JPH0120320B2 - - Google Patents
Info
- Publication number
- JPH0120320B2 JPH0120320B2 JP55101394A JP10139480A JPH0120320B2 JP H0120320 B2 JPH0120320 B2 JP H0120320B2 JP 55101394 A JP55101394 A JP 55101394A JP 10139480 A JP10139480 A JP 10139480A JP H0120320 B2 JPH0120320 B2 JP H0120320B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling air
- stator
- stator structure
- control system
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 49
- 230000001052 transient effect Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/20—Actively adjusting tip-clearance
- F01D11/24—Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/0215—Arrangements therefor, e.g. bleed or by-pass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0207—Surge control by bleeding, bypassing or recycling fluids
- F04D27/023—Details or means for fluid extraction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/16—Sealings between pressure and suction sides
- F04D29/161—Sealings between pressure and suction sides especially adapted for elastic fluid pumps
- F04D29/164—Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はガスタービンエンジンに関し、特に、
定常および過渡運転中にロータとシユラウド間お
よびステータとロータ間の間隙を極めて少なくす
る装置に関する。
定常および過渡運転中にロータとシユラウド間お
よびステータとロータ間の間隙を極めて少なくす
る装置に関する。
[従来技術]
タービンエンジンが方式、設計および材料の変
更によつてますます高い信頼性と効率を有するよ
うになるにつれ、ロータとシユラウド間およびス
テータとロータ間の過大な間隙による損失は多く
の設計要目においてますます重要になつている。
元来、間隙制御に関する主な努力はタービンとシ
ユラウドの関係の制御に向けられていたが、最近
では圧縮機のロータとシユラウドおよびステータ
とロータの関係が考慮の対象となりつつある。
更によつてますます高い信頼性と効率を有するよ
うになるにつれ、ロータとシユラウド間およびス
テータとロータ間の過大な間隙による損失は多く
の設計要目においてますます重要になつている。
元来、間隙制御に関する主な努力はタービンとシ
ユラウドの関係の制御に向けられていたが、最近
では圧縮機のロータとシユラウドおよびステータ
とロータの関係が考慮の対象となりつつある。
多くのタービンエンジンの用途では、様々な定
常回転速度で運転することと、規則的な運転過程
中所望に応じてこれらの速度間を移行することが
必要である。例えば、航空機動力用のジエツトエ
ンジンでは、操縦者が回転速度を任意に所望値に
変え得ることが必要である。その結果生じた温度
とロータ回転速度の変化に伴つて、ロータとそれ
を囲むシユラウド、ステータとの間に相対的な膨
張が生じ、そして所望の効率を保つためにはこの
相対膨張を制御しなければならない。制御の目的
