JPH01203682A - Scroll type compressor - Google Patents

Scroll type compressor

Info

Publication number
JPH01203682A
JPH01203682A JP2706488A JP2706488A JPH01203682A JP H01203682 A JPH01203682 A JP H01203682A JP 2706488 A JP2706488 A JP 2706488A JP 2706488 A JP2706488 A JP 2706488A JP H01203682 A JPH01203682 A JP H01203682A
Authority
JP
Japan
Prior art keywords
groove
scroll
end plate
superconductor
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2706488A
Other languages
Japanese (ja)
Inventor
Ichiro Morita
一郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2706488A priority Critical patent/JPH01203682A/en
Publication of JPH01203682A publication Critical patent/JPH01203682A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To decrease wear of an end plate by providing grooves of outer and inner side directions in an annular groove on an end plate of a turning scroll and variably generating passing resistance of the groove in the inner side direction by a superconductor and a permanent magnet. CONSTITUTION:A groove 24 of outer side direction and a groove 25 of inner side direction are provided in an annular groove 23 in an end plate 2a of a turning scroll 2. A fixed scroll 1 and the turning scroll 2 arrange a permanent magnet 27 and a superconductor 26 to be opposed variably generating passage resistance of the groove 25 of inner side direction. Thus immediately after starting operation, the superconductor 26, by its Meissner effect, is repulsed by the permanent magnet 27, decreasing the passage resistance of the groove 25 of inner side direction. Accordingly, a pressure in a back pressure chamber 20 decreases, because lubricating oil is instantaneously guided to a suction chamber 12 passing through the back pressure chamber 20 and each groove 24, 25, the end plate 2a decreases its wear, and a decrease of EER by increasing mechanical loss can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍空調用、冷蔵庫用等の冷媒圧縮機として
用いられるスクロール型圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a scroll compressor used as a refrigerant compressor for refrigeration and air conditioning, refrigerators, and the like.

従来の技術 第6図から第7図を参照してその基本的構成及び潤滑法
等について説明する。なお、説明を容易にするため、作
動ガスの流れ方向を示す実線矢印と、潤滑油の流れ方向
を示す破線矢印をそう人した。第6図は従来の空調機用
密閉形スクロール型圧縮機の全体構成図を示す。該圧縮
機は、圧縮要素部である固定スクロール1と旋回スクロ
ール20両スクロールと、旋回スクロール2の自転を防
止する自転防止部材3及び主軸4、これを支える三個の
軸受部、即ち、旋回軸受6と主軸受6及び補助軸受7と
電動機8.固定スクロール1を固定する静止部材のブロ
ック9などから構成される。
Conventional technology The basic structure, lubrication method, etc. will be explained with reference to FIGS. 6 and 7. In addition, for ease of explanation, solid line arrows indicating the flow direction of the working gas and broken line arrows indicating the flow direction of the lubricating oil are shown as such. FIG. 6 shows an overall configuration diagram of a conventional hermetic scroll compressor for an air conditioner. The compressor consists of a fixed scroll 1 and an orbiting scroll 20 which are compression element parts, an anti-rotation member 3 and a main shaft 4 which prevent rotation of the orbiting scroll 2, and three bearings supporting the rotation, namely, an orbiting bearing. 6, main bearing 6, auxiliary bearing 7, and electric motor 8. It is composed of a stationary member block 9 for fixing the fixed scroll 1 and the like.

これらの構成部品は、密閉容器10の内部に収納される
These components are housed inside the closed container 10.

冷媒ガスの流れについて説明する。The flow of refrigerant gas will be explained.

低温低圧の冷媒ガスは、吸入管11から導かれ固定スク
ロール1内の吸入室12に至る。圧縮要素部に至った冷
媒ガスは、第6図に示すように旋回スクロール2の自転
を防止された公転運動により、両スクロムルで形成され
る密閉空間13a。
The low-temperature, low-pressure refrigerant gas is guided from the suction pipe 11 and reaches the suction chamber 12 within the fixed scroll 1 . As shown in FIG. 6, the refrigerant gas that has reached the compression element is moved into a closed space 13a formed by both scrolls due to the orbital movement of the orbiting scroll 2, which is prevented from rotating.

