JPH01204055A - Manufacture of electrophotographic sensitive body - Google Patents

Manufacture of electrophotographic sensitive body

Info

Publication number
JPH01204055A
JPH01204055A JP63027432A JP2743288A JPH01204055A JP H01204055 A JPH01204055 A JP H01204055A JP 63027432 A JP63027432 A JP 63027432A JP 2743288 A JP2743288 A JP 2743288A JP H01204055 A JPH01204055 A JP H01204055A
Authority
JP
Japan
Prior art keywords
amorphous silicon
surface layer
gas
glow discharge
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63027432A
Other languages
Japanese (ja)
Inventor
Yuzuru Fukuda
福田 讓
Masahito Ono
雅人 小野
Noriyoshi Takahashi
高橋 徳好
Masayuki Nishikawa
雅之 西川
Shigeru Yagi
茂 八木
Kenichi Karakida
唐木田 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP63027432A priority Critical patent/JPH01204055A/en
Publication of JPH01204055A publication Critical patent/JPH01204055A/en
Priority to US07/624,533 priority patent/US5459009A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enhance surface strength and to prevent external damage by decomposing a mixture of 2 kinds of specified gases by glow discharge and forming a surface layer composed essentially of amorphous silicon carbide on an amorphous silicon photoconductive layer. CONSTITUTION:The amorphous silicon type photoconductive layer is formed on a cylindrical aluminum substrate by introducing a gaseous mixture of silane, diborane, and hydrogen into a reactor and decomposing them by glow discharge. The surface layer composed essentially of amorphous silicon carbide is formed by introducing a gaseous mixture of fluorohydrocarbon and silicon hydride as starting gases after the reactor has been evacuated, and decomposing them by glow discharge. This surface layer has high surface hardness and resistance to external damage and prevents unsharpness of images. As said fluorohydro carbon, at least one is selected from the formulae shown on the right in which n is an integer, and X is 1-2n+2, Y is 1-2n, and Z is 1-2n-2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真用感光体の製造方法に関するもので
あり、特に、非晶質ケイ素系光導電層と非晶質炭化ケイ
素系表面層とを有する電子写真感光体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an electrophotographic photoreceptor, and in particular, to a method for manufacturing an electrophotographic photoreceptor, in particular, a method for manufacturing an amorphous silicon-based photoconductive layer and an amorphous silicon carbide-based surface layer. The present invention relates to a method of manufacturing an electrophotographic photoreceptor having the following.

従来の技術 近年、感光層として非晶質ケイ素(アモルファスシリコ
ン)を用いた電子写真感光体が開発され、種々の改善が
試みられている。この非晶質ケイ素を用いた感光体は、
導電性基板上に、シラン(SiH4)ガスのグロー放電
分解法などによりケイ素の非晶質膜を形成したもので必
って、非晶質ケイ素膜中に水素原子が取り込まれ、光導
電性を呈するものである。非晶質ケイ素感光体は、波長
約400nm〜700nmの光に対して高い光感度を有
し耐熱性も高く、機械的強度も優れたものであるが、そ
の表面を保護するために、SiN、SiOなどの組成を
有する表面層を設けることが提案されている。これ等の
表面層を有する電子写真感光体は、高温高湿下で長期間
にねたり繰返使用すると、画像ぼけを生じてしまうとい
う問題点があった。この点を改善したものとして、非晶
質炭化ケイ素を主体とする表面層を設けたものが提案さ
れている。(例えば、特開昭57−115551号、同
57−115556号、同58−88753@公報)発
明が解決しようとする課題 ところで、従来の非晶質炭化ケイ素を主体とする表面層
は、通常、炭化水素系のガスと水素化ケイ素ガスとを用
いてグロー放電分解法により形成しているが、この方法
によって形成された表面層は、ビッカース硬度が約30
0〜400程度以下にしかならず、硬度の点で十分では
なかった。しだがつて、電子写真プロセスにおける残留
トナーの為のブレード或いは用紙剥離爪等との摩擦によ
って、表面状態が変化し、得られた画像に白すじ等の画
像欠陥が発生するという欠点があった。
2. Description of the Related Art In recent years, electrophotographic photoreceptors using amorphous silicon as a photosensitive layer have been developed, and various improvements have been attempted. This photoreceptor using amorphous silicon is
When an amorphous film of silicon is formed on a conductive substrate by glow discharge decomposition of silane (SiH4) gas, hydrogen atoms are inevitably incorporated into the amorphous silicon film, resulting in photoconductivity. It is intended to be presented. Amorphous silicon photoreceptors have high photosensitivity to light with a wavelength of about 400 nm to 700 nm, high heat resistance, and excellent mechanical strength. It has been proposed to provide a surface layer having a composition such as SiO. Electrophotographic photoreceptors having such surface layers have a problem in that image blurring occurs when they become wet or are repeatedly used for a long period of time under high temperature and high humidity conditions. In order to improve this point, it has been proposed to provide a surface layer mainly composed of amorphous silicon carbide. (For example, JP-A-57-115551, JP-A No. 57-115556, JP-A No. 58-88753) Problems to be Solved by the Invention By the way, the conventional surface layer mainly composed of amorphous silicon carbide usually The surface layer formed by this method has a Vickers hardness of approximately 30.
The hardness was only about 0 to 400 or less, which was not sufficient in terms of hardness. However, there is a drawback in that the surface condition changes due to friction with a blade for residual toner in the electrophotographic process, a paper peeling claw, etc., and image defects such as white streaks occur in the obtained image.

