JPH01203911A - Measuring method for oil film thickness - Google Patents
Measuring method for oil film thicknessInfo
- Publication number
- JPH01203911A JPH01203911A JP2951188A JP2951188A JPH01203911A JP H01203911 A JPH01203911 A JP H01203911A JP 2951188 A JP2951188 A JP 2951188A JP 2951188 A JP2951188 A JP 2951188A JP H01203911 A JPH01203911 A JP H01203911A
- Authority
- JP
- Japan
- Prior art keywords
- oil film
- reflected
- thickness
- wavelength
- infrared ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 40
- 239000010959 steel Substances 0.000 claims abstract description 40
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 abstract description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、鋼板、調帯等の鋼材の表面に形成された油膜
の厚みをオンライン測定し得る油膜厚測定方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oil film thickness measuring method capable of online measuring the thickness of an oil film formed on the surface of a steel material such as a steel plate or a steel belt.
製鉄所において製造される綱材には防錆のためにその表
面に油膜が形成されるが、該油膜に十分な防錆効果を発
揮させるためにはその厚みを可及的に厚くすることが望
まれる。一方、前記鋼材を 6ユーザが使用する
際には前記油膜は通常除去されるため、その除去作業を
容易なものとなすべくその厚みは可及的に薄くすること
が望まれる。従って前記油膜の厚みには適正範囲が存在
する。そこで鋼材に防錆処理を施す工程においては前記
厚みがオンライン測定され、その測定値に基づいて前記
厚みが適正範囲に収まるような管理が行われている。An oil film is formed on the surface of the steel rods manufactured in steel mills to prevent rust, but in order for the oil film to have a sufficient rust prevention effect, it is necessary to make the thickness as thick as possible. desired. On the other hand, since the oil film is usually removed when the steel material is used by 6 users, it is desirable to make the thickness as thin as possible in order to facilitate the removal work. Therefore, there is an appropriate range for the thickness of the oil film. Therefore, in the process of applying anti-rust treatment to steel materials, the thickness is measured on-line, and management is performed to keep the thickness within an appropriate range based on the measured value.
前記油膜の厚みをオンライン測定する従来方法としては
、例えば油膜が形成された鋼材の表面に特定波長の励起
用レーザ光を照射し、該表面からの螢光スペクトルのう
ち、油にのみ含まれる成分の螢光スペクトル強度を検出
し、該螢光スペクトル強度から油膜の厚みを求める方法
がある(例えば特開昭61−138102号)。A conventional method for measuring the thickness of the oil film online is, for example, by irradiating the surface of a steel material on which an oil film has been formed with an excitation laser beam of a specific wavelength, and detecting components contained only in oil in the fluorescence spectrum from the surface. There is a method of detecting the intensity of the fluorescence spectrum and determining the thickness of the oil film from the intensity of the fluorescence spectrum (for example, JP-A-61-138102).
また、有機膜が形成された鋼材の表面に、前記有機膜に
よる吸収が生じる波長成分を含む赤外線を照射し、その
反射光から、前記を機成による吸収が生じる波長の反射
光と、該波長よりも長波長又は短波長で前記有機膜によ
る吸収が生じない2波長の反射光とを検出し、その3波
長の反射光の強度から前記有機膜の厚みを算出する方法
(例えば特願昭61−68157号)を、前記有機膜が
油膜であるものとして応用することも考えられる。In addition, the surface of the steel material on which the organic film is formed is irradiated with infrared rays containing a wavelength component that is absorbed by the organic film, and from the reflected light, the reflected light of the wavelength that causes absorption by the organic film and the reflected light of the wavelength that causes absorption by the organic film are determined. A method of detecting two wavelengths of reflected light that are longer or shorter than that and which are not absorbed by the organic film, and calculating the thickness of the organic film from the intensity of the three wavelengths of reflected light (for example, Japanese Patent Application No. 61 68157) may be applied in which the organic film is an oil film.