13bが漸次縮小し、スクロール中央部に移動するとと
もに、該冷媒ガスは、圧力を高め中央の吐出穴14より
吐出される。吐出された高温、高圧の冷媒ガスは、密閉
容器10内の上記容器間16゜及び連通路16.・ 1
7を介し電動機まわりの空間18を満たし、吐出管19
を介して外部へ導かれる。
As the refrigerant gas 13b gradually contracts and moves to the center of the scroll, the pressure of the refrigerant gas is increased and the refrigerant gas is discharged from the central discharge hole 14. The discharged high-temperature, high-pressure refrigerant gas flows through the closed container 10 at 16 degrees between the containers and through the communication path 16.・1
7 to fill the space 18 around the electric motor, and the discharge pipe 19
is led to the outside via.

他方、旋回スクロール2の背面とブロック9で囲まれた
空間の背圧室20には、旋回、固定の両スクロール1,
2で形成される複数の密閉空間内のガス圧によるスラス
ト方向のガス力に対抗するため吸入圧力と吐出圧力の中
間の圧力が作用する。
On the other hand, in a back pressure chamber 20 in a space surrounded by the back surface of the orbiting scroll 2 and the block 9, both the orbiting and fixed scrolls 1,
In order to counter the gas force in the thrust direction due to the gas pressure in the plurality of sealed spaces formed by 2, a pressure intermediate between the suction pressure and the discharge pressure acts.

この中間圧力の設定は、旋回スクロール2の鏡板2aに
細孔2b、2cを設け、との細孔を介して圧縮途中のス
クロール内部のガスを背圧室2oに導き、旋回スクロー
ル2の背面にガス圧を作用させて行う。
To set this intermediate pressure, the end plate 2a of the orbiting scroll 2 is provided with pores 2b and 2c, and the gas inside the scroll which is being compressed is guided to the back pressure chamber 2o through the pores. This is done by applying gas pressure.

次に潤滑油の流れについて説明する。Next, the flow of lubricating oil will be explained.

潤滑油21は密閉容器1oの下部に溜められる。Lubricating oil 21 is stored in the lower part of the closed container 1o.

主軸4の下端は容器底部の油中に浸漬し、主軸上部には
偏心軸部4aを備え、該偏心軸部4aが旋回軸受6を介
して、スクロール圧縮要素部である旋回スクロール2と
係合している。主軸4には、各軸受部への給油を行うた
めの縦孔4bが主軸下端から主軸の上端面まで形成され
る。潤滑油21内に浸漬された主軸4下端は高圧の吐出
圧力Pdの雰囲気にあシ、他方下流となる旋回軸受6の
まわりは中間圧力Pmの雰囲気にあるため、Pd−Pm
の圧力差によって容器底部の潤滑油21は縦孔4b内を
上昇する。縦孔4bを上昇した潤滑油は、補助軸受7.
主軸受6、さらに旋回軸受6へ給油され、おのおのの軸
受隙間を通って背圧室2oへ導ひかれる。背圧室20に
至った潤滑油は、上記細孔2b、2Cを介して両スクロ
ール1,2とで形成される作動室に注入され、スクロー
ルラップの内部で、前記冷媒ガスと混合される。次に冷
媒ガスとともに潤滑油は昇圧作用を受け、吐出穴14゜
吐出室16さらに連通路16.17を経て電動機室18
へと移動する。電動機室18に至った潤滑油は、自重の
ため容器10の底部へ落下し、再び容器底部に溜められ
、各部の潤滑に供される。
The lower end of the main shaft 4 is immersed in the oil at the bottom of the container, and the upper part of the main shaft is provided with an eccentric shaft section 4a, which engages with the orbiting scroll 2, which is a scroll compression element section, via an orbiting bearing 6. are doing. A vertical hole 4b for supplying oil to each bearing portion is formed in the main shaft 4 from the lower end of the main shaft to the upper end surface of the main shaft. The lower end of the main shaft 4 immersed in the lubricating oil 21 is in an atmosphere of high discharge pressure Pd, while the area around the downstream swing bearing 6 is in an atmosphere of intermediate pressure Pm, so that Pd-Pm
The lubricating oil 21 at the bottom of the container rises inside the vertical hole 4b due to the pressure difference. The lubricating oil that has ascended through the vertical hole 4b is transferred to the auxiliary bearing 7.
Oil is supplied to the main bearing 6 and further to the swing bearing 6, and is led to the back pressure chamber 2o through the respective bearing gaps. The lubricating oil that has reached the back pressure chamber 20 is injected into the working chamber formed by both scrolls 1 and 2 through the pores 2b and 2C, and is mixed with the refrigerant gas inside the scroll wrap. Next, the lubricating oil is pressurized together with the refrigerant gas, and passes through the discharge hole 14, the discharge chamber 16, and the communication passage 16, 17 to the motor chamber 18.
move to. The lubricating oil that has reached the motor chamber 18 falls to the bottom of the container 10 due to its own weight, and is again collected at the bottom of the container and used to lubricate each part.