は、ステータとロータの相互干渉を防ぎながらス
テータとロータの間隙を最小に保つことである。
なお、前記の干渉が生ずると、摩擦が生ずるの
で、その後の運転中半径方向間隙が増加してしま
う。過渡運転要件を考慮すると、前述のように、
ロータとシユラウド間の相対的な機械的膨張また
は熱膨張のパターンが非常に困難な問題を提起す
る。仮に系が定常状態でのみ働くとすれば、ロー
タとステータ間に所望の狭い間隙を確立して両要
素間に摩擦干渉を起こすことなく最大限の効率を
得ることは比較的簡単なことである。しかし、過
渡運転要件を満たすために、エンジンは一般に相
対膨張が極限に達する運転状態の間好適な間隙を
有するように設計され、通常、高温ロータ・リバ
ースト(reburst)に対して設計される。従つて、
エンジン運転時間が一般に最も長い巡航運転状態
を含む他の運転状態の間は、両機素間の間隙は最
大効率に好適な最小間隙より大きくなる可能性が
ある。
常回転速度で運転することと、規則的な運転過程
中所望に応じてこれらの速度間を移行することが
必要である。例えば、航空機動力用のジエツトエ
ンジンでは、操縦者が回転速度を任意に所望値に
変え得ることが必要である。その結果生じた温度
とロータ回転速度の変化に伴つて、ロータとそれ
を囲むシユラウド、ステータとの間に相対的な膨
張が生じ、そして所望の効率を保つためにはこの
相対膨張を制御しなければならない。制御の目的
は、ステータとロータの相互干渉を防ぎながらス
テータとロータの間隙を最小に保つことである。
なお、前記の干渉が生ずると、摩擦が生ずるの
で、その後の運転中半径方向間隙が増加してしま
う。過渡運転要件を考慮すると、前述のように、
ロータとシユラウド間の相対的な機械的膨張また
は熱膨張のパターンが非常に困難な問題を提起す
る。仮に系が定常状態でのみ働くとすれば、ロー
タとステータ間に所望の狭い間隙を確立して両要
素間に摩擦干渉を起こすことなく最大限の効率を
得ることは比較的簡単なことである。しかし、過
渡運転要件を満たすために、エンジンは一般に相
対膨張が極限に達する運転状態の間好適な間隙を
有するように設計され、通常、高温ロータ・リバ
ースト(reburst)に対して設計される。従つて、
エンジン運転時間が一般に最も長い巡航運転状態
を含む他の運転状態の間は、両機素間の間隙は最
大効率に好適な最小間隙より大きくなる可能性が
ある。
ターボ機械の翼端間隙を最小にする従来の一方
法は、様々なエンジン運転状態におけるロータと
シユラウドの半径方向応答を整合するに役立つ熱
特性を示す様々な材料を適当に選択することであ
る。従つて、シユラウドの材料の熱膨張率または
シユラウド支持材料の熱膨張率は極めて重要な設
計要目である。しかし、それだけでは適当な間隙
制御をなすには不十分である。
法は、様々なエンジン運転状態におけるロータと
シユラウドの半径方向応答を整合するに役立つ熱
特性を示す様々な材料を適当に選択することであ
る。従つて、シユラウドの材料の熱膨張率または
シユラウド支持材料の熱膨張率は極めて重要な設
計要目である。しかし、それだけでは適当な間隙
制御をなすには不十分である。
従来の他の方策はシユラウド構造体またはシユ
ラウド支持構造体上に冷却空気を流してロータの
熱膨張パターンの整合を良くすることである。例
えば、圧縮機の空気を用いて冷却空気の温度また
は流量を変えるようにされた。なお、圧縮機の空
気の流量または温度は当然エンジン回転速度の変
化と共に変わる。このような受動的なシステムは
比較的良好な間隙特性をもたらすが、それでもな
お最善の効率を得るには不適当であるかも知れな
い。
ラウド支持構造体上に冷却空気を流してロータの
熱膨張パターンの整合を良くすることである。例
えば、圧縮機の空気を用いて冷却空気の温度また
は流量を変えるようにされた。なお、圧縮機の空
気の流量または温度は当然エンジン回転速度の変
化と共に変わる。このような受動的なシステムは
比較的良好な間隙特性をもたらすが、それでもな
お最善の効率を得るには不適当であるかも知れな
い。
[本発明の目的]
本発明の目的は、ガスタービンエンジンの過渡
および定常運転で、ロータおよびシユラウドまた
はステータの間隙を最小にすることである。
および定常運転で、ロータおよびシユラウドまた
はステータの間隙を最小にすることである。