本発明は、従来の技術における上記のような問題点に鑑
みてなされたものである。
The present invention has been made in view of the above-mentioned problems in the conventional technology.

したがって、本発明の目的は、高い硬度を有し、耐摩耗
性に優れた表面層を有する非晶質ケイ素系電子写真感光
体を提供することにある。
Therefore, an object of the present invention is to provide an amorphous silicon-based electrophotographic photoreceptor having a surface layer having high hardness and excellent wear resistance.

課題を解決するための手段及び作用 本発明は、導電性基板上に非晶質ケイ素系光導電層及び
非晶質炭化ケイ素系表面層をグロー放電分解法により順
次形成する電子写真用感光体の製造方法において、非晶
質ケイ素系光導電層の形成後、反応室内に、原料ガスと
して、フルオロ炭化水素ガスと水素化ケイ素ガスとより
なるガス混合物を導入し、グロー放電分解により、非晶
質炭化ケイ素を主体してなる表面層を形成することを特
徴とする。
Means and Effects for Solving the Problems The present invention provides an electrophotographic photoreceptor in which an amorphous silicon-based photoconductive layer and an amorphous silicon carbide-based surface layer are sequentially formed on a conductive substrate by a glow discharge decomposition method. In the manufacturing method, after forming an amorphous silicon-based photoconductive layer, a gas mixture consisting of a fluorohydrocarbon gas and a silicon hydride gas is introduced into a reaction chamber as a raw material gas, and the amorphous silicon is decomposed by glow discharge decomposition. It is characterized by forming a surface layer mainly composed of silicon carbide.

以下、本発明について詳記する。The present invention will be described in detail below.

本発明において用いられる導電性基板としては、アルミ
ニウム、ニッケル、クロム、ステンレス鋼などの合金、
導電膜を有するプラスチックシートあるいはガラス、導
電化処理をした紙などがあげられる。
The conductive substrate used in the present invention includes alloys such as aluminum, nickel, chromium, and stainless steel;
Examples include a plastic sheet or glass with a conductive film, and paper treated to make it conductive.

非晶質ケイ素系光導電層は、反応ガスとしてケイ素化合
物を用い、グロー放電分解法によって上記の導電性基板
上に形成する。すなわち、プラス? CV D (Ch
emical Vapor [)eposition)
装置の反応室内にケイ素化合物を主体とする反応ガスを
導入し、この反応ガスをグロー放電分解することによっ
て、反応室内の所定の位置に設定された導電性基板上に
非晶質ケイ素系光導電層を形成させる。
The amorphous silicon-based photoconductive layer is formed on the above conductive substrate by glow discharge decomposition using a silicon compound as a reactive gas. In other words, plus? CV D (Ch
chemical vapor [)eposition)
A reactive gas mainly composed of silicon compounds is introduced into the reaction chamber of the device, and by glow discharge decomposition of this reactive gas, an amorphous silicon-based photoconductive conductor is formed on a conductive substrate set at a predetermined position in the reaction chamber. Form a layer.