また、固定スクロール1の吐出穴14から吐出された潤
滑油の一部は、固定スクロール1の油溜め部22に溜ま
り、固定スクロール1の鏡板1aに連絡した細孔1bを
介して旋回スクロール2の鏡板部2aの環状溝23に落
下し、旋回スクロール2の鏡板部2aの摺動潤滑を行い
、固定スクロール1.旋回スクロール2のラップ部の潤
滑を行う。
In addition, a part of the lubricating oil discharged from the discharge hole 14 of the fixed scroll 1 accumulates in the oil reservoir 22 of the fixed scroll 1, and flows through the small hole 1b communicating with the end plate 1a of the fixed scroll 1 to the orbiting scroll 2. It falls into the annular groove 23 of the end plate part 2a, provides sliding lubrication for the end plate part 2a of the orbiting scroll 2, and the fixed scroll 1. The lap portion of the orbiting scroll 2 is lubricated.

発明が解決しようとする課題 しかしながら上記のような構成では、鏡板部2aの潤滑
は固定スクロール1の油溜め部22の細孔1bを介して
いるため、運転開始してから油溜め部22に潤滑油が溜
まって初めて潤滑可能となる。
Problems to be Solved by the Invention However, in the above configuration, since the end plate portion 2a is lubricated through the pores 1b of the oil reservoir portion 22 of the fixed scroll 1, the oil reservoir portion 22 is not lubricated after the start of operation. Lubrication is only possible when oil accumulates.

従って、鏡板部2aの摩耗が大きくなり機械損失が増加
しEER(エネルギー消費効率)の低下をひきおこす原
因となっている。
Therefore, the abrasion of the end plate portion 2a increases, mechanical loss increases, and this causes a decrease in EER (energy consumption efficiency).

又、旋回スクロール2の鏡板部2aおよびラップ部の給
油のために、固定スクロール1からと背圧室2oからの
2方向からの給油通路が必豊であり構造が複雑となり、
コスト高となっていた。
In addition, in order to supply oil to the end plate portion 2a and wrap portion of the orbiting scroll 2, oil supply passages from two directions, from the fixed scroll 1 and from the back pressure chamber 2o, are necessary, making the structure complicated.
The cost was high.

本発明はこのような従来の問題点を解決するものであり
、簡単な構成で運転開始後、瞬時に旋回スクロールの鏡
板部とラップ部の潤滑給油を同時に行うことのできるス
クロール型圧縮機を提供するものである。
The present invention solves these conventional problems, and provides a scroll compressor that has a simple configuration and can instantly lubricate the end plate portion and wrap portion of the orbiting scroll at the same time after starting operation. It is something to do.