然るに、上述の螢光スペクトルを用いる従来方法を適用
するためには、測定対象の油膜の中に螢光を発する特定
成分を含んでいる必要があり、その適用範囲が限定され
てしまうという問題がある。However, in order to apply the conventional method using the fluorescence spectrum described above, it is necessary that the oil film to be measured contains a specific component that emits fluorescence, which limits the scope of its application. be.
また、有機膜による赤外線吸収を利用する従来方法を油
膜の厚み測定に応用する場合は、鋼材表面に形成される
油膜の厚みが0.1〜0.2μmと極めて薄い場合には
、鋼材表面にて反射する赤外線のうちの油膜による吸収
が生じる波長の赤外線が油膜を経由する間に該油膜によ
って十分に吸収されない結果、測定精度がよくないとい
う問題がある。In addition, when applying the conventional method that utilizes infrared absorption by an organic film to the thickness measurement of an oil film, it is necessary to Among the infrared rays reflected by the oil film, the infrared rays having a wavelength that is absorbed by the oil film are not sufficiently absorbed by the oil film while passing through the oil film, resulting in a problem of poor measurement accuracy.
本発明はかかる事情に鑑みてなされたものであり、上述
の問題を解決し得る油膜厚測定方法、即ち極薄の油膜の
厚みを高精度にオンライン測定し得ると共にその適用範
囲も広い油膜厚測定方法を提供することを課題とする。The present invention has been made in view of the above circumstances, and is an oil film thickness measurement method that can solve the above-mentioned problems, that is, an oil film thickness measurement method that can measure the thickness of an extremely thin oil film with high precision online and has a wide range of application. The task is to provide a method.
本発明に係る油膜厚測定方法は、油膜が形成された鋼材
の表面に、前記油膜による吸収が生じる波長成分を含む
赤外線を照射し、その反射光をミラーを用いて反射させ
ることによって前記赤外線を前記鋼材の表面で少なくと
も2回反射させ、その反射光から、前記油膜による吸収
が生じる波長の反射光と、該波長よりも長波長又は短波
長で前記油膜による吸収が生じない2波長の反射先々を
検出し、その3波長の反射光の強度から前記油膜の厚み
を算出することを特徴とする。The oil film thickness measuring method according to the present invention irradiates the surface of a steel material on which an oil film is formed with infrared rays containing a wavelength component that is absorbed by the oil film, and reflects the reflected light using a mirror. Reflected at least twice on the surface of the steel material, and from the reflected light, a reflected light with a wavelength that is absorbed by the oil film, and a reflected light with a wavelength longer or shorter than the wavelength that is not absorbed by the oil film. is detected, and the thickness of the oil film is calculated from the intensity of the reflected light of the three wavelengths.
かかる本発明方法にあっては、油膜が形成された鋼材表
面に照射される赤外線がミラーによる反射に基づいて前
記鋼材表面で2回以上反射することとなるので、前記油
膜の中を通過する前記赤外線の光路長が従来より長くな
り、前記赤外線のうちの油膜による吸収が生じる波長成
分が前記油膜によって十分に吸収されることとなる結果
、前記油膜の厚みの測定精度が向上する。In the method of the present invention, the infrared rays irradiated onto the steel surface on which the oil film is formed are reflected twice or more on the steel surface based on the reflection by the mirror, so that the infrared rays that pass through the oil film are The optical path length of the infrared rays is longer than before, and the wavelength component of the infrared rays that is absorbed by the oil film is sufficiently absorbed by the oil film, so that the accuracy of measuring the thickness of the oil film is improved.
また本発明方法は、その適用にあたって螢光スペクトル
を用いる従来方法のように測定対象の油膜の中に螢光を
発する特定成分を含んでいる必要があるというような制
約がないので、その適用範囲が広い。換言すれば、一般
に油膜は有機分子(例えばC−H結合を有する分子)を
含んでおり、油膜による吸収が生じる赤外線として前記
有機分子にて吸収される波長の赤外線を選んで前記処理
を行うことにより、殆ど全ての油膜の厚みの測定が可能
となる。In addition, the method of the present invention does not have the restriction that the oil film to be measured must contain a specific component that emits fluorescence, unlike conventional methods that use fluorescence spectra. is wide. In other words, an oil film generally contains organic molecules (for example, molecules having a C-H bond), and the treatment is performed by selecting infrared rays of wavelengths that are absorbed by the organic molecules as the infrared rays that are absorbed by the oil film. This makes it possible to measure the thickness of almost any oil film.