[本発明の構成]
本発明によれば、ステータ構造体の外面に沿つ
て軸方向に延びていて、ステータ構造体の外面に
沿う軸方向通路に冷却空気流を流す冷却空気マニ
ホルドを設けて、これによりステータ構造体の熱
膨張を制御してロータとシユラウドまたはステー
タとの間隙を制御し、更に空気導出ダクトおよび
弁を設けて、所定のガスタービン運転中に冷却空
気を冷却空気マニホルドから選択的にそらすよう
にする。
て軸方向に延びていて、ステータ構造体の外面に
沿う軸方向通路に冷却空気流を流す冷却空気マニ
ホルドを設けて、これによりステータ構造体の熱
膨張を制御してロータとシユラウドまたはステー
タとの間隙を制御し、更に空気導出ダクトおよび
弁を設けて、所定のガスタービン運転中に冷却空
気を冷却空気マニホルドから選択的にそらすよう
にする。
[実施例]
第1図はターボフアンエンジン11に適用され
た本発明を全体的に10で示す。エンジン11は
コアエンジン12を備え、このコアエンジンは直
列に配置された圧縮機13と燃焼器14と高圧タ
ービン16から成る。圧縮機13はコアロータ1
7により高圧タービン16に連結されてそれに駆
動され、圧縮機入口18において比較的低圧の低
温空気を受入れ、そして圧縮機排出点19におい
て高圧高温状態の空気を排出する。次いで、この
高圧空気は燃料と混合され、燃焼器14内で点火
され、温度が更に上昇して高圧タービン16に入
る。高圧タービン16を通つた後、高温ガスは低
圧タービン22を通る。この低圧タービンは低圧
用連結軸24を介してフアン23を駆動する。
た本発明を全体的に10で示す。エンジン11は
コアエンジン12を備え、このコアエンジンは直
列に配置された圧縮機13と燃焼器14と高圧タ
ービン16から成る。圧縮機13はコアロータ1
7により高圧タービン16に連結されてそれに駆
動され、圧縮機入口18において比較的低圧の低
温空気を受入れ、そして圧縮機排出点19におい
て高圧高温状態の空気を排出する。次いで、この
高圧空気は燃料と混合され、燃焼器14内で点火
され、温度が更に上昇して高圧タービン16に入
る。高圧タービン16を通つた後、高温ガスは低
圧タービン22を通る。この低圧タービンは低圧
用連結軸24を介してフアン23を駆動する。
軸流圧縮機13の詳細を第2図に示す。この圧
縮機はロータ26を有し、このロータは複数の軸
方向に相隔たるデイスク27を有し、各デイスク
はその外周において1列の圧縮機動翼28を支持
ている。動翼28の隣り合う列間に、動翼列と交
互に周方向に間隔をおいて静翼29の列が配設さ
れ、静翼29は筒形ケーシングすなわちステータ
構造体31に取付けられそれに支持されている。
静翼29は従来の方法、例えば、静翼バンド32
をステータ構造体31に形成されたT形の周方向
スロツト33にはめ込むことによつてステータ構
造体31に固定される。
縮機はロータ26を有し、このロータは複数の軸
方向に相隔たるデイスク27を有し、各デイスク
はその外周において1列の圧縮機動翼28を支持
ている。動翼28の隣り合う列間に、動翼列と交
互に周方向に間隔をおいて静翼29の列が配設さ
れ、静翼29は筒形ケーシングすなわちステータ
構造体31に取付けられそれに支持されている。
静翼29は従来の方法、例えば、静翼バンド32
をステータ構造体31に形成されたT形の周方向
スロツト33にはめ込むことによつてステータ構
造体31に固定される。
圧縮機流路34の半径方向内側において、静翼
29とロータ26との間の境界域は、静翼29の
端部に取付けられたハニコム構造体36とロータ
26の多歯ラビリンスシール37との相互係合に
よる漏止め構造を有する。シール37の歯はハニ
コム36に形成された溝にはまり込んで静翼とロ
ータ間の圧縮機空気の軸方向流を阻止する障害物
を構成する。
29とロータ26との間の境界域は、静翼29の
端部に取付けられたハニコム構造体36とロータ
26の多歯ラビリンスシール37との相互係合に
よる漏止め構造を有する。シール37の歯はハニ
コム36に形成された溝にはまり込んで静翼とロ
ータ間の圧縮機空気の軸方向流を阻止する障害物
を構成する。
流路34の半径方向外側では、このような漏止
め構造は実用的ではない。回転速度が比較的低い
場合、例えば、低圧タービンにおいては「動翼シ
