの、耐熱性の点で充分な特性を有してい
なかった。このため、T a 2 N IB!13は駆
動電力パルスの印加によって熱破損が起こる虞があり、
長期間の使用に耐え得るようにするにはTa2N膜13
を厚膜に形成する必要があった。ところが、Ta2Nは
電気抵抗率が300μΩ・■以下と余り大きくなく、T
 a 2 N I摸13を厚く形成した場合には発熱部
13aの抵抗値が低くなり過ぎ、印字に必要な充分な発
熱量を得られなくなる。充分な発熱量を得るには電流値
を大きくする必要があるが、電流値を大きくして駆動さ
せる制御方式には、回路配線及び駆動方式上等の制約が
あり、また省電力化の観点からも望ましくなかった。
On the other hand, although Ta2N has very stable resistance value versus temperature characteristics, it does not have sufficient properties in terms of heat resistance. For this reason, T a 2 N IB! 13, there is a risk of thermal damage due to the application of driving power pulses,
To make it durable for long-term use, Ta2N film13
It was necessary to form a thick film. However, the electrical resistivity of Ta2N is not very high, less than 300μΩ・■, and T
If the a 2 N I pattern 13 is formed thickly, the resistance value of the heat generating portion 13a becomes too low, making it impossible to obtain a sufficient amount of heat necessary for printing. In order to obtain a sufficient amount of heat, it is necessary to increase the current value, but the control method of increasing the current value has limitations in terms of circuit wiring and drive method, and from the viewpoint of power saving. was also undesirable.

そこで、Ta2N膜を厚膜化したことによる抵抗値の増
大化を、発熱部の形状を変えることで防ごうとする提案
がある。第3図は斯かる提案の代表的なものとし知られ
ているミアンダ形発熱体の形状を示す平面図である。ミ
アンダ形発熱体は発熱体の幅を狭くし、且つ発熱体をタ
ーンさせることにより長くして、発熱部の抵抗値を高め
、大きな発熱量が得られるようにしたものである。
Therefore, there is a proposal to prevent the increase in resistance value caused by thickening the Ta2N film by changing the shape of the heat generating part. FIG. 3 is a plan view showing the shape of a meandering heating element known as a typical example of such a proposal. A meander-type heating element is one in which the width of the heating element is narrowed and the heating element is made longer by turning the heating element to increase the resistance value of the heating part and to obtain a large amount of heat generation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来例においては、ミアンダ形の発
熱部が電極導体をターンさぜな構造となっているため、
直線状に形成した場合より微細なパターンを形成するた
めの加工技術が必要となる。
However, in the above conventional example, the meander-shaped heating part has a structure that does not easily turn the electrode conductor.
A processing technique is required to form a finer pattern than when formed in a straight line.

従って、高精細印字を可能とするため発熱部の小面積化
を達成しようとすると、力1江の困難性が一層増し、製
造コストが上昇するという問題があった。即ち、製造コ
ストの上昇は発熱部の小面積化の障害になるという問題
があった。
Therefore, if an attempt is made to reduce the area of the heat generating part in order to enable high-definition printing, there is a problem in that the difficulty of power generation becomes even more difficult and the manufacturing cost increases. That is, there is a problem in that the increase in manufacturing cost becomes an obstacle to reducing the area of the heat generating part.

そこで、電気抵抗率が高い抵抗体材料が種々検討される
ようになり、例えば、Ta−3t−NやTa−3t−0
等の高抵抗材料が開発されてきた。
Therefore, various resistor materials with high electrical resistivity have been studied, such as Ta-3t-N and Ta-3t-0.
High-resistance materials such as

しかし、これら材料はTa、St、N、0等の分子レベ
ルでの完全な混合物であり、高い電気抵抗率(103〜
105μΩ・an)を有するものの、抵抗値の温度依存
性が大きく、高温になると抵抗率が著しく低下するとい
う問題があった。
However, these materials are complete mixtures of Ta, St, N, 0, etc. at the molecular level, and have high electrical resistivity (103~
105 μΩ·an), however, there was a problem in that the resistance value had a large temperature dependence, and the resistivity significantly decreased at high temperatures.

