JPH01203681A - Scroll type compressor - Google Patents

Scroll type compressor

Info

Publication number
JPH01203681A
JPH01203681A JP2706288A JP2706288A JPH01203681A JP H01203681 A JPH01203681 A JP H01203681A JP 2706288 A JP2706288 A JP 2706288A JP 2706288 A JP2706288 A JP 2706288A JP H01203681 A JPH01203681 A JP H01203681A
Authority
JP
Japan
Prior art keywords
scroll
lubricating oil
chamber
superconductor
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2706288A
Other languages
Japanese (ja)
Inventor
Ichiro Morita
一郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2706288A priority Critical patent/JPH01203681A/en
Publication of JPH01203681A publication Critical patent/JPH01203681A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To decrease wearing in a scroll sliding part by connecting a suction chamber of a fixed scroll to communicate with a lubrication chamber in the bottom part of an enclosed vessel through a pipe and opening and closing it by a superconductor arranged so as to be opposed facing to a permanent magnet. CONSTITUTION:A suction chamber 12 of a fixed scroll 1 communicates with a lubricating oil chamber 22 in the bottom part of an enclosed vessel 10 through a pipe 23, and providing in its bottom end part a permanent magnet 25 to be arranged and a superconductor 24 to be arranged so as to be opposed facing to the permanent magnet 25, the superconductor 24 is pressed by a spring 26 in a direction of the permanent magnet 25. In case of cold time starting with lubricating oil 21 in a low temperature, because the superconductor 24 is repulsed by the permanent magnet 25 by a Meissner effect, the pipe 23 is placed in an opened condition, and the oil can be promptly supplied to the suction chamber 12 in the time of cold time starting. Accordingly, a scroll sliding part reduces its wear, and a decrease of EER due to increasing mechanical loss can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍空調用、冷蔵庫用等の冷媒圧縮機として
用いられるスクロール圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a scroll compressor used as a refrigerant compressor for refrigeration and air conditioning, refrigerators, and the like.

従来の技術 第3図と第4図を参照してその基本的構成及び潤滑法等
について説明する。なお、説明を容易にするため、作動
ガスの流れ方向を示す実線矢印と。
Conventional technology The basic structure, lubrication method, etc. will be explained with reference to FIGS. 3 and 4. For ease of explanation, solid line arrows indicate the flow direction of the working gas.

潤滑油の流れ方向を示す破線矢印をそう人した。A dashed arrow indicates the direction of flow of lubricating oil.

第3図は従来の空調機用密閉形スクロール圧縮機の全体
栴成図を示す。該圧縮機は、圧縮要素部である固定スク
ロール1と旋回スクロール2の両スクロールと、旋回ス
クロール2の自転を防止する自転防止部材3及び主軸4
.これを支える三個の軸受部、即ち、旋回軸受6と主軸
受6及び補助軸受7と電動機8、固定スクロール1を固
定する静止部材のブロック9などから構成される。これ
らの構成部品は、密閉容器1oの内部に収納される。
FIG. 3 shows the overall construction of a conventional hermetic scroll compressor for air conditioners. The compressor includes both scrolls, a fixed scroll 1 and an orbiting scroll 2, which are compression element parts, an anti-rotation member 3 that prevents rotation of the orbiting scroll 2, and a main shaft 4.
.. It is comprised of three bearing parts that support this, namely a swing bearing 6, a main bearing 6, an auxiliary bearing 7, an electric motor 8, and a block 9 of a stationary member that fixes the fixed scroll 1. These components are housed inside the closed container 1o.

冷媒ガスの流れ及び潤滑油の流れに従って上記圧縮機の
作用を説明する。
The operation of the compressor will be explained according to the flow of refrigerant gas and the flow of lubricating oil.

低温低圧の冷媒ガスは、吸入管11から導かれ固定スク
ロール1内の吸入室12に至る。圧縮要素部に至った冷
媒ガスは、第4図に示すように旋回スクロール2の自転
を防止された公転運動により1両スクロールで形成され
る密閉空間13a。
The low-temperature, low-pressure refrigerant gas is guided from the suction pipe 11 and reaches the suction chamber 12 within the fixed scroll 1 . As shown in FIG. 4, the refrigerant gas that has reached the compression element is moved into a closed space 13a formed by a single scroll due to the orbital movement of the orbiting scroll 2, which is prevented from rotating on its own axis.