ユラウド」を動翼の外端に取付けてハニコム面を
静止シユラウドに係合させることができるが、高
速の圧縮機ロータに対してこのような取付けをな
すことは困難である。従つて、この境界では、流
路34の内側の境界におけると同様、ロータとス
テータ間の相対膨張に適応する手段がなければ、
空気の漏流が動翼先端を通過して効率損失の原因
になる。本発明の意図はこのような構造の改良に
ある。
め構造は実用的ではない。回転速度が比較的低い
場合、例えば、低圧タービンにおいては「動翼シ
ユラウド」を動翼の外端に取付けてハニコム面を
静止シユラウドに係合させることができるが、高
速の圧縮機ロータに対してこのような取付けをな
すことは困難である。従つて、この境界では、流
路34の内側の境界におけると同様、ロータとス
テータ間の相対膨張に適応する手段がなければ、
空気の漏流が動翼先端を通過して効率損失の原因
になる。本発明の意図はこのような構造の改良に
ある。
第1図と第2図を参照するに、本発明装置は冷
却空気マニホルド38を含み、このマニホルドは
ステータ構造体31の一部分の外側にそれを囲む
ように取付けられている。本発明を一般的に述べ
ると、第1図に示すように、マニホルド38は、
その前端に空気を送給するための、全体的に39
で示す冷却空気送給手段と、マニホルド38の下
流端から流出する空気を受入れるための、全体的
に41で示す冷却空気放出手段とを有する。冷却
空気は制御機構42の働きによつて選択的にマニ
ホルド38に送給される。制御機構42は液圧ま
たは空気圧作動器44のような従来の手段によつ
て弁手段43を動かす。また、制御機構42によ
り冷却空気は流路47を通つて導出ダクト46に
直接流入させることができる。もちろん、弁手段
43はマニホルド38内の流れと空気送給手段3
9内の流れが共に生ずるように中間位置に調節す
ることができる。すなわち、導出ダクト46に入
る冷却空気は、冷却空気マニホルド38から冷却
空気放出手段41を通過した空気、または空気送
給手段39から直接流路47を通過した空気、あ
るいは両経路から同時に送り込まれた空気であ
る。この空気はその後下流に流れ、高圧または低
圧タービン構成部品を従来の仕方で冷却するため
に用いられる。
却空気マニホルド38を含み、このマニホルドは
ステータ構造体31の一部分の外側にそれを囲む
ように取付けられている。本発明を一般的に述べ
ると、第1図に示すように、マニホルド38は、
その前端に空気を送給するための、全体的に39
で示す冷却空気送給手段と、マニホルド38の下
流端から流出する空気を受入れるための、全体的
に41で示す冷却空気放出手段とを有する。冷却
空気は制御機構42の働きによつて選択的にマニ
ホルド38に送給される。制御機構42は液圧ま
たは空気圧作動器44のような従来の手段によつ
て弁手段43を動かす。また、制御機構42によ
り冷却空気は流路47を通つて導出ダクト46に
直接流入させることができる。もちろん、弁手段
43はマニホルド38内の流れと空気送給手段3
9内の流れが共に生ずるように中間位置に調節す
ることができる。すなわち、導出ダクト46に入
る冷却空気は、冷却空気マニホルド38から冷却
空気放出手段41を通過した空気、または空気送
給手段39から直接流路47を通過した空気、あ
るいは両経路から同時に送り込まれた空気であ
る。この空気はその後下流に流れ、高圧または低
圧タービン構成部品を従来の仕方で冷却するため
に用いられる。
制御機構42は選定されたエンジン運転パラメ
ータに応じて働く。好適実施例では、センサ48
がコア回転速度を検出し、その結果生じた出力信
号が線51に沿つて制御機構42に達する。この
作用については後に詳述する。
ータに応じて働く。好適実施例では、センサ48
がコア回転速度を検出し、その結果生じた出力信
号が線51に沿つて制御機構42に達する。この
作用については後に詳述する。
次に、好適実施例の特定構造についてみると、
第2図に示すように、冷却空気マニホルド38は
分流器すなわち前側フイン52と中間フイン5
3,54を含み、これらのフインはステータ構造
体31の外面56に取付けられ、半径外方に外側
カバー57まで延在している。この外側カバーは
マニホルド38を通流する空気の外側境界を形成
する。前記フイン52と中間フイン53,54に