課題を解決するための手段 上記課題を解決するために本発明のスクロール型圧縮機
は、旋回スクロール鏡板上の環状溝に外側方向および内
側方向に1つ又は複数の溝を設け、内側方向の溝におけ
る通路抵抗を可変する超電導体と、超電導体と対向する
よう永久磁石を配設したものである。
Means for Solving the Problems In order to solve the above problems, the scroll compressor of the present invention provides one or more grooves in the outer direction and the inner direction in the annular groove on the orbiting scroll end plate, and A permanent magnet is arranged to face the superconductor and the superconductor.

作  用 かかる構成によシ、運転開始直後は、背圧室から吸入室
への通路である内側溝の超電導体がマイスナー効果によ
って通路抵抗を小さくするため、背圧室の中間圧力が低
くなシ、密閉容器内の吐出圧力との差圧入によシ、密閉
容器底部の潤滑油は運転開始後瞬時に主軸の偏心縦孔内
を上昇する。
Effect: Immediately after the start of operation, the superconductor in the inner groove, which is the passage from the back pressure chamber to the suction chamber, reduces the passage resistance due to the Meissner effect, so the intermediate pressure in the back pressure chamber is low. Due to the pressure difference between the discharge pressure and the discharge pressure in the closed container, the lubricating oil at the bottom of the closed container rises inside the eccentric vertical hole of the main shaft instantly after the start of operation.

上昇した潤滑油は各軸受へ給油され背圧室に導かれ、旋
回スクロール鏡板、スクロールラップへ給油される。運
転後、吐出ガス及び摺動等による熱によって超電導体の
マイスナー効果がなくなシ、内側溝の通路抵抗を大きく
し、背圧室の圧力を適正な中間圧力にする。
The rising lubricating oil is supplied to each bearing, guided to the back pressure chamber, and supplied to the orbiting scroll head plate and scroll wrap. After operation, the Meissner effect of the superconductor is lost due to heat from discharged gas and sliding, and the passage resistance of the inner groove is increased to bring the pressure in the back pressure chamber to an appropriate intermediate pressure.

実施例 以下、本発明のスクロール型圧縮機の一実施例について
図面(第1図から電4図)を参照して説明する。なお、
図中従来例の第6図から第7図と同一部分は同一符号を
付して示している。
Embodiment Hereinafter, an embodiment of the scroll compressor of the present invention will be described with reference to the drawings (FIGS. 1 to 4). In addition,
In the figure, the same parts as in FIGS. 6 to 7 of the conventional example are designated by the same reference numerals.

第1図から第4図において、24は旋回スクロール2の
鏡板2aの環状溝23の外側に向って設けられた溝であ
り、26は環状溝23の内側に向って設けられた溝であ
り、その端は吸入室12に位置している。2θは内側方
向の溝26の通路抵抗を可変する超電導体であシ、27
は超電導体と対向するよう配設された永久磁石であり、
28は超電導体26を永久磁石方向へ押しつけるよう配
設したスプリングである。
In FIGS. 1 to 4, 24 is a groove provided toward the outside of the annular groove 23 of the end plate 2a of the orbiting scroll 2, and 26 is a groove provided toward the inside of the annular groove 23. Its end is located in the suction chamber 12. 2θ is a superconductor that changes the passage resistance of the groove 26 in the inward direction, 27
is a permanent magnet arranged to face the superconductor,
A spring 28 is arranged to press the superconductor 26 toward the permanent magnet.