13bが漸次縮小し、スクロール中央部に移動するとと
もに、該冷媒ガスは、圧力を高め中央の吐出穴14より
吐出される。吐出された高温、高圧の冷媒ガスは、密閉
容器1o内の上記容器間16及び連通路16.17を介
し電動機まわりの空間18を満たし、吐出管19を介し
て外部へ導かれる。
As the refrigerant gas 13b gradually contracts and moves to the center of the scroll, the pressure of the refrigerant gas is increased and the refrigerant gas is discharged from the central discharge hole 14. The discharged high-temperature, high-pressure refrigerant gas fills the space 18 around the electric motor via the container space 16 and communication passages 16 and 17 in the closed container 1o, and is led to the outside via the discharge pipe 19.

他方、旋回スクロール2の背面とブロック9で囲まれた
空間の背圧室2oには、旋回、固定の両スクロールで形
成される複数の密閉空間内のガス圧によるスラスト方向
のガス力に対抗するため吸入圧力と吐出圧力の中間の圧
力が作用する。この中間圧力の設定は、旋回スクロール
2の鏡板2aに細孔2b、2cを、固定スクロール1の
吸入室12と背圧室20を連通させる位置に設けること
によって、吐出圧力を吸入圧力の中間の圧力となり、旋
回スクロール2の背面にガス力を作用させて行う。
On the other hand, a back pressure chamber 2o, which is a space surrounded by the back surface of the orbiting scroll 2 and the block 9, has a back pressure chamber 2o that resists the gas force in the thrust direction due to the gas pressure in a plurality of sealed spaces formed by both the orbiting and fixed scrolls. Therefore, a pressure between suction pressure and discharge pressure acts. This intermediate pressure can be set by providing the fine holes 2b and 2c in the end plate 2a of the orbiting scroll 2 at positions that communicate the suction chamber 12 and the back pressure chamber 20 of the fixed scroll 1, thereby adjusting the discharge pressure to an intermediate value between the suction pressure and the suction pressure. This is done by applying gas force to the back surface of the orbiting scroll 2.

次に潤滑油の流れについて説明する。Next, the flow of lubricating oil will be explained.

潤滑油21は密閉容器10の下部の潤滑油室22に溜め
られる。主軸4の下端は容器底部の油中に浸漬し、主軸
上部には偏心軸部4ai備え、該偏心軸部4aが旋回軸
受6を介して、スクロール圧掩要素部である旋回スクロ
ール部2と係合している。主軸4には、各軸受部への給
油を行うための偏心縦孔4aが主軸下端から主軸の上端
面まで形成される。潤滑油室22内に浸漬された主軸4
下端は篩圧の吐出出力(Pd)の雰囲気にあり、他方下
流となる旋回軸受5のまわ9は中間圧力(Pm)の雰囲
気にあるため、(Pd−Pm)の圧力差によって容器底
部の潤滑油21は縦孔4b内を上昇する。
The lubricating oil 21 is stored in a lubricating oil chamber 22 at the bottom of the closed container 10. The lower end of the main shaft 4 is immersed in the oil at the bottom of the container, and the upper part of the main shaft is provided with an eccentric shaft portion 4ai. It matches. The main shaft 4 has an eccentric vertical hole 4a formed from the lower end of the main shaft to the upper end surface of the main shaft for supplying oil to each bearing section. Main shaft 4 immersed in lubricating oil chamber 22
The lower end is in an atmosphere with a discharge output (Pd) of sieve pressure, and the downstream part 9 of the swing bearing 5 is in an atmosphere with an intermediate pressure (Pm), so the pressure difference of (Pd - Pm) lubricates the bottom of the container. The oil 21 rises inside the vertical hole 4b.

縦孔4bを上昇した潤滑油は、補助軸受7.主軸受ら、
さらに旋回軸受6へ給油され、おのおのの軸受隙間を通
って背圧室2Qへ排油される。背圧室20に至った潤滑
油は、上記細孔2b、2c’i介して固定スクロール1
の吸入室12に注入され、前記冷媒ガスと混合される。
The lubricating oil that has ascended through the vertical hole 4b is transferred to the auxiliary bearing 7. Main bearing etc.
Furthermore, oil is supplied to the swing bearing 6 and drained into the back pressure chamber 2Q through the respective bearing gaps. The lubricating oil that has reached the back pressure chamber 20 passes through the fixed scroll 1 through the pores 2b and 2c'i.
The refrigerant gas is injected into the suction chamber 12 of the refrigerant gas and mixed with the refrigerant gas.