本発明において用いられるケイ素化合物としては、5f
H4、S!2 H6,5IC14,5iHC!3.5f
H2CI2 、Sf (CH3>4、S !3 HB 
、 S !4 Hlo等があげられる。
The silicon compound used in the present invention includes 5f
H4, S! 2 H6,5IC14,5iHC! 3.5f
H2CI2, Sf (CH3>4, S!3 HB
, S! 4 Hlo etc. can be mentioned.

上記ケイ素化合物と共に、必要に応じて各種のキャリア
ガス、例えば、水素、ヘリウム、アルゴン、ネオン等を
混合して使用することも可能である。更に又、上記ガス
中にジボランガス、ホスフィンガス、その他のドニパン
トガスを混合させて非晶質ケイ素系感光層の電子写真特
性を改善することも可能である。
It is also possible to use a mixture of various carrier gases such as hydrogen, helium, argon, neon, etc. together with the silicon compound as required. Furthermore, it is also possible to improve the electrophotographic properties of the amorphous silicon-based photosensitive layer by mixing diborane gas, phosphine gas, or other donor gas into the above gas.

上記したガスを用いて非晶質ケイ素感光層を形成させる
ためのグロー放電分解の条件は、例えば、交流放電の場
合を例に、とると、次の通りである。
Conditions for glow discharge decomposition for forming an amorphous silicon photosensitive layer using the above gas are as follows, taking the case of AC discharge as an example.

電源周波数は通常0.1〜30M)12.好適には5〜
20聞lであり、放電時の反応室内の圧力は、0.1〜
5Torrであり、基板加熱温度はioo〜400℃で
ある。
Power frequency is usually 0.1-30M)12. Preferably 5~
20 liters, and the pressure inside the reaction chamber during discharge is 0.1~
5 Torr, and the substrate heating temperature is ioo to 400°C.

本発明における光導電層の膜厚は、任意に設定されるが
、11I!11〜2001I!11、特に10ttm 
〜100−が好適である。
The film thickness of the photoconductive layer in the present invention can be set arbitrarily, but 11I! 11~2001I! 11, especially 10ttm
~100- is suitable.

本発明においては、電子写真感光体は、導電性基板上に
光照射に応じて電荷担体を発生させる光導電層を形成さ
せるが、所望により、支持体でおる導電性基板と光導電
層間に電荷輸送層及び/又は電荷担体に対して障壁を形
成する電荷ブロッキング層を積層してもよい。
In the present invention, in the electrophotographic photoreceptor, a photoconductive layer that generates charge carriers in response to light irradiation is formed on a conductive substrate. A transport layer and/or a charge blocking layer forming a barrier to the charge carriers may be deposited.

次いで、上記非晶質ケイ素系感光層の上に、非晶質炭化
ケイ素を主体としてなる表面層を形成させる。
Next, a surface layer mainly composed of amorphous silicon carbide is formed on the amorphous silicon-based photosensitive layer.

表面層を形成させるための原料ガスとしては、フルオロ
炭化水素ガスと水素化ケイ素ガスとよりなるガス混合物
が使用される。それ等の混合割合は、適宜設定すること
ができるが、例えば、前者と後者の割合を流m比で20
:1ないし1:2oの範囲で使用するのが好ましい。
As the raw material gas for forming the surface layer, a gas mixture consisting of a fluorohydrocarbon gas and a silicon hydride gas is used. The mixing ratio of these can be set as appropriate, but for example, the ratio of the former and the latter is 20% in flow m ratio.
It is preferable to use it in the range of :1 to 1:2o.