は複数の穴が設けられ、これらの穴によつて冷却
空気は供給空洞58から後方に導かれ、ステータ
構造体外面56に沿つてマニホルド38を通り、
放出空洞59に達する。この放出空洞は冷却空気
放出手段41の一部をなすものである。マニホル
ド38と放出空洞59との間に流体を通すため
に、出口61がマニホルド外側カバー57と、ス
テータ構造体31から半径方向外方に延在する後
ろ側フランジ62との間に形成されている。。放
出空洞59は、冷却空気外側カバー57のほか、
後ろ側ケーシング63と外側ケーシング64とに
よつて画成されている。外側ケーシンゲ64には
開口66が形成され、弁手段43によつて放出空
洞59と導出ダクト46との間の流体流通を生じ
る。この開口を通る空気流は後述の方式で制御さ
れる。
第2図に示すように、冷却空気マニホルド38は
分流器すなわち前側フイン52と中間フイン5
3,54を含み、これらのフインはステータ構造
体31の外面56に取付けられ、半径外方に外側
カバー57まで延在している。この外側カバーは
マニホルド38を通流する空気の外側境界を形成
する。前記フイン52と中間フイン53,54に
は複数の穴が設けられ、これらの穴によつて冷却
空気は供給空洞58から後方に導かれ、ステータ
構造体外面56に沿つてマニホルド38を通り、
放出空洞59に達する。この放出空洞は冷却空気
放出手段41の一部をなすものである。マニホル
ド38と放出空洞59との間に流体を通すため
に、出口61がマニホルド外側カバー57と、ス
テータ構造体31から半径方向外方に延在する後
ろ側フランジ62との間に形成されている。。放
出空洞59は、冷却空気外側カバー57のほか、
後ろ側ケーシング63と外側ケーシング64とに
よつて画成されている。外側ケーシンゲ64には
開口66が形成され、弁手段43によつて放出空
洞59と導出ダクト46との間の流体流通を生じ
る。この開口を通る空気流は後述の方式で制御さ
れる。
空気供給空洞58はステータ構造体31と、マ
ニホルド前側フイン52と、外側ケーシング64
とによつて画成されている。冷却空気が、ステー
タ構造体31に形成された複数の入口67を経て
供給空洞58に入るようにされている。冷却空気
は圧縮機流路34から静翼列68と入口67を通
つて供給空洞58に入り、そこで冷却空気マニホ
ルド38に入るかまたはそれに入らずに開口69
を経て導出ダクト46に流入する。
ニホルド前側フイン52と、外側ケーシング64
とによつて画成されている。冷却空気が、ステー
タ構造体31に形成された複数の入口67を経て
供給空洞58に入るようにされている。冷却空気
は圧縮機流路34から静翼列68と入口67を通
つて供給空洞58に入り、そこで冷却空気マニホ
ルド38に入るかまたはそれに入らずに開口69
を経て導出ダクト46に流入する。
冷却空気流入口67は静翼列68の後縁域に配
置されているが、これは機械的に好ましい位置で
あり、また圧縮機の空気力学的性能をそれほど損
なうことがない。
置されているが、これは機械的に好ましい位置で
あり、また圧縮機の空気力学的性能をそれほど損
なうことがない。
両流路間の冷却空気流の切換え制御のため、導
出ダクト46にはフラツパ弁または類似の二方弁
71が設けられている。この弁は環状フランジ7
2に枢着され、実線で示したような作用位置と、
点線で示したような不作用位置との間を移動し得
る。作用位置にある時、フラツパ弁71は止め部
73を係合して、開口69からの空気流を阻止
し、従つて、空気は冷却空気マニホルド38を通
つて放出空洞59に入り、さらに開口66を通つ
て導出ダクト46に流入する。フラツパ弁71が
点線で示した不作用位置に置かれた時は、冷却空
気マニホルドを通る空気流が阻止されて別路をと
る。すなわち、供給空洞58からの空気は開口6
9を通つて導出ダクト46に入る。フラツパ弁7
1の中間位置は、マニホルド38と開口69とに
冷却空気流を分配する。
出ダクト46にはフラツパ弁または類似の二方弁
71が設けられている。この弁は環状フランジ7
2に枢着され、実線で示したような作用位置と、
点線で示したような不作用位置との間を移動し得
る。作用位置にある時、フラツパ弁71は止め部
73を係合して、開口69からの空気流を阻止
し、従つて、空気は冷却空気マニホルド38を通