次に冷媒ガスとともに潤滑油は昇圧1用を受け、吐出穴
14.吐出呈16さらに連通路16,17’ii経て電
動機室18へと移動する。電動機室18に至った潤滑油
は、自重のため容器1oの底部へ落下し、再び容器底部
の潤滑油室22に溜められ、各部の潤滑に供される。
Next, the lubricating oil together with the refrigerant gas receives a boost in pressure from the discharge hole 14. The discharge outlet 16 further moves to the motor room 18 via communication passages 16, 17'ii. The lubricating oil that has reached the motor chamber 18 falls to the bottom of the container 1o due to its own weight, and is again stored in the lubricating oil chamber 22 at the bottom of the container, where it is used to lubricate various parts.

以上のように構成されたスクロール圧縮機において、同
定スクロール1と旋回スクロール2とで形成される作動
室への給油は、旋回スクロール2の細孔2b、2ci介
して背圧i20から固定スクロール1の吸入室12へ潤
滑油を尋くことで行われる。
In the scroll compressor configured as described above, oil is supplied to the working chamber formed by the identification scroll 1 and the orbiting scroll 2 from the back pressure i20 of the fixed scroll 1 through the pores 2b and 2ci of the orbiting scroll 2. This is done by supplying lubricating oil to the suction chamber 12.

発明が解決しようとする課題 しかしながら上記のような構成では、作動室への給油は
旋回スクロール2の細孔2b、2cを介しているため、
潤滑油の温度が低い時、即ち、潤滑油の粘度が高い時に
は上記細孔2b、2cにて抵抗大となり、潤滑油がスム
ーズに背圧室2oから吸入室12に供給されず、作動室
のスクロール摺動部の摩耗が大きくなり機械損失が坩加
しEER(エネルギー消費効率)の低下をひきおこす原
因となっている。
Problems to be Solved by the Invention However, in the above configuration, oil is supplied to the working chamber through the pores 2b and 2c of the orbiting scroll 2.
When the temperature of the lubricating oil is low, that is, when the viscosity of the lubricating oil is high, there is a large resistance in the pores 2b and 2c, and the lubricating oil is not smoothly supplied from the back pressure chamber 2o to the suction chamber 12, and the viscosity of the lubricating oil is high. This increases wear on the scroll sliding parts, increases mechanical loss, and causes a decrease in EER (energy consumption efficiency).

上記の問題をひきおこす時は、潤滑油の温度が低い時、
即ち、潤滑油室22の温度が低い時の起動、謂ゆる冷時
起動の時である。潤滑油室22の温度が高い時の起動、
即ち熱時起動では、潤滑油の温度が高く粘度が圓いため
、潤滑油はスムースに細孔2b 、2cf通り抜けて吸
入室12に流れ込みスクロール摺動部に適切な給油を行
う。
The above problem occurs when the lubricating oil temperature is low.
That is, this is the time of startup when the temperature of the lubricating oil chamber 22 is low, that is, the time of so-called cold startup. Activation when the temperature of the lubricating oil chamber 22 is high,
That is, in the hot start, the temperature of the lubricating oil is high and its viscosity is round, so the lubricating oil smoothly passes through the pores 2b and 2cf and flows into the suction chamber 12, thereby appropriately lubricating the scroll sliding portion.

又、上記の細孔2b、2cを拡大して、冷時起動時の給
油を速やかに行うことで起動初期の問題を解決できるが
、細孔2b 、2cを拡大することで背圧室20から吸
入室12への抵抗が小さくなり、背圧室2o内の安定時
の圧力が低下するため旋回スクロール2が下方に落ち圧
縮不良をひき起こす原因となる。
In addition, by enlarging the above-mentioned pores 2b and 2c to quickly supply oil during cold start-up, the problem at the initial startup stage can be solved. The resistance to the suction chamber 12 becomes smaller, and the stable pressure in the back pressure chamber 2o decreases, causing the orbiting scroll 2 to fall downward, causing poor compression.

本発明はこのような従来の問題点を解決するものであり
、簡単な構成で冷時起動時における作動室への給油を行
うことのできるスクロール圧縮機を提供するものである
The present invention solves these conventional problems and provides a scroll compressor that has a simple configuration and can supply oil to the working chamber during cold startup.