フルオロ炭化水素としては、下記一般式(A)([3)
及び(C)で示されるものが使用され、CnH2n+2
−xFx     (A)c、 H2,−、F、   
  CB)Cト1       ’F        
        (C)n   2n−2−z  z (式中、0は整数を表わし、Xは1ないし2n+2の整
数を表わし、yは1ないし2nの整数を表わし、2は1
ないし2n−2の整数を表わす)具体的には、例えば、
CH3F (フルオロメタン)、CH2F2 (ジフル
オロメタン)、CHF3 (フルオロホルム)、CF4
 (テトラフルオロメタン)、C2[−15F(フルオ
ロエタン)、C2H4F2(ジフルオロエタン)、c2
F6 (ペルフルオロエタン)、C2H3F(フルオロ
エチレン)、C3H3F(フッ化アリル)、c3F4 
(テトラフルレオ自アレン)等をあげることができる。
As the fluorohydrocarbon, the following general formula (A) ([3)
and (C) are used, and CnH2n+2
−xFx (A)c, H2,−,F,
CB)Cto1'F
(C)n 2n-2-z z (where 0 represents an integer, X represents an integer from 1 to 2n+2, y represents an integer from 1 to 2n, and 2 represents 1
(representing an integer from 2n-2 to 2n-2) Specifically, for example,
CH3F (fluoromethane), CH2F2 (difluoromethane), CHF3 (fluoroform), CF4
(tetrafluoromethane), C2 [-15F (fluoroethane), C2H4F2 (difluoroethane), c2
F6 (perfluoroethane), C2H3F (fluoroethylene), C3H3F (allyl fluoride), c3F4
(tetraflureo-alene), etc.

又、水素化ケイ素としては、S i H4、S l 2
H6、S 13 HB 、S !4 Hlo等をあげる
ことができる。
In addition, as silicon hydride, S i H4, S l 2
H6, S 13 HB, S! 4 Hlo etc. can be mentioned.

以上列記した表面層を形成するための原料物質は、常温
でガス状であっても、固体状あるいは液状であってもよ
いが、固体状あるいは液状で必る場合には、気化して反
応室内に導入する。
The raw materials for forming the surface layer listed above may be gaseous, solid, or liquid at room temperature, but if they are required to be in solid or liquid form, they are vaporized into the reaction chamber. to be introduced.

表面層は、プラズマCVD装置により上記の原料ガスを
グロー放電分解させることによって形成させるが、グロ
ー放電分解は、直流及び交流放電のいずれを採用する場
合でも可能でおる。膜形成の生成条件は、交流放電の場
合を例にとると、周波数は0.1〜30MHz、好適に
は5〜20MH7であり、又、放電時の真空度は0.1
〜5Torr (13,3〜687Pa)、基板加熱温
度は100〜400℃である。
The surface layer is formed by glow discharge decomposition of the above raw material gas using a plasma CVD apparatus, but glow discharge decomposition can be performed using either direct current or alternating current discharge. Taking the case of AC discharge as an example, the conditions for film formation are that the frequency is 0.1 to 30 MHz, preferably 5 to 20 MHz, and the degree of vacuum during discharge is 0.1.
~5 Torr (13,3~687 Pa), and the substrate heating temperature is 100~400°C.

表面層の膜厚は任意に設定されるがo、 oi〜1G仮
、好ましくは0.2〜5μmでおる。
The thickness of the surface layer can be set arbitrarily, but is preferably between 0 and 1G, preferably between 0.2 and 5 μm.

本発明においては、非晶質炭化ケイ素系表面層の形成に
際して、水素化ケイ素とフルオロ炭化水素の混合ガスが
使用されるから、グロー放電分解によって発生する水素
原子が、フッ素原子と結合して弗化水素の形になり、系
外に除去される。したがって、形成される表面層中に導
入される水素ガスの量が著しく低下し、形成される表面
層の硬度が高くなるものと推測される。
In the present invention, since a mixed gas of silicon hydride and fluorohydrocarbon is used to form the amorphous silicon carbide surface layer, hydrogen atoms generated by glow discharge decomposition combine with fluorine atoms to form fluorocarbons. It becomes hydrogen chloride and is removed from the system. Therefore, it is presumed that the amount of hydrogen gas introduced into the formed surface layer is significantly reduced, and the hardness of the formed surface layer is increased.