以上のように構成されたスクロール型圧縮機において、
背圧室20には、旋回スクロール2の鏡板2a上の外側
方向の溝24.環状溝23.内側方向の溝26を介して
吸入室12と通じているため、吐出圧力と吸入圧力の中
間の圧力が作用し、この背圧室20から吸入室12への
通路抵抗を変えることによって背圧室2oの圧力(中間
圧力)は変化する。特に給油が必要な運転開始直後にお
いては、超電導体26のマイスナー効果によって永久磁
石27と反ばつし、内側方向の溝26の通路抵抗を小さ
くし、よって背圧室2oの圧力は低くなる。しかし運転
時間とともに、吐出ガスの温度や、摺動、モータ発熱等
による熱によって、超電導体26はマイスナー効果を失
い、スプリング28により永久磁石27側へ押しつけら
れて内側方向の溝26の通路抵抗を大きくし、背圧室2
゜の圧力は適正な中間圧力となる。
In the scroll compressor configured as above,
The back pressure chamber 20 includes an outward groove 24 on the end plate 2a of the orbiting scroll 2. Annular groove 23. Since it communicates with the suction chamber 12 via the inward groove 26, a pressure between the discharge pressure and the suction pressure acts, and by changing the passage resistance from the back pressure chamber 20 to the suction chamber 12, the back pressure chamber The pressure at 2o (intermediate pressure) changes. Particularly immediately after the start of operation when refueling is required, the Meissner effect of the superconductor 26 causes it to repel the permanent magnet 27, reducing the passage resistance of the inward groove 26, and thus lowering the pressure in the back pressure chamber 2o. However, as the operating time increases, the superconductor 26 loses its Meissner effect due to the temperature of the discharged gas, sliding, heat generated by the motor, etc., and is pressed against the permanent magnet 27 by the spring 28, reducing the passage resistance of the groove 26 in the inward direction. Enlarge and back pressure chamber 2
A pressure of ° is an appropriate intermediate pressure.

従って、密閉容器10の下部に溜められた潤滑油21は
、運転開始後、背圧室20の圧力と、密閉容器1o内の
吐出圧力との差圧が大きくなることによって瞬時に背圧
室20まで導かれ、さらに旋回スクロール2の鏡板2a
上の外側方向の溝24、環状溝23.内側方向の溝26
というルートにて鏡板2a部を潤滑しながら吸入室12
に入ってくる。吸入室12に流入した潤滑油はスクロー
ルラップを潤滑しながら吐出穴14から吐出され、連通
路16.17を通って容器10下部に落下してくる。−
旦、給油が行われ始めると、必要以上の潤滑は不要とな
シ、また必要以上に給油を行うと、吐出穴14から流出
し、密閉容器10中を介して吐出管19から外へ持ち出
される潤滑油の量が多くなシ信頼性の面からも好ましく
ないため、運転時間とともに発生してくる吐出ガス温度
や、摺動、モータ発熱等によって背圧室2oから吸入室
12への通路抵抗を大きくし、背圧室2゜の圧力を適正
な中間圧力にまで上昇させて、適正な差圧による適正量
給油を行う。なお常温付近で超電導を示す材料としては
、5rBaYCu30□−δが知られている。製造に際
しては、まず原料粉末の粉砕・混合を行う。それを92
0C,空気中で6時間焼成した後粉砕し、それを3回縁
シ返す。
Therefore, after the start of operation, the lubricating oil 21 stored in the lower part of the sealed container 10 is instantly pumped into the back pressure chamber 20 due to the increase in the pressure difference between the pressure in the back pressure chamber 20 and the discharge pressure in the sealed container 1o. and then the end plate 2a of the orbiting scroll 2.
Upper outward groove 24, annular groove 23. Inward groove 26
While lubricating the end plate 2a, the suction chamber 12 is
comes into the. The lubricating oil that has flowed into the suction chamber 12 is discharged from the discharge hole 14 while lubricating the scroll wrap, and falls to the lower part of the container 10 through the communication passages 16 and 17. −
Once refueling begins, there is no need for more lubrication than necessary, and if refueling is performed more than necessary, it will flow out from the discharge hole 14 and be carried out through the discharge pipe 19 through the airtight container 10. Since the amount of lubricating oil is large, which is undesirable from the viewpoint of reliability, it is necessary to reduce the passage resistance from the back pressure chamber 2o to the suction chamber 12 due to the discharge gas temperature, sliding, motor heat generation, etc. that occur with the operating time. The pressure in the back pressure chamber 2° is increased to an appropriate intermediate pressure, and an appropriate amount of oil is supplied using an appropriate differential pressure. Note that 5rBaYCu30□-δ is known as a material that exhibits superconductivity near room temperature. During production, first the raw material powder is crushed and mixed. That's 92
After firing in air at 0C for 6 hours, it is ground and edge-turned three times.