そこで本発明は以上説明した課題を解決するためになさ
れたもので、その目的とするところは、耐熱性に優れ、
高い電気抵抗率を備え、しかも抵抗値の温度依存性が小
さい発熱抵抗体装置を提供することにある。
Therefore, the present invention was made to solve the above-mentioned problems, and its purpose is to have excellent heat resistance,
It is an object of the present invention to provide a heating resistor device having high electrical resistivity and having a small temperature dependence of resistance value.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る発熱抵抗体装置は、基板と、上記基板上に
形成された発熱抵抗体とを有し、上記発熱抵抗体が金属
ケイ化物膜と酸化ケイ素膜とを交互に重ねた積層構造で
あり且つ上記金属ケイ化物膜を2層以上有することを特
徴としている。
A heating resistor device according to the present invention includes a substrate and a heating resistor formed on the substrate, and the heating resistor has a laminated structure in which metal silicide films and silicon oxide films are alternately stacked. The metal silicide film is characterized in that it has two or more layers of the metal silicide film.

〔作 用〕[For production]

本発明においては、基板上に形成される発熱抵抗体が金
属ケイ化物膜と酸化ケイ素膜とを交互に重ね、且つ金属
ケイ化物膜を2層以上有する積層構造となっている。即
ち、この積層構造は2層の金属ケイ化物膜の間に酸化ケ
イ素膜を介在させた3層構造を基本′WJ造とし、金属
ケイ化!i!J膜と酸化ケイ素膜とが交互に重なるよう
に上記基本となる3層構造を1段または複数段重ねた構
成としている。
In the present invention, the heating resistor formed on the substrate has a laminated structure in which metal silicide films and silicon oxide films are alternately stacked, and has two or more metal silicide films. That is, this laminated structure is basically a three-layer structure in which a silicon oxide film is interposed between two metal silicide films, and the metal silicide film is a three-layer structure. i! The basic three-layer structure described above is stacked in one or more layers so that the J film and the silicon oxide film are alternately overlapped.

ところで、金属ケイ化物それ自体は金属に近い性質を有
し電気抵抗率はあまり高くない、また、酸化ケイ素はそ
れ自体は電気的に絶縁性が高い性質を有している。
By the way, metal silicide itself has properties similar to metals and does not have very high electrical resistivity, and silicon oxide itself has properties that are highly electrically insulating.

ところが、金属ケイ化物と酸化ケイ素とを薄膜化(数百
穴程度)して金属ケイ化物膜と酸化ケイ素膜とを交互に
重ねたて積層構造とした発熱抵抗体では、全体としての
性質はそれを構成する各々の材質の性質とは異なり、電
気抵抗率が高く且つ抵抗値の温度依存性が小さい特性を
有するようになる。尚、これは電流が金属ケイ化物膜の
間に介在する薄膜化された酸化ケイ素膜を通して流れる
ことによる現象と考えられる。
However, in a heating resistor that has a laminated structure in which metal silicide and silicon oxide films are thinned (about a few hundred holes) and metal silicide films and silicon oxide films are stacked alternately, the overall properties are not the same. Unlike the properties of the respective materials constituting the material, the material has characteristics of high electrical resistivity and low temperature dependence of resistance value. This phenomenon is thought to be due to the current flowing through the thin silicon oxide film interposed between the metal silicide films.

〔実施例〕〔Example〕

以下に本発明を図示の実施例に基づいて説明する。 The present invention will be explained below based on illustrated embodiments.

第1図は本発明に係る発熱抵抗体装置をサーマルヘッド
に適用した第一実施例を示す断面図である。同図におい
て、1は絶縁基板としてのアルミナ基板、2はグレーズ
層、3は発熱抵抗体、4及び5はAu等の電気導体、6
はSiC膜よりなる保護膜である。ここで、電気導体4
と5の間の部分3aが発熱部となる。
FIG. 1 is a sectional view showing a first embodiment in which a heating resistor device according to the present invention is applied to a thermal head. In the figure, 1 is an alumina substrate as an insulating substrate, 2 is a glaze layer, 3 is a heating resistor, 4 and 5 are electrical conductors such as Au, and 6
is a protective film made of a SiC film. Here, electric conductor 4
The portion 3a between and 5 becomes a heat generating part.