課題を解決するための手段 上記課題を解決するために、本発明の固定スクロールの
吸入室と密閉容器底部の潤滑油室をパイプで連通し、そ
の開閉を行う弁の制御ヲ、永久磁石と超電導体で行うよ
うにしたものである。
Means for Solving the Problems In order to solve the above problems, the suction chamber of the fixed scroll of the present invention and the lubricating oil chamber at the bottom of the sealed container are connected by a pipe, and the control of the valve that opens and closes the same is performed using a permanent magnet and a superconductor. It was designed to be done with the body.

作用 かかる構成によって、運転開始直後は、潤滑油の温度が
低いため、超電導体がマイスナー効果によって潤滑油室
と吸入室間のパイプを開き1作動室への給油をすみやか
に行うことができるので。
With this configuration, immediately after the start of operation, the temperature of the lubricating oil is low, so the superconductor opens the pipe between the lubricating oil chamber and the suction chamber due to the Meissner effect, and the first working chamber can be quickly supplied with lubricant.

作動室のスクロール摺動部の摩耗が少なくなり。The wear of the scroll sliding part in the working chamber is reduced.

EERの低下を防止できる。また運転恢、差圧給油等に
より作動室への給油が十分になってくると。
A decrease in EER can be prevented. Also, when the operating chamber becomes sufficiently lubricated due to driving conditions, differential pressure lubricating, etc.

吐出ガス及び摺動等による熱によって超電導体のマイス
ナー効果がなくなり、潤滑油室から吸入室へのパイプが
閉じられ、給油過多による摺動ロス等を防ぐ。
The Meissner effect of the superconductor disappears due to the heat generated by discharged gas and sliding, and the pipe from the lubricating oil chamber to the suction chamber is closed, thereby preventing sliding loss due to excessive oil supply.

実施例 以下、本発明のスクロール圧縮機の一実施例について図
面(第1図と第2図)を参照して説明する。なお1図中
従来例の第3図と第4図と同一部分は同一符号を付して
示している。
Embodiment Hereinafter, one embodiment of the scroll compressor of the present invention will be described with reference to the drawings (FIGS. 1 and 2). In FIG. 1, the same parts as in FIGS. 3 and 4 of the conventional example are designated by the same reference numerals.

第1図及び第2図において、23は固定スクロール1の
吸入室12と密閉容器1o底部の潤滑油室22を連通す
るパイプであり、24はパイプ23の開閉を行う超電導
体であり、26は超電導体24と対向するように配設さ
れた永久磁石であり%26は超電導体を永久磁石方向に
押しつけるよう配設したスプリングである。
1 and 2, 23 is a pipe that communicates the suction chamber 12 of the fixed scroll 1 with the lubricating oil chamber 22 at the bottom of the closed container 1o, 24 is a superconductor that opens and closes the pipe 23, and 26 is a A permanent magnet is arranged to face the superconductor 24, and 26 is a spring arranged to press the superconductor toward the permanent magnet.

以上のように構成されたスクロール型圧縮機において、
潤滑油室22にめる潤滑油21の温度が低い、いわゆる
冷時起動の場合には、超電導体24はマイスナー効果に
よって永久磁石26と反ばつするためパイプ23が開い
た状態となり潤滑油室22の制圧と吸入室口の低圧との
差圧によって潤滑油21は吸入室口に導かれる。その恢
、運転時間の経過とともに、吐出ガス温度や摺動等の元
勲等によって潤滑油室22の潤滑油21の温度が上昇し
てくると、超電導体24のマイスナー効果が失われ、ス
プリング26が伸びて超電導体24を押し上げパイプ2
3を閉じ、潤滑油室22と吸入室12とは連通されなく
なり、潤滑油室22中の潤滑油21は吸入室口へ導かれ
なくなる。その時は、旋回スクロール2の鏡板2aに設
けられた細孔2b、2cを介して背圧室20中の粘度の
低くなった潤滑油が細孔2b 、2cでの抵抗が小さい
ため速やかに吸入室12に導かれる。
In the scroll compressor configured as above,
In the case of so-called cold startup, in which the temperature of the lubricating oil 21 placed in the lubricating oil chamber 22 is low, the superconductor 24 repels the permanent magnet 26 due to the Meissner effect, so the pipe 23 is in an open state and the lubricating oil chamber 22 The lubricating oil 21 is guided to the suction chamber inlet by the pressure difference between the suppressed pressure and the low pressure at the suction chamber inlet. As a result, as the operating time passes, the temperature of the lubricating oil 21 in the lubricating oil chamber 22 increases due to the temperature of the discharged gas or due to military service such as sliding, the Meissner effect of the superconductor 24 is lost, and the spring 26 is Pipe 2 stretches and pushes up superconductor 24
3 is closed, the lubricating oil chamber 22 and the suction chamber 12 are no longer communicated with each other, and the lubricating oil 21 in the lubricating oil chamber 22 is no longer guided to the suction chamber opening. At that time, the lubricating oil with lower viscosity in the back pressure chamber 20 is quickly transferred to the suction chamber through the small holes 2b and 2c provided in the end plate 2a of the orbiting scroll 2 because the resistance in the small holes 2b and 2c is small. Guided by 12.