実施例 次に、実施例によって本発明の電子写真用感光体の製造
方法を説明する。
EXAMPLES Next, the method for manufacturing the electrophotographic photoreceptor of the present invention will be explained with reference to examples.

実施例1 円筒状基板上への非晶質ケイ素膜の生成が可能な容量結
合型プラズマCVD装置の所定の位置に、円筒状アルミ
ニウム基板を載置し、反応室内にシラン(S i H4
)ガス、ジボラン(82H6)ガス及び水素(H2)ガ
スの混合ガスを導入して、グロー放電分解することによ
り、円筒状アルミニウム基板上に、膜厚2仮の非晶質ケ
イ素電荷注入防止層及び膜厚20μmの非晶質ケイ素系
光導電層を生成した。
Example 1 A cylindrical aluminum substrate was placed at a predetermined position in a capacitively coupled plasma CVD apparatus capable of forming an amorphous silicon film on a cylindrical substrate, and silane (S i H4
) gas, diborane (82H6) gas, and hydrogen (H2) gas and performs glow discharge decomposition to form a temporary amorphous silicon charge injection prevention layer with a thickness of 2 on the cylindrical aluminum substrate. An amorphous silicon-based photoconductive layer with a thickness of 20 μm was produced.

このときの電荷注入防止層の成膜条件は、次の通りであ
った。
The conditions for forming the charge injection prevention layer at this time were as follows.

100%シランガス流m :  200ci/min3
00ppm水素希釈ジボランガス流ffl :  20
0cffl/ min反応器内圧:  0.8Torr 放電電力 :  180W 放電時間 :  40m1n 放電周波数:  13.56阿flz 基板温度 :250℃ また、光導電層の成膜条件は、次の通りであった。
100% silane gas flow m: 200ci/min3
00ppm hydrogen diluted diborane gas flowffl: 20
0 cffl/min Reactor internal pressure: 0.8 Torr Discharge power: 180 W Discharge time: 40 m1n Discharge frequency: 13.56 aflz Substrate temperature: 250° C. The conditions for forming the photoconductive layer were as follows.

100%シランガス流ffi :  200cffl/
min100ppm水素希釈ジボランガス流1:  5
cIA/min水素ガス流17J :  195oyf
/min反応器内圧:  0.8Torr 放電電力 :  iaow 放電時間 :  400m1n 放電周波数:  13.56聞l 基板温度 =250℃ 続いて、形成された非晶質ケイ素系光導電層の上に、表
面層を形成させた。即ち、反応室内を真空排気した後、
四フッ化炭素(CF4)とシランガス(Si4)ガスと
よりなる混合ガスを反応室内に導入し、グロー放電分解
させ、膜厚0.5Pの表面層を形成した。
100% silane gas flowffi: 200cffl/
min100ppm hydrogen diluted diborane gas flow 1:5
cIA/min Hydrogen gas flow 17J: 195oyf
/min Reactor internal pressure: 0.8 Torr Discharge power: iaow Discharge time: 400 m1n Discharge frequency: 13.56 l Substrate temperature = 250°C Subsequently, a surface layer was applied on the formed amorphous silicon-based photoconductive layer. was formed. That is, after evacuating the reaction chamber,
A mixed gas consisting of carbon tetrafluoride (CF4) and silane gas (Si4) was introduced into the reaction chamber and decomposed by glow discharge to form a surface layer with a thickness of 0.5P.

このときの表面層の成膜条件は、次の通りであった。The conditions for forming the surface layer at this time were as follows.