本実施例では、上記発熱抵抗体3を電気的導体である金
属ケイ化物膜と絶縁体である酸化ケイ素膜とを交互に重
ねた積層構造(図示せず)とし、且つ金属ケイ化物膜を
2層以上備えた′JKII造としている。ここでは、金
属ケイ化物膜としてニケイ化タルタン(TaS12 )
膜を用い、酸化ケイ素膜として二酸化ケイ素(S ] 
02 )膜を用い、発熱抵抗体3の膜厚を3000Aと
した。また、Ta5l 膜とS i 02膜の膜厚比は
1:1.3とした。
In this embodiment, the heating resistor 3 has a laminated structure (not shown) in which metal silicide films as an electrical conductor and silicon oxide films as an insulator are alternately stacked, and two metal silicide films are stacked alternately. It is a 'JKII structure with more than one layer. Here, tartan disilicide (TaS12) is used as the metal silicide film.
Silicon dioxide (S) is used as a silicon oxide film.
02) film was used, and the film thickness of the heating resistor 3 was set to 3000A. Further, the film thickness ratio of the Ta5l film and the Si02 film was set to 1:1.3.

そして、実際に上記膜厚及び膜厚比において、3層、9
層、19層及び29層の発熱抵抗体を形成し、それぞれ
について0〜120℃の範囲で抵抗値の温度依存性を測
定した。第4図は上記構成の抵抗値の温度依存性と比較
例として膜厚を30θ 00AとしたTa−3t−0抵抗体膜の温度依存性の測
定結果を示す特性曲線図である。
Actually, in the above film thickness and film thickness ratio, 3 layers, 9 layers
A heating resistor of 19 layers, 19 layers, and 29 layers was formed, and the temperature dependence of the resistance value was measured for each layer in the range of 0 to 120°C. FIG. 4 is a characteristic curve diagram showing the measurement results of the temperature dependence of the resistance value of the above structure and the temperature dependence of a Ta-3t-0 resistor film having a film thickness of 30θ 00A as a comparative example.

この特性曲線図より、本実施例の特性曲線はいずれもT
a−3t−0抵抗体膜より勾配が小さく、即ち抵抗値の
温度依存性が小さいことがわかる。
From this characteristic curve diagram, it can be seen that the characteristic curves of this example are both T
It can be seen that the slope is smaller than that of the a-3t-0 resistor film, that is, the temperature dependence of the resistance value is small.

また、本実施例の発熱抵抗体はほとんどの範囲でTa−
3i−0抵抗体膜より電気抵抗率が高いことがわかる。
Moreover, the heating resistor of this example has Ta-
It can be seen that the electrical resistivity is higher than that of the 3i-0 resistor film.

よって、この実施例の発熱抵抗体は抵抗値の温度依存性
が小さく、且つ電気抵抗率が高いというサーマルヘッド
に好適な特性を有している。
Therefore, the heating resistor of this embodiment has characteristics suitable for a thermal head, such as a small temperature dependence of resistance value and a high electrical resistivity.