以下本発明をその実施例を示す図面に基づいて説明する
。The present invention will be described below based on drawings showing embodiments thereof.
第1図は本発明方法の実施状態を示す模式的説明図であ
り、図中1は油膜2が表面に形成された鋼板を、また3
は光源を示し、該光源3から発せられた赤外線Aは回転
フィルタ4を経て凹面鏡5へ照射され、これによって集
光反射された後、前記鋼板lの表面に照射されるように
なっている。FIG. 1 is a schematic explanatory diagram showing the implementation state of the method of the present invention, in which 1 is a steel plate with an oil film 2 formed on the surface, and 3 is a steel plate with an oil film 2 formed on the surface.
indicates a light source, and the infrared rays A emitted from the light source 3 are irradiated onto a concave mirror 5 through a rotating filter 4, where the infrared rays are condensed and reflected, and then irradiated onto the surface of the steel plate 1.
前記回転フィルタ4は第2図にその斜視図を示す如く、
回転軸4aまわりを回転自在な円板状のディスク4gに
、中心波長例えば3.1μm、 3.4μm。The rotary filter 4, as shown in a perspective view in FIG.
A disk 4g that is rotatable around the rotation axis 4a has center wavelengths of, for example, 3.1 μm and 3.4 μm.
3.7μmの各光を夫々通過させ得る干渉フィルタ4b
、 4c、 4dを3等配装着したものであり、回転す
る回転フィルタ4を通過した赤外線Aは、波長3.1μ
wh、 3.4μm、 3.7μmの赤外線が時系列的
に断続して存在することとなる。なお波長3.4μmの
赤外線は油膜2による吸収が生じる光であり、波長3.
1μm、 3.7μmの赤外線は前記吸収が生じない光
である。Interference filter 4b that can pass each light of 3.7 μm
, 4c, and 4d are installed at three equal intervals.
Infrared rays of wh, 3.4 μm, and 3.7 μm exist intermittently in time series. Note that infrared light with a wavelength of 3.4 μm is light that is absorbed by the oil film 2;
Infrared rays of 1 μm and 3.7 μm are light that does not undergo the above absorption.
前記鋼板1に対向する適宜位置には、鋼板l側が反射面
となっているミラー6が配置されており、前述の如く鋼
板1の表面に照射された赤外線Aは、油膜2を通過する
間に該油膜2による吸収を許容しつつ前記表面にて反射
し、その反射光はミラー6にて反射して再度鋼板1の表
面に照射される。A mirror 6 whose reflective surface is on the side of the steel plate 1 is arranged at an appropriate position facing the steel plate 1, and as described above, the infrared rays A irradiated onto the surface of the steel plate 1 are reflected while passing through the oil film 2. The light is reflected by the surface while allowing absorption by the oil film 2, and the reflected light is reflected by the mirror 6 and irradiated onto the surface of the steel plate 1 again.
そして本実施例では、鋼板lの表面にて上述の吸収・反
射の現象が5回繰り返された後、赤外線Aの反射光は凹
面鏡7にて集光反射され、検出素子8へと導かれる。そ
して該検出素子8は、波長3.1μm、 3.4μm、
3.7μmの赤外線の強度に比例した信号を時系列的
に出力するようになっており、夫々の信号はA/D変換
された後、マイクロCPU (図示せず)に取り込まれ
、そこで油膜2の厚みが次に述べる測定原理に基づいて
算出される。In this embodiment, after the above-described absorption/reflection phenomenon is repeated five times on the surface of the steel plate 1, the reflected light of the infrared rays A is condensed and reflected by the concave mirror 7 and guided to the detection element 8. The detection element 8 has wavelengths of 3.1 μm, 3.4 μm,
It is designed to output signals proportional to the intensity of 3.7 μm infrared rays in time series, and after each signal is A/D converted, it is taken into a micro CPU (not shown), where the oil film 2 The thickness is calculated based on the measurement principle described below.