その粉末を成型し、1000℃、空気中で6時間加熱し
て焼結し、炉中で冷却する。このようにして作製された
焼結体は、338K(65℃)で超電導を示す(イハラ
他、ジャパニーズ ジャーナルオブ アプライド フィ
ジックス(JAPANESEJOURNAL OF A
PPLIED PHYSIC3)、Vol。
The powder is shaped, sintered by heating at 1000° C. in air for 6 hours, and cooled in a furnace. The sintered body produced in this way exhibits superconductivity at 338 K (65°C) (Ihara et al., Japanese Journal of Applied Physics).
PPLIED PHYSIC3), Vol.

26、 A8. August、 1987. PP、
167−171 )。
26, A8. August, 1987. PP,
167-171).

発明の効果 以上のように本発明は、旋回スクロールの鏡板上の環状
溝に、外側方向及び内側方向の溝を設け、内側方向の溝
における通路抵抗を可変する超電導体と、超電導体と対
向するよう永久磁石を配設することにより、運転開始直
後、背圧室圧力が下がり、吐出圧力との差圧入により瞬
時に潤滑油が背圧室、旋回スクロール鏡板の外側方向の
溝、環状溝、内側方向の溝を通って吸入室へ導かれスク
ロールラップの給油を行うため、鏡板及びスクロールラ
ップ等への給油を運転開始後短時間で行うことができる
ので、機械損失の増加によるEERの低下を防止できる
Effects of the Invention As described above, the present invention provides an annular groove on the end plate of an orbiting scroll with outward and inward grooves, and a superconductor that changes the passage resistance in the inward groove, and a superconductor that faces the superconductor. Immediately after the start of operation, the pressure in the back pressure chamber decreases, and the lubricating oil is instantly pumped into the back pressure chamber, the outer groove of the orbiting scroll end plate, the annular groove, and the inner side. Since the scroll wrap is refueled by being led to the suction chamber through the groove in the direction, the end plate, scroll wrap, etc. can be refueled in a short time after the start of operation, which prevents a decrease in EER due to increased mechanical loss. can.

また、運転時間の経過により、内側方向の溝の通路抵抗
を大きくし背圧室の圧力を適正な中間圧力にまで上昇さ
せて、差圧を小さくすることができるので、運転開始直
後はどの給油量でなく適正な給油量とし、吐出管から外
へ出て行く潤滑油を最小限に押えることができ信頼性の
向上が図れる。
In addition, as the operation time elapses, the passage resistance of the inward groove increases and the pressure in the back pressure chamber rises to an appropriate intermediate pressure, making it possible to reduce the differential pressure. The lubricating oil flowing out from the discharge pipe can be kept to a minimum by supplying an appropriate amount of lubricating oil rather than the amount, which improves reliability.

さらに、鋳板への給油とラップへの給油を同時に行なう
ことができるので、固定スクロールに油溜めを設ける等
の複雑な構造が不必要となりコスト低減の効果がある。
Furthermore, since oil can be supplied to the cast plate and the lap at the same time, a complicated structure such as providing an oil reservoir in the fixed scroll is not required, resulting in cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すスクロール型圧縮機の
縦断面図、第2図は同第1図の旋回スクロールの平面図
、第3図は同第1図の固定スクロールを中心とした縦断
面図、第4図は同第3図におけるl−17部の断面図、
第6図は従来のスクロール型圧縮機の縦断面図、第6図
は同第6図のスクロールのかみあい状態を示す横断面図
、第7図は同第6図の固定スクロールを中心とした縦断
面図である。 1・・・・・・固定スクロール、1a・・・・・・固定
スクロール鏡板、2・・・・・・旋回スクロール、2a
・・・・・・旋回スクロール鏡板、20・・・・・・背
圧室、23・・・・・・環状溝、24・・・・・・外側
方向の溝、26・・・・・・内側方向の溝、26・・・
・・・超電導体、27・・・・・・永久磁石。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
!1定スクロール tx3図 wE 4 図
Fig. 1 is a vertical cross-sectional view of a scroll compressor showing an embodiment of the present invention, Fig. 2 is a plan view of the orbiting scroll shown in Fig. 1, and Fig. 3 is a view centered on the fixed scroll shown in Fig. 1. Fig. 4 is a sectional view of the l-17 section in Fig. 3;
Figure 6 is a vertical cross-sectional view of a conventional scroll compressor, Figure 6 is a cross-sectional view showing the meshing state of the scrolls in Figure 6, and Figure 7 is a vertical cross-section centered on the fixed scroll in Figure 6. It is a front view. 1... Fixed scroll, 1a... Fixed scroll end plate, 2... Orbiting scroll, 2a
......Orbiting scroll end plate, 20...Back pressure chamber, 23...Annular groove, 24...Outward groove, 26... Inward groove, 26...
...Superconductor, 27...Permanent magnet. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
! 1 constant scroll tx3 figure wE 4 figure