尚、Ta5i2II5!とS i02膜との成膜方法と
しては、マグネトロンスパッタ法を用い、TaSi2膜
形成に際してはTaSi2をターゲットとし、SiOJ
l!形成に際しては5iO7をターゲットとし、スパッ
タガスとしてはArガスを用いて行っている。そして、
実際のスパッタに際しては、グレーズ層を備えた基板を
予め真空中で200℃で30分間加熱し、その後水冷し
、室温状態としたものを用いた。また、スパッタに際し
ては、Ta512ターゲツトとSiO2ターゲットとを
シャッタを備えた別々の部屋に置き、T a S l 
2ターゲツトをDCで、5102ターゲツトをRFで同
時にスパッタして、いずれかのシャッタを開けていずれ
か一方のスパッタ物のみが基板に付着するようにする操
作を、シャッターの切替えにより複数回実施して’I’
aSi2MとS l 02 II!との多層膜構造を形
成した。
Furthermore, Ta5i2II5! The magnetron sputtering method is used to form the Si02 and Si02 films, and TaSi2 is used as the target to form the TaSi2 film, and SiOJ
l! The formation is performed using 5iO7 as a target and Ar gas as a sputtering gas. and,
In actual sputtering, a substrate provided with a glaze layer was heated in advance at 200° C. for 30 minutes in a vacuum, and then cooled with water to bring it to room temperature. Furthermore, during sputtering, the Ta512 target and the SiO2 target are placed in separate rooms equipped with shutters, and the Ta512 target and SiO2 target are placed in separate rooms equipped with shutters.
The two targets were sputtered simultaneously with DC and the 5102 target with RF, and one of the shutters was opened to ensure that only one of the sputtered materials adhered to the substrate, which was performed several times by switching the shutters. 'I'
aSi2M and S l 02 II! A multilayer film structure was formed.

第5図は本発明の第二実施例に関し、発熱抵抗体3の金
属ケイ化物膜としてニケイ化チタン(TT I S l
 2 WAとSiO□膜の膜厚比をl:1.2とした場
合の発熱抵抗体の温度依存性を測定した結果を示す特性
曲線図である。尚、この第二実施例は第1図と同じ構造
を有している。
FIG. 5 relates to a second embodiment of the present invention, in which titanium disilicide (TTIS l) is used as the metal silicide film of the heating resistor 3.
2 is a characteristic curve diagram showing the results of measuring the temperature dependence of the heating resistor when the film thickness ratio of the WA and SiO□ films is 1:1.2. Note that this second embodiment has the same structure as that in FIG.

尚、この実施例においは上記第一実施例と同様に3層、
9層、19層及び29層の発熱抵抗体を形成し、それぞ
れについて0〜120℃の範囲で抵抗値の温度依存性を
測定した。
Incidentally, this example has three layers, similar to the first example above.
9-layer, 19-layer, and 29-layer heating resistors were formed, and the temperature dependence of the resistance value of each was measured in the range of 0 to 120°C.

この特性曲線図より、この第二実施例においては比較例
としてのTi−3t−0抵抗体膜より勾配が小さく、抵
抗値の温度依存性が小さいことがわかる。また、この実
施例の発熱抵抗体は全ての範囲でTi−3L−0抵抗体
膜より電気抵抗率が高いことがわかる。
From this characteristic curve diagram, it can be seen that in this second example, the slope is smaller than that of the Ti-3t-0 resistor film as a comparative example, and the temperature dependence of the resistance value is small. Further, it can be seen that the heating resistor of this example has a higher electrical resistivity than the Ti-3L-0 resistor film in all ranges.

よって、この実施例の発熱抵抗体も抵抗値の温度依存性
が小さく、且つ電気抵抗率が高いというサーマルヘッド
に好適な特性を有している。
Therefore, the heating resistor of this embodiment also has characteristics suitable for a thermal head, such as a small temperature dependence of resistance value and a high electrical resistivity.

次に、上記第一、第二実施例及びTa2Nを発熱抵抗体
とした従来のものをサーマルヘッドに適用しその寿命に
ついて試験した結果について説明する。尚、試験は、上
記第一実施例で発熱抵抗体を19層構造としたもの、上
記第二実施例で発熱抵抗体を19層構造としたもの、及
び従来の構成として発熱抵抗体をT a 2 Nで構成
したものについて印加パルス数と抵抗値変化率を調べる
ことにより行った。ここで、発熱抵抗体の形状は50X
75μmの矩形とし、16dots/mm密度で配した
ものを使用し、保護膜には4μmのSiC膜を用いた。
Next, a description will be given of the results of testing the life of the first and second embodiments and the conventional one using Ta2N as a heating resistor when applied to a thermal head. The tests were conducted using the heating resistor of the first embodiment with a 19-layer structure, the heating resistor of the second embodiment with a 19-layer structure, and the conventional structure of the heating resistor of Ta. This was done by examining the number of applied pulses and the rate of change in resistance value for a structure made of 2N. Here, the shape of the heating resistor is 50X
A 75 μm rectangle arranged at a density of 16 dots/mm was used, and a 4 μm SiC film was used as the protective film.