即ち、赤外線吸収が生じる波長λ1及びそれがない2波
長λ2.λ3の赤外線の反射光の強度I(λ+)、r(
λ2)及び■(λ3)は、ランベルト・ベールの法則に
より下記(1)式、(2)式、(3)式にて夫々表され
る。That is, there are two wavelengths, λ1, where infrared absorption occurs, and two wavelengths, λ2, where infrared absorption does not occur. Intensity of reflected infrared light of λ3 I(λ+), r(
λ2) and ■(λ3) are expressed by the following equations (1), (2), and (3), respectively, according to the Lambert-Beer law.
I (λ+)=Io(λ+)xU(λt) X e−”
口・(1)■ (λz)=Io(λt)XU(λ2)
・・・(2)■ (λ、)−I。(λ、)xU
(λ3) ・・・(3)但し、1.(λ1):
波長λ、の照射光の強度■。(λ2):波長λ2の照射
光の強度■。(λ3):波長λ3の照射光の強度U(λ
l):赤外線吸収以外による波長λ。I (λ+)=Io(λ+)xU(λt)X e-”
Mouth・(1)■ (λz)=Io(λt)XU(λ2)
...(2)■ (λ,)-I. (λ,)xU
(λ3) ... (3) However, 1. (λ1):
Intensity of irradiated light with wavelength λ, ■. (λ2): Intensity ■ of irradiated light with wavelength λ2. (λ3): Intensity U(λ
l): Wavelength λ due to non-infrared absorption.
の光強度減衰率
U(λ2):赤外線吸収以外による波長λ2の光強度減
衰率
U(λ3):赤外線吸収以外による波長λ。Light intensity attenuation rate U(λ2): Light intensity attenuation rate U(λ3) of wavelength λ2 due to other than infrared absorption: Wavelength λ due to other than infrared absorption.
の光強度減衰率
n:赤外線の鋼板上での反射回数
に:測定対象の油膜2固有の赤外線吸収率
L:測定対象の油膜2の厚み
そしてこれら(1)式、(2)式、(3)式より下記(
4)式が成り立つ。Light intensity attenuation rate n: Number of reflections of infrared rays on the steel plate: Infrared absorption rate specific to the oil film 2 to be measured L: Thickness of the oil film 2 to be measured, and these equations (1), (2), (3) ) from the formula below (
4) The formula holds true.
2×! (λ、)/ I o(λl)
I (λり/1.(λZ)+I(λ3)/Ia(λ3)
ここでλ2+λ3 ′、2Xλ1・・・(5)となるよ
うに3波長島、λ2.λ3を選定すると、(4)式は下
記(6)式として表される。2x! (λ,)/I o(λl) I (λri/1.(λZ)+I(λ3)/Ia(λ3)
Here, 3 wavelength islands, λ2. When λ3 is selected, equation (4) is expressed as equation (6) below.
■ (λ2)/I0(λ2)+1(λ、)/1.(λ、
)・・・(6)
従って3波長λ1.λ2.λ3を前記(5)式を満足す
るように選定してその波長の照射光及び反射光の強度を
測定することにより、前記(6)式に基づいて鋼板1の
反射率、鋼板1の表面粗さ等の影響を受けることなく油
膜2の厚みtを算出することができる。そこで本実施例
では波長λ1が3.4 μm、波長λ2が3.1μ川、
波長λ3が3.7μmとし、前記(6)式に基づいて油
膜2の厚みtを算出する。■ (λ2)/I0(λ2)+1(λ, )/1. (λ,
)...(6) Therefore, three wavelengths λ1. λ2. By selecting λ3 so as to satisfy the above equation (5) and measuring the intensity of the irradiated light and reflected light at that wavelength, the reflectance of the steel plate 1 and the surface roughness of the steel plate 1 can be determined based on the above equation (6). The thickness t of the oil film 2 can be calculated without being affected by the thickness. Therefore, in this embodiment, the wavelength λ1 is 3.4 μm, the wavelength λ2 is 3.1 μm,
The wavelength λ3 is assumed to be 3.7 μm, and the thickness t of the oil film 2 is calculated based on the above equation (6).