一方、潤滑油室22の温度が高い時、いわゆる熱時起動
においては、超電導体24によってパイプ23が閉じら
れ、潤滑油室22と吸入室12とは連通されず、油の温
度が高く粘度が低いため細孔2b 、2cでの抵抗が小
さくなり速やかに吸入室12に油が導かれる。安定運転
中に、パイプ23が封止されるため高温高圧の潤滑油2
1が直接吸入室12に導かれないため体積効率の悪化さ
せることはない。なお・常温付近で超電導を示す材料と
しては、 5rBaYCu307−δが知られている。
On the other hand, when the temperature of the lubricating oil chamber 22 is high, so-called hot startup, the pipe 23 is closed by the superconductor 24, and the lubricating oil chamber 22 and the suction chamber 12 are not communicated with each other, and the temperature of the oil is high and the viscosity is low. Since the resistance is low, the resistance at the pores 2b and 2c becomes small and the oil is quickly guided to the suction chamber 12. During stable operation, the pipe 23 is sealed, so the high temperature and high pressure lubricating oil 2
1 is not directly introduced into the suction chamber 12, so that the volumetric efficiency is not deteriorated. Note that 5rBaYCu307-δ is known as a material that exhibits superconductivity near room temperature.

製造に際しては、まず席料粉末の粉砕混合を行う。それ
を920°C1空気中で6時間焼成した後粉砕し、それ
を3回繰り返す。その粉末を成型し、1ooO°C1空
気中で5時間加熱して焼結し、炉中で冷却する。このよ
うにして作製された焼結体は、338K(e s’c 
)で超電導を示す。(イノ・う他、ジャパニーズジャー
ナル オプ アプライド フィジックス (LAPAN
ESEJOURNAL  OF  APPLIED  
PHYSIC8,Vol。
During production, first, the seating material powder is pulverized and mixed. It is calcined at 920°C in air for 6 hours and then ground, and the process is repeated three times. The powder is shaped, sintered by heating in 100° C. air for 5 hours, and cooled in a furnace. The sintered body produced in this way was heated to 338K (e s'c
) indicates superconductivity. (Ino U et al., Japanese Journal Op Applied Physics (LAPAN)
ESE JOURNAL OF APPLIED
PHYSIC8, Vol.

26 、gB 、August 、1987 、 PP
、 167−171 )。
26, gB, August, 1987, PP
, 167-171).