四フッ化炭素ガス流1 : 40CIi/minシラン
ガス流量:16CIA/min 反応器内圧:  0.5Torr 放電電力 :  200W 放電時間 :  60m1n 放電周波数:  13.56聞2 基板温度 :250℃ このようにして製造された電子写真感光体における表面
層のビッカース硬度(荷重=1(EJ)を測定したとこ
ろ、780KI/criであり、非常に硬いものであっ
た。
Carbon tetrafluoride gas flow 1: 40 CIi/min Silane gas flow rate: 16 CIA/min Reactor internal pressure: 0.5 Torr Discharge power: 200 W Discharge time: 60 m1n Discharge frequency: 13.56 cm2 Substrate temperature: 250°C Manufactured in this way When the Vickers hardness (load=1 (EJ)) of the surface layer of the electrophotographic photoreceptor was measured, it was 780 KI/cri, which was extremely hard.

この電子写真感光体を複写機に入れて正のコロナ帯電方
式で複写を行い、コピー画像の画質を評価した。複写を
5万回繰り返した後、温度35℃、湿度85%RHの環
境下と温度5℃、湿度15%RHの環境下で画質を評価
したところ、画像ぼけ、画像濃度の低下はなく、クリー
ニングブレードや紙剥離風による傷もまったく見られな
かった。
This electrophotographic photoreceptor was placed in a copying machine, and copies were made using a positive corona charging method, and the image quality of the copied images was evaluated. After copying was repeated 50,000 times, the image quality was evaluated under an environment of a temperature of 35°C and a humidity of 85% RH, and an environment of a temperature of 5°C and a humidity of 15% RH. There were no visible scratches caused by the blade or paper peeling wind.

実施例2 実施例1におけると同様にして、円筒状アルミニウム基
板上に、非晶質ケイ素を主体とする厚さ約2即の電荷注
入防止層及び厚さ約201mの光導電層を生成した。
Example 2 In the same manner as in Example 1, a charge injection prevention layer mainly composed of amorphous silicon with a thickness of about 2 mm and a photoconductive layer with a thickness of about 201 m were produced on a cylindrical aluminum substrate.

続いて、反応ガスとしてペルフルオロエタン(C2F6
)とシランガスを用いる以外は実施例1におけると同様
にして膜厚0.5μmの表面層を形成した。このときの
成膜条件は次の通りでめった。
Subsequently, perfluoroethane (C2F6
) and silane gas were used in the same manner as in Example 1 to form a surface layer with a thickness of 0.5 μm. The film forming conditions at this time were as follows.

ペルフルオロエタン流量:40cffl/minシラン
ガス流1 : 24ci/min反応器内圧:  0.
5Torr 放電電力 :  200W 放電時間 :  30m1n 放電周波数=13゜56M+IZ 基板温度 :250℃ このようにして製造された電子写真感光体における表面
層のビッカース硬度(荷重=io9)は720KI/c
rAで必った。実施例1におけると同様に画質評価を行
なったところ、画像ぼけ、画像濃度の低下はなく、クリ
ーニングブレードや紙剥離風による傷もまったく見られ
なかった。
Perfluoroethane flow rate: 40 cffl/min Silane gas flow 1: 24 ci/min Reactor internal pressure: 0.
5Torr Discharge power: 200W Discharge time: 30m1n Discharge frequency = 13゜56M+IZ Substrate temperature: 250°C The Vickers hardness (load = io9) of the surface layer of the electrophotographic photoreceptor thus manufactured was 720KI/c
I needed it with rA. When image quality was evaluated in the same manner as in Example 1, there was no image blurring or decrease in image density, and no scratches caused by the cleaning blade or paper peeling wind were observed.

比較例 実施例1におけると同様にして、円筒状アルミニウム基
板上に、非晶質ケイ素を主体とする厚さ約2J1mの電
荷注入防止層及び厚さ約20即の光導電層を生成した。
Comparative Example In the same manner as in Example 1, a charge injection prevention layer mainly composed of amorphous silicon with a thickness of about 2J1m and a photoconductive layer with a thickness of about 20J1m were produced on a cylindrical aluminum substrate.

続いて、メタンガスとシランガスとよりなる反応ガスを
用いる以外は、実施例1におけると同様にして膜厚0.
5Mの表面層を形成した。このときの成膜条件は次の通
りであった。
Subsequently, a film thickness of 0.0.
A 5M surface layer was formed. The film forming conditions at this time were as follows.