かくして鋼板1の表面に形成された油膜2の厚みを測定
する場合は、該油膜2の厚みが0.1〜0.2μmと極
薄であっても、前記赤外線Aはミラー6による反射に基
づいて鋼板1の表面で5回反射することとなるので、油
膜2中を通過する赤外線Aの光路長が従来の5倍となっ
て十分に長くなる結果、該油膜2によって赤外線Aのう
ちの波長3.4μmの赤外線が十分に吸収され、前記(
6)式に基づく油膜2の厚みの算出が高精度に行われる
こととなる。When measuring the thickness of the oil film 2 formed on the surface of the steel plate 1 in this way, even if the thickness of the oil film 2 is as thin as 0.1 to 0.2 μm, the infrared ray A is reflected by the mirror 6. As a result, the optical path length of the infrared rays A passing through the oil film 2 is five times that of the conventional one, and is sufficiently long. Infrared rays of 3.4 μm are sufficiently absorbed, and the above (
6) The thickness of the oil film 2 can be calculated with high accuracy based on the formula.
なお、上述の実施例は鋼板1の表面に形成された油膜2
の厚みを測定するものであったが、鋼帯等、他の鋼材の
表面に形成された油膜の厚みの測定にも本発明方法が適
用できるのはいうまでもない。また測定に用いる赤外線
Aの波長は測定対象の油膜2の種類に応じて適宜選択す
ればよいのは勿論である。また鋼板1表面での赤外線A
の反射の回数は上述の実施例の如く5回である必要は必
ずしもないのは勿論である。In addition, the above-mentioned embodiment is based on the oil film 2 formed on the surface of the steel plate 1.
However, it goes without saying that the method of the present invention can also be applied to measuring the thickness of an oil film formed on the surface of other steel materials such as steel strips. Moreover, it goes without saying that the wavelength of the infrared ray A used for measurement may be appropriately selected depending on the type of oil film 2 to be measured. In addition, infrared rays A on the surface of steel plate 1
Of course, the number of reflections does not necessarily have to be five as in the above embodiment.
以上詳述した如く、本発明方法によれば鋼板、銅帯等の
鋼材の表面に形成された油膜の厚みを油膜の種類によら
ず高精度に測定することができる。As detailed above, according to the method of the present invention, the thickness of an oil film formed on the surface of a steel material such as a steel plate or a copper strip can be measured with high accuracy regardless of the type of oil film.