発明の効果 以上のように本発明は、固定スクロールの吸入室と密閉
容器底部の潤滑油室とをパイプで連通し、その開閉を永
久磁石と対向するように配設した超電導体で行うことに
より、冷時起動時の吸入室への給油全速やかに行うこと
ができ、スクロール摺動部への給油潤滑として十分な供
給ができるので、スクロール摺動部の摩耗が少なくなり
、機械損失の増加によるEERの低下を防止できる。
Effects of the Invention As described above, the present invention communicates the suction chamber of the fixed scroll with the lubricating oil chamber at the bottom of the sealed container through a pipe, and opens and closes the suction chamber of the fixed scroll by using a superconductor disposed to face a permanent magnet. , the suction chamber can be refueled completely and quickly during cold start-up, and sufficient oil can be supplied to the scroll sliding parts for lubrication, reducing wear on the scroll sliding parts and reducing increased mechanical loss. A decrease in EER can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す密閉形スクロール圧縮
機の縦断面図、第2図は同第1図の潤滑油室の形状記憶
合金スプリング近辺の詳細断面図。 第3図は従来の密閉形スクロール圧縮機の縦断面図、第
4図はスクロールのかみあい状態を示す横断面図である
。 1・・・・・・固定スクロール%2・・・・・・旋回ス
クロール。 2a・・・・・・鏡板、10・・・・・・密閉容器、1
2・・・・・・吸入室、22・・・・・・潤滑油室、2
3・・・・・・パイプ、24・・・・・・超電導体、2
6・・・・・・永久磁石。 代理人の氏名 弁理士 中 尾 敏 男 はが1名1−
同定スクロール 第2図
FIG. 1 is a longitudinal sectional view of a hermetic scroll compressor showing an embodiment of the present invention, and FIG. 2 is a detailed sectional view of the vicinity of the shape memory alloy spring in the lubricating oil chamber of FIG. 1. FIG. 3 is a longitudinal cross-sectional view of a conventional hermetic scroll compressor, and FIG. 4 is a cross-sectional view showing the meshing state of the scrolls. 1... Fixed scroll %2... Rotating scroll. 2a...End plate, 10...Airtight container, 1
2... Suction chamber, 22... Lubricating oil chamber, 2
3...Pipe, 24...Superconductor, 2
6...Permanent magnet. Name of agent: Patent attorney Toshi Nakao Haga 1 person 1-
Identification scroll figure 2

Claims (1)

【特許請求の範囲】[Claims]  密閉容器中に、鏡板に渦巻状のラップを有する固定ス
クロールと、鏡板に渦巻状のラップを有する旋回スクロ
ールとが互いにラップを向かい合せにしてかみ合い、固
定スクロールに対して見かけ上自転しないように旋回ス
クロールが旋回運動し、固定スクロールの吸入室と密閉
容器底部の潤滑油室とをパイプで連通し、その開閉を行
う弁を制御する超電導体と、超電導体と対向するように
配設した永久磁石とよりなるスクロール型圧縮機。
In a closed container, a fixed scroll having a spiral wrap on the end plate and an orbiting scroll having a spiral wrap on the end plate are engaged with each other with the wraps facing each other, and the scroll rotates so as not to apparently rotate relative to the fixed scroll. The scroll rotates, and a pipe connects the suction chamber of the fixed scroll to the lubricating oil chamber at the bottom of the sealed container. A superconductor controls a valve that opens and closes the suction chamber, and a permanent magnet is placed opposite the superconductor. Scroll type compressor.
JP2706288A 1988-02-08 1988-02-08 Scroll type compressor Pending JPH01203681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2706288A JPH01203681A (en) 1988-02-08 1988-02-08 Scroll type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2706288A JPH01203681A (en) 1988-02-08 1988-02-08 Scroll type compressor

Publications (1)

Publication Number Publication Date
JPH01203681A true JPH01203681A (en) 1989-08-16

Family

ID=12210585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2706288A Pending JPH01203681A (en) 1988-02-08 1988-02-08 Scroll type compressor

Country Status (1)

Country Link
JP (1) JPH01203681A (en)

Similar Documents

Publication Publication Date Title
US4545747A (en) Scroll-type compressor
JPH0281982A (en) Scroll compressor
JPH11141483A (en) Electric gas compressor
JPS61218792A (en) Scroll compressor
JPS61169691A (en) Sealed type scroll compressor for refrigerator
JPH01203681A (en) Scroll type compressor
JPH0778391B2 (en) Scroll gas compressor
JPH0826861B2 (en) Scroll gas compressor
JP3019770B2 (en) Scroll gas compressor
JPH01386A (en) scroll compressor
JP2785807B2 (en) Scroll gas compressor
JP2790126B2 (en) Scroll gas compressor
JPH01159485A (en) Scroll type compressor
JPH01301970A (en) Scroll compressor
JPS6270681A (en) Scroll fluid machine
JPS6187988A (en) Scroll compressor
JPH01203682A (en) Scroll type compressor
JP3255441B2 (en) Control device of heat pump air conditioner using scroll compressor
JPH01253581A (en) Scroll type compressor
JPS62182487A (en) Scroll compressor
JPH08303368A (en) Scroll gas compressor
JPH08303370A (en) Scroll gas compressor
JPS63219888A (en) Scroll compressor
JPS5954784A (en) Compressor
JPH01381A (en) scroll compressor