Claims (1)

【特許請求の範囲】[Claims]  鏡板に渦巻状のラップを有する固定スクロールと鏡板
に渦巻状のラップを有する旋回スクロールとが互いにラ
ップを向かい合せにしてかみ合い、固定スクロールに対
して見かけ上自転しないように旋回スクロールが旋回運
動し、ガス圧縮を行うもので旋回スクロールの鏡板上の
環状溝に外側方向及び内側方向に溝を設け、旋回スクロ
ールとブロックにて囲まれた背圧室を備え、内側方向の
溝における通路抵抗を可変する超電導体と、超電導体と
対向するよう永久磁石を配設したことを特徴とするスク
ロール型圧縮機。
A fixed scroll having a spiral wrap on the end plate and an orbiting scroll having a spiral wrap on the end plate are engaged with each other with their wraps facing each other, and the orbiting scroll makes an orbiting movement so as not to apparently rotate relative to the fixed scroll, It compresses gas, and has grooves in the outer and inner directions in the annular groove on the end plate of the orbiting scroll, and has a back pressure chamber surrounded by the orbiting scroll and blocks, and changes the passage resistance in the groove in the inner direction. A scroll compressor characterized by a superconductor and a permanent magnet arranged to face the superconductor.
JP2706488A 1988-02-08 1988-02-08 Scroll type compressor Pending JPH01203682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2706488A JPH01203682A (en) 1988-02-08 1988-02-08 Scroll type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2706488A JPH01203682A (en) 1988-02-08 1988-02-08 Scroll type compressor

Publications (1)

Publication Number Publication Date
JPH01203682A true JPH01203682A (en) 1989-08-16

Family

ID=12210641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2706488A Pending JPH01203682A (en) 1988-02-08 1988-02-08 Scroll type compressor

Country Status (1)

Country Link
JP (1) JPH01203682A (en)

Similar Documents

Publication Publication Date Title
KR100740211B1 (en) Hermetic scroll compressor and refrigerating air conditioner
US8007261B2 (en) Thermally compensated scroll machine
US6478557B2 (en) Scroll compressor suitable for a low operating pressure ratio
JPH0281982A (en) Scroll compressor
KR920003593B1 (en) Scroll fluid machine with bearing lubrication
JPH01203682A (en) Scroll type compressor
JPH073228B2 (en) Scroll gas compressor
JPS63192984A (en) Scroll type compressor
JPH01159485A (en) Scroll type compressor
JPH0526035B2 (en)
JPH0735062A (en) Enclosed scroll compressor
JPS62182487A (en) Scroll compressor
JPS631787A (en) Scroll type compressor
JPH08303371A (en) Scroll gas compressor
JPH01253581A (en) Scroll type compressor
JPS63219888A (en) Scroll compressor
JPH01203681A (en) Scroll type compressor
JPH01386A (en) scroll compressor
JPH08303369A (en) Scroll gas compressor
JPH01301970A (en) Scroll compressor
JPH01163485A (en) Scroll compressor
JPS63138187A (en) Scroll type compressor
JP3162236B2 (en) Scroll compressor
JP2019019768A (en) Scroll compressor
JPH01381A (en) scroll compressor