第1図は本発明方法の実施状態を示す模式的説明図、第
2図は本発明方法の実施に使用する回転ライルタを示す
斜視図である。
l・・・鋼板(鋼材) 2・・・油膜 3・・・光源4
・・・回転フィルタ 6・・・ミラー 8・・・検出素
子A・・・赤外線
特 許 出願人 住友金属工業株式会社代理人 弁理
士 河 野 登 夫第 1 閉
第 2 lFIG. 1 is a schematic explanatory diagram showing how the method of the present invention is carried out, and FIG. 2 is a perspective view showing a rotary rulter used in carrying out the method of the present invention. l... Steel plate (steel material) 2... Oil film 3... Light source 4
...Rotating filter 6...Mirror 8...Detection element A...Infrared patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono No. 1 Closed No. 2
Claims (1)
収が生じる波長成分を含む赤外線を照射し、その反射光
をミラーを用いて反射させることによって前記赤外線を
前記鋼材の表面で少なくとも2回反射させ、その反射光
から、前記油膜による吸収が生じる波長の反射光と、該
波長よりも長波長又は短波長で前記油膜による吸収が生
じない2波長の反射光とを検出し、その3波長の反射光
の強度から前記油膜の厚みを算出することを特徴とする
油膜厚測定方法。1. The surface of the steel material on which the oil film has been formed is irradiated with infrared rays containing a wavelength component that is absorbed by the oil film, and the reflected light is reflected using a mirror, so that the infrared rays are irradiated at least twice on the surface of the steel material. From the reflected light, a reflected light with a wavelength that causes absorption by the oil film, and a reflected light with two wavelengths that are longer or shorter than the wavelength and are not absorbed by the oil film are detected, and the three wavelengths are detected. An oil film thickness measuring method characterized in that the thickness of the oil film is calculated from the intensity of reflected light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2951188A JPH01203911A (en) | 1988-02-09 | 1988-02-09 | Measuring method for oil film thickness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2951188A JPH01203911A (en) | 1988-02-09 | 1988-02-09 | Measuring method for oil film thickness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01203911A true JPH01203911A (en) | 1989-08-16 |
Family
ID=12278124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2951188A Pending JPH01203911A (en) | 1988-02-09 | 1988-02-09 | Measuring method for oil film thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01203911A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012083428A1 (en) * | 2010-12-20 | 2012-06-28 | Honeywell Acsa Lnc. | Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer |
-
1988
- 1988-02-09 JP JP2951188A patent/JPH01203911A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012083428A1 (en) * | 2010-12-20 | 2012-06-28 | Honeywell Acsa Lnc. | Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer |
US8314388B2 (en) | 2010-12-20 | 2012-11-20 | Honeywell Asca Inc. | Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer |
CN103415757A (en) * | 2010-12-20 | 2013-11-27 | 霍尼韦尔阿斯卡公司 | Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer |
CN103415757B (en) * | 2010-12-20 | 2016-01-20 | 霍尼韦尔阿斯卡公司 | For the one-sided infrared sensor of the thickness or weight of measuring the product comprising reflection horizon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4302108A (en) | Detection of subsurface defects by reflection interference | |
US3994586A (en) | Simultaneous determination of film uniformity and thickness | |
US6100991A (en) | Near normal incidence optical assaying method and system having wavelength and angle sensitivity | |
JPH0252205A (en) | Film thickness measuring method | |
US4371785A (en) | Method and apparatus for detection and analysis of fluids | |
US3854044A (en) | A method and apparatus for measuring a transmission spectrum of a film | |
JPS6217167B2 (en) | ||
EP0259036A3 (en) | Inspection apparatus | |
JPS5839931A (en) | Method of measuring characteristic of plastic film by using infrared ray | |
EP0610036B1 (en) | Method of spectrometry | |
JPH01203911A (en) | Measuring method for oil film thickness | |
JPH056929A (en) | Method and apparatus for foreign body inspection on wafer | |
JPH07117499B2 (en) | Method for diagnosing coating film deterioration by laser beam | |
US4190367A (en) | Device for establishing a condition at the surface of a subject | |
US6856395B2 (en) | Reflectometer arrangement and method for determining the reflectance of selected measurement locations of measurement objects reflecting in a spectrally dependent manner | |
SU654853A1 (en) | Photometric contact-free method of measuring non-transparent specimen roughness height | |
JPH01132936A (en) | Method and apparatus for analyzing film | |
JPS62223610A (en) | Film thickness measuring method | |
JPH0634523A (en) | Polarization analysis method and ellipsometer based on it | |
JPS6329238A (en) | Method and device for inspecting surface defect of plate type body | |
JPH0850007A (en) | Method and apparatus for evaluating film thickness | |
JPS5960203A (en) | Device for measuring change in film thickness | |
JP2597515Y2 (en) | Total reflection absorption spectrum measurement device | |
SU1187563A1 (en) | Method of determining dissipation factor of translucent solid mirror-reflection materials with small absorption factor | |
JPH0712715A (en) | Total reflection absorbing spectrum measuring device |