つて放出空洞59に入り、さらに開口66を通つ
て導出ダクト46に流入する。フラツパ弁71が
点線で示した不作用位置に置かれた時は、冷却空
気マニホルドを通る空気流が阻止されて別路をと
る。すなわち、供給空洞58からの空気は開口6
9を通つて導出ダクト46に入る。フラツパ弁7
1の中間位置は、マニホルド38と開口69とに
冷却空気流を分配する。
エンジンのほとんどの正常な定常運転状態で
は、制御機構42によつてフラツパ弁71は作用
位置に置かれ、従つて、冷却空気はステータ外面
56上を流れかつケーシングの各フインに衝突し
て、ステータケーシング構造体31を所望の比較
的低い温度に保つ。その効果はステータケーシン
グ31の寸法を減らして、ステータとロータの間
隙を最小にすることである。過渡運転中、例え
ば、スロツトルチヨツプ、バースト、リバースト
の間は、回転速度センサ48は回転速度の変化を
検知し、その結果生じた信号は線51を通つて制
御機構42に達する。制御機構42は、フラツパ
弁71を完全作用位置と不作用位置との間にわた
つて動かすことにより、系を調節する。
は、制御機構42によつてフラツパ弁71は作用
位置に置かれ、従つて、冷却空気はステータ外面
56上を流れかつケーシングの各フインに衝突し
て、ステータケーシング構造体31を所望の比較
的低い温度に保つ。その効果はステータケーシン
グ31の寸法を減らして、ステータとロータの間
隙を最小にすることである。過渡運転中、例え
ば、スロツトルチヨツプ、バースト、リバースト
の間は、回転速度センサ48は回転速度の変化を
検知し、その結果生じた信号は線51を通つて制
御機構42に達する。制御機構42は、フラツパ
弁71を完全作用位置と不作用位置との間にわた
つて動かすことにより、系を調節する。
一般に、かなりの加速中は、冷却空気をマニホ
ルド38に通流させる。かなりの加速の結果生じ
た空気の圧力上昇のため、冷却空気の温度がステ
ータの温度より高くなることがあり、その冷却空
気をマニホルド38に通してステータを膨張さ
せ、ステータと膨張するロータ間の摩擦を避ける
ことができる。他方、かなりの減速中は、エンジ
ンを通る空気流は減少し、もはや間隙は重要な問
題でないため、マニホルド38を通る冷却空気を
遮断し、ステータ自身で冷却させるので、ステー
タはゆつくり収縮する。
ルド38に通流させる。かなりの加速の結果生じ
た空気の圧力上昇のため、冷却空気の温度がステ
ータの温度より高くなることがあり、その冷却空
気をマニホルド38に通してステータを膨張さ
せ、ステータと膨張するロータ間の摩擦を避ける
ことができる。他方、かなりの減速中は、エンジ
ンを通る空気流は減少し、もはや間隙は重要な問
題でないため、マニホルド38を通る冷却空気を
遮断し、ステータ自身で冷却させるので、ステー
タはゆつくり収縮する。
すなわち、この制御系は、定常状態の運転中
は、間隙の減少をもたらして効率を高める。過渡
状態はマニホルド38の空気流を一時的に遮断し
て摩擦を防ぐことによつてなされる。
は、間隙の減少をもたらして効率を高める。過渡
状態はマニホルド38の空気流を一時的に遮断し
て摩擦を防ぐことによつてなされる。
本発明の目的を達成するに当たり、他の多様な
設計と形状を用い得ることはもちろんである。例
えば、制御系をスロツトル位置、温度、圧力、間
隙または時間遅れに応答させ得ることは理解され
よう。また、弁手段はフラツパ弁以外の種類のも
のでよく、油圧機械式、空気式、電子式手段、ま
たはその他の手段によつて操作され得る。
設計と形状を用い得ることはもちろんである。例
えば、制御系をスロツトル位置、温度、圧力、間
隙または時間遅れに応答させ得ることは理解され
よう。また、弁手段はフラツパ弁以外の種類のも
のでよく、油圧機械式、空気式、電子式手段、ま
たはその他の手段によつて操作され得る。
さらに、弁をオンオフ弁として説明したが弁は
他の位置でも働き得る。例えば、幾らかの空気を
絶えず冷却マニホルドに流し続けることが望まし
い場合があろう。この場合、弁は点線で示したよ
うに完全に閉ざされることはない。また、弁は第
2図に示した両位置間の任意の中間位置に調節さ
れ得る。さらにまた、本発明は、一般にエンジン
が定常状態で作動中に作用し、かつエンジンが過
渡状態で作動中に作用しない(オンオフ)ものと