また、駆動に際しては0.8ms幅のパルスで2ms周
期で繰り返し駆動させ、常に感熱紙に十分な発色が得ら
れるよう供給電力を調整した。
In addition, during driving, pulses of 0.8 ms width were repeatedly driven at 2 ms intervals, and the supplied power was adjusted so that sufficient coloring could always be obtained on the thermal paper.

第6図は上記条件下でサーマルヘッドの寿命試験を実施
した結果を示す特性曲線図である。同図において、曲線
Aは第一実施例の場合、曲線Bは第二実施例の場合、曲
線Cは従来例の場合を示している。この特性曲線図より
わかるように、曲線Cでは102個のパルスが入力され
た後に抵抗値が少し変化し、104個のパルスが入力さ
れた以降は抵抗値が大きく変化する。これに対し、第一
、第二実施例の場合にはそれぞれ106個、105個以
上のパルスが入力されるまで抵抗値は略安定であり、従
来例に比べて10倍以上の長い期間の使用に耐え得るこ
とかわる。
FIG. 6 is a characteristic curve diagram showing the results of a life test of the thermal head under the above conditions. In the figure, curve A shows the case of the first embodiment, curve B shows the case of the second embodiment, and curve C shows the case of the conventional example. As can be seen from this characteristic curve diagram, in curve C, the resistance value changes slightly after 102 pulses are input, and the resistance value changes significantly after 104 pulses are input. On the other hand, in the case of the first and second embodiments, the resistance value is approximately stable until 106 and 105 pulses or more are input, respectively, and the use period is more than 10 times longer than that of the conventional example. It depends on what you can withstand.

以上説明したように、本実施例の発熱抵抗体装置は高い
電気抵抗率を持ち、低い温度依存性を持つだけではなく
、長時間の使用にも耐えることができ、サーマルヘッド
に好適な特性を備えている。
As explained above, the heating resistor device of this example not only has high electrical resistivity and low temperature dependence, but also can withstand long-term use and has characteristics suitable for thermal heads. We are prepared.

尚、上記実施例においては金属ケイ化物膜としてTaま
たは]iのケイ化物を用いた場合について説明したが、
本発明はこれには限定されず、W、Nb、Mo、Cr等
の他の金属のケイ化物を用いてもよい。
In addition, in the above embodiment, the case where Ta or ]i silicide was used as the metal silicide film was explained.
The present invention is not limited thereto, and silicides of other metals such as W, Nb, Mo, and Cr may be used.

また、上記実施例においては金属ケイ化物膜と酸化ケイ
素膜の形成にスパッタ法を用いた場合について示したが
、蒸着法、CVD法等の他の方法を採用してもよい。
Furthermore, in the above embodiments, the sputtering method was used to form the metal silicide film and the silicon oxide film, but other methods such as vapor deposition and CVD may also be used.