メタンガス流量:  1007/minシランガス流量
:  20Cffl/min反応器内圧:  0.5T
orr 放電電力 :  200W 放電時間 :  30m1n 放電周波数:  13.56聞Z 基板温度 :250℃ このようにして製造された電子写真感光体における表面
層のビッカース硬度(荷重=iog)は1470KI/
ctiであった。
Methane gas flow rate: 1007/min Silane gas flow rate: 20 Cffl/min Reactor internal pressure: 0.5T
orr Discharge power: 200 W Discharge time: 30 m1n Discharge frequency: 13.56 min Z Substrate temperature: 250° C. The Vickers hardness (load = iog) of the surface layer of the electrophotographic photoreceptor thus manufactured was 1470 KI/
It was cti.

この電子写真感光体を複写機にいれ、正のコロナ帯電方
式で複写を行い、コピー画像の画質を評価した。複写を
1500回繰り返したところ、画像上にクリーニングブ
レードや紙剥離風による傷に基づく画像欠陥が観察され
るようになった。
This electrophotographic photoreceptor was placed in a copying machine, copies were made using a positive corona charging method, and the image quality of the copied images was evaluated. After copying was repeated 1500 times, image defects due to scratches caused by the cleaning blade or paper peeling wind began to be observed on the image.

発明の効果 本発明によれば、非晶質ケイ素光導電層の上に、フルオ
ロ炭化水素ガスと水素化ケイ素ガスとの混合ガスを用い
、グロー放電分解によって非晶質炭化ケイ素を主体とす
る表面層を設けるから、形成された表面層は、少なくと
もビッカース硬度500以上の非常に高い表面硬度を有
するものとなる。
Effects of the Invention According to the present invention, a surface mainly composed of amorphous silicon carbide is formed on an amorphous silicon photoconductive layer by glow discharge decomposition using a mixed gas of fluorohydrocarbon gas and silicon hydride gas. Since the layer is provided, the formed surface layer has a very high surface hardness of at least 500 Vickers hardness.

したがって、本発明の電子写真感光体は、使用に際して
クリーニングブレード、紙判離爪ぞの他による傷の発生
も起り難くなり、又どのような操作条件下でも、画像ぽ
けを生じることのないコピー画像を得ることができる。
Therefore, the electrophotographic photoreceptor of the present invention is less likely to be scratched by cleaning blades, paper separation claws, etc. during use, and can produce copies without blurring of images under any operating conditions. You can get the image.

特許出願人  富士ゼロックス株式会社代理人    
弁理士  眼部 剛
Patent applicant Fuji Xerox Co., Ltd. Agent
Patent attorney Tsuyoshi Eyebe

Claims (2)