さらに、上記実施例の層厚、層厚比、層数については、
上記のものに限定されず、要求される抵抗値等の諸条件
によって適当な値に選択が可能である。
Furthermore, regarding the layer thickness, layer thickness ratio, and number of layers in the above examples,
It is not limited to the above values, and can be selected as an appropriate value depending on various conditions such as the required resistance value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の発熱抵抗体装置は、電気
抵抗率が高く、抵抗値の温度依存特性が小さく、しかも
耐熱性に優れ長時間の使用に耐え得るという、従来には
なかった特性を兼ね備えている。これら特性はサーマル
ヘッドに好適なものであり、この発熱抵抗体装置をサー
マルヘッドに適用ずれは、高Kn細、高速な印字を少な
い電力で行うことができ、しかもサーマルヘッドの長寿
命化も達成できるという効果を有する。
As explained above, the heating resistor device of the present invention has characteristics that were not found in the past, such as high electrical resistivity, low temperature dependence of resistance value, and excellent heat resistance and ability to withstand long-term use. It has the following. These characteristics are suitable for thermal heads, and the application of this heating resistor device to thermal heads allows for high-Kn, high-speed printing with less power, and also extends the life of the thermal head. It has the effect of being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る発熱抵抗体装置をサーマルヘッド
に適用した場合の構成を示す断面図、第2図は従来のサ
ーマルヘッドの構成を示す断面図 第3図はミアンダ形発熱体の平面図、 第4図は本発明の第一実施例の特性曲線図、第5図は本
発明の第二実施例の特性曲線図、第6図は第一、第二実
施例の寿命試験の結果を示す特性曲線図である。 1・・・アルミナ基板(基板)、2・・・グレーズ層、
3・・・発熱抵抗体く金属ケイ化物膜、酸化ケイ素膜)
3a・・・発熱部、4・・・電気導体、5・・・保護膜
。 特許出願人  沖電気工業株式会社 代理人 弁理士  前 1) 実
FIG. 1 is a sectional view showing the configuration of a thermal head in which the heating resistor device according to the present invention is applied, FIG. 2 is a sectional view showing the configuration of a conventional thermal head, and FIG. 3 is a plan view of a meander-shaped heating element. Figure 4 is a characteristic curve diagram of the first embodiment of the present invention, Figure 5 is a characteristic curve diagram of the second embodiment of the present invention, and Figure 6 is the life test result of the first and second embodiments. FIG. 1... Alumina substrate (substrate), 2... Glaze layer,
3...Heating resistor (metal silicide film, silicon oxide film)
3a... Heat generating part, 4... Electric conductor, 5... Protective film. Patent applicant Oki Electric Industry Co., Ltd. Agent Patent attorney Former 1) Actual

Claims (1)

【特許請求の範囲】 基板と、 上記基板上に形成された発熱抵抗体とを有し、上記発熱
抵抗体が、金属ケイ化物膜と酸化ケイ素膜とを交互に重
ねた積層構造であり且つ上記金属ケイ化物膜を2層以上
有することを特徴とする発熱抵抗体装置。
[Scope of Claims] A substrate, and a heating resistor formed on the substrate, wherein the heating resistor has a laminated structure in which metal silicide films and silicon oxide films are alternately stacked, and A heating resistor device characterized by having two or more layers of metal silicide films.
JP63029934A 1988-02-10 1988-02-10 Heating resistor device Pending JPH01204760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029934A JPH01204760A (en) 1988-02-10 1988-02-10 Heating resistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029934A JPH01204760A (en) 1988-02-10 1988-02-10 Heating resistor device

Publications (1)

Publication Number Publication Date
JPH01204760A true JPH01204760A (en) 1989-08-17

Family

ID=12289813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029934A Pending JPH01204760A (en) 1988-02-10 1988-02-10 Heating resistor device

Country Status (1)

Country Link
JP (1) JPH01204760A (en)

Similar Documents

Publication Publication Date Title
US4849605A (en) Heating resistor and method for making same
JPS598231B2 (en) Thermal head for thermal recording
US4845339A (en) Thermal head containing an insulating, heat conductive layer
JPH01204760A (en) Heating resistor device
JPH06227015A (en) Wear-resistant protective film for thermal head and preparation thereof
JPS63278203A (en) Heating resistor
JPS6072750A (en) Thermosensitive recording head
JPS61255001A (en) Thermal head
JPS63278202A (en) Heating resistor
JPS63278205A (en) Heating resistor
JPS62202754A (en) Thin film type thermal head
JPS62202753A (en) Thin film type thermal head
JPS6367319B2 (en)
JPH0999574A (en) Thermal head
JPS63278204A (en) Heating resistor
JPS6139195B2 (en)
KR100263545B1 (en) Manufacturing method for thin film magnetic head
JPS63278201A (en) Heating resistor
JPH0461201A (en) Thin-film resistor
JPS6293901A (en) Thermal head and manufacture of the same
JPS6255712B2 (en)
JPS6156111B2 (en)
JPH05270033A (en) Thermal head and production thereof
JPS62259873A (en) Thermal head
JPH02120056A (en) Thermal head