【特許請求の範囲】[Claims] (1)導電性基板上に非晶質ケイ素系光導電層及び非晶
質炭化ケイ素系表面層をグロー放電分解法により順次形
成する電子写真用感光体の製造方法において、非晶質ケ
イ素系光導電層の形成後、反応室内に、原料ガスとして
、少なくともフルオロ炭化水素ガスと水素化ケイ素ガス
とよりなるガス混合物を導入し、グロー放電分解により
、非晶質炭化ケイ素を主体してなる表面層を形成するこ
とを特徴とする電子写真用感光体の製造方法。
(1) In a method for manufacturing an electrophotographic photoreceptor in which an amorphous silicon-based photoconductive layer and an amorphous silicon carbide-based surface layer are sequentially formed on a conductive substrate by a glow discharge decomposition method, After forming the conductive layer, a gas mixture consisting of at least fluorohydrocarbon gas and silicon hydride gas is introduced into the reaction chamber as a raw material gas, and a surface layer mainly composed of amorphous silicon carbide is formed by glow discharge decomposition. 1. A method for producing an electrophotographic photoreceptor, the method comprising: forming an electrophotographic photoreceptor.
(2)フルオロ炭化水素が、下記一般式(A)(B)及
び(C)で示されるものから選択された少なくとも1種
よりなることを特徴とする請求項(1)記載の電子写真
用感光体の製造方法。 C_nH_2_n_+_2_−_xF_x(A) C_nH_2_n_−_yF_y(B) C_nH_2_n_−_2_−_zF_z(C) (式中、nは整数を表わし、xは1ないし2n+2の整
数を表わし、yは1ないし2nの整数を表わし、zは1
ないし2n−2の整数を表わす)
(2) The electrophotographic photosensitive material according to claim (1), wherein the fluorohydrocarbon is at least one selected from those represented by the following general formulas (A), (B), and (C). How the body is manufactured. C_nH_2_n_+_2_-_xF_x(A) C_nH_2_n_-_yF_y(B) C_nH_2_n_-_2_-_zF_z(C) (In the formula, n represents an integer, x represents an integer from 1 to 2n+2, y represents an integer from 1 to 2n, z is 1
(represents an integer from 2n-2)
JP63027432A 1988-02-10 1988-02-10 Manufacture of electrophotographic sensitive body Pending JPH01204055A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63027432A JPH01204055A (en) 1988-02-10 1988-02-10 Manufacture of electrophotographic sensitive body
US07/624,533 US5459009A (en) 1988-02-10 1990-12-10 Process for making an electrophotographic photoreceptor having protective layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027432A JPH01204055A (en) 1988-02-10 1988-02-10 Manufacture of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01204055A true JPH01204055A (en) 1989-08-16

Family

ID=12220947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027432A Pending JPH01204055A (en) 1988-02-10 1988-02-10 Manufacture of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01204055A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115559A (en) * 1981-01-09 1982-07-19 Canon Inc Photoconductive material
JPS58108544A (en) * 1981-12-22 1983-06-28 Canon Inc Photoconductive material
JPS58115449A (en) * 1981-12-28 1983-07-09 Canon Inc Photoconductive member
JPS63116159A (en) * 1986-11-04 1988-05-20 Canon Inc Electrophotographic photoreceptive member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115559A (en) * 1981-01-09 1982-07-19 Canon Inc Photoconductive material
JPS58108544A (en) * 1981-12-22 1983-06-28 Canon Inc Photoconductive material
JPS58115449A (en) * 1981-12-28 1983-07-09 Canon Inc Photoconductive member
JPS63116159A (en) * 1986-11-04 1988-05-20 Canon Inc Electrophotographic photoreceptive member

Similar Documents

Publication Publication Date Title
KR970059848A (en) A light receiving member having a surface protection layer having a particular outermost surface and a method of manufacturing the same
EP0872770B1 (en) Light-receiving member, image forming apparatus having the member, and image forming method utilizing the member
JPS63221350A (en) Non-moisture sensitive/photosensitive image forming member
JPH01204055A (en) Manufacture of electrophotographic sensitive body
JP3122281B2 (en) Method of forming light receiving member for electrophotography
JPS6067955A (en) Electrophotographic sensitive body
US5459009A (en) Process for making an electrophotographic photoreceptor having protective layer
JPH01204056A (en) Manufacture of electrophotographic sensitive body
JP2508654B2 (en) Electrophotographic photoreceptor
JPH01179166A (en) Bipolarly electrified electrophotographic sensitive body
JPS63175868A (en) Electrophotographic sensitive body
JPH0220095B2 (en)
JPH04330456A (en) Copying device
JPH01106071A (en) Electrophotographic sensitive body
JPH08171220A (en) Electrophotographic photoreceptor and its production
KR0156562B1 (en) A method for preparing an electrophotographic photoreceptor
JPH01179165A (en) Electrophotographic sensitive body
JPS62201457A (en) Electrophotographic sensitive body
JPS62200361A (en) Production of electrophotographic sensitive body
JPS62291664A (en) Manufacture of electrophotographic sensitive body
JPS62150355A (en) Electrophotographic sensitive body
JPH0291658A (en) Production of electrophotographic sensitive body
JPS63121853A (en) Electrophotographic sensitive body
JPS62195670A (en) Production of electrophotographic sensitive body
JPS62295063A (en) Electrophotographic sensitive body