して説明されたが、本冷却系は他のパラメータま
たは運転状態に関しても制御され得るものである
ことを理解されたい。例えば、航空機の上昇飛行
中、エンジンが厳密に定常状態で作動していなく
ても制御系を働かせることが好ましいかも知れな
い。
他の位置でも働き得る。例えば、幾らかの空気を
絶えず冷却マニホルドに流し続けることが望まし
い場合があろう。この場合、弁は点線で示したよ
うに完全に閉ざされることはない。また、弁は第
2図に示した両位置間の任意の中間位置に調節さ
れ得る。さらにまた、本発明は、一般にエンジン
が定常状態で作動中に作用し、かつエンジンが過
渡状態で作動中に作用しない(オンオフ)ものと
して説明されたが、本冷却系は他のパラメータま
たは運転状態に関しても制御され得るものである
ことを理解されたい。例えば、航空機の上昇飛行
中、エンジンが厳密に定常状態で作動していなく
ても制御系を働かせることが好ましいかも知れな
い。
さらに、シユラウドを第2図に一体ケーシング
31の一部分として示したが、シユラウド摩擦面
を分離可能な被着された分割形バンドの面とする
ことも可能であり、これらのバンドは静翼バンド
に同様に保持されるかまたは静翼バンドの延長体
として形成され得る。この場合、間隙制御は主と
して、シユラウド支持構造体を選択的に冷却する
ことによつてなされる。
31の一部分として示したが、シユラウド摩擦面
を分離可能な被着された分割形バンドの面とする
ことも可能であり、これらのバンドは静翼バンド
に同様に保持されるかまたは静翼バンドの延長体
として形成され得る。この場合、間隙制御は主と
して、シユラウド支持構造体を選択的に冷却する
ことによつてなされる。
[発明の効果]
本発明はガスタービンエンジン動作の全段階で
ステータ構造体の熱膨張を有効に制御してガスタ
ービンエンジンのロータの熱膨張と調和させる。
タービンの定常状態動作では、空気はマニホルド
38を流通してステータ構造体を冷却し、これに
よりそれが熱膨張してタービンロータから遠のく
のを防ぎ、むしろケーシングがロータに向つて収
縮し、ロータの外周とステータの内周との間の間
隙を最小にする。過渡状態では、たとえば突然に
加速するとき、冷却空気は圧力増加により加熱空
気となつて、定常状態に達するまでステータを膨
張させ得るし、減速中は、冷却空気流はマニホル
ドからわきへ向けられるので、ステータはよりゆ
つくりと収縮し得る。したがつて、本発明では、
ステータの熱膨張をロータの熱膨張と調和させ
て、その間の間隙を最小とすることができ、この
動作は適当に制御してエンジンの動作に調和す
る。
ステータ構造体の熱膨張を有効に制御してガスタ
ービンエンジンのロータの熱膨張と調和させる。
タービンの定常状態動作では、空気はマニホルド
38を流通してステータ構造体を冷却し、これに
よりそれが熱膨張してタービンロータから遠のく
のを防ぎ、むしろケーシングがロータに向つて収
縮し、ロータの外周とステータの内周との間の間
隙を最小にする。過渡状態では、たとえば突然に
加速するとき、冷却空気は圧力増加により加熱空
気となつて、定常状態に達するまでステータを膨
張させ得るし、減速中は、冷却空気流はマニホル
ドからわきへ向けられるので、ステータはよりゆ
つくりと収縮し得る。したがつて、本発明では、
ステータの熱膨張をロータの熱膨張と調和させ
て、その間の間隙を最小とすることができ、この
動作は適当に制御してエンジンの動作に調和す
る。
第1図は本発明を包含するガスタービンエンジ
ンの概略図、第2図は本発明を適用した圧縮機上
部の軸方向断面図である。 13…圧縮機、26…ロータ、28…動翼、3
1…ステータ構造体、38…冷却空気マニホル
ド、46…導出ダクト、47…流路、56…ステ
ータ構造体外面、58…供給空洞、59…放出空
洞、61…冷却空気流出口、66…開口、67…
冷却空気流入口、68…静翼、69…開口、71
…弁、80…油圧又は空気圧源。
ンの概略図、第2図は本発明を適用した圧縮機上
部の軸方向断面図である。 13…圧縮機、26…ロータ、28…動翼、3
1…ステータ構造体、38…冷却空気マニホル
ド、46…導出ダクト、47…流路、56…ステ
ータ構造体外面、58…供給空洞、59…放出空
洞、61…冷却空気流出口、66…開口、67…
冷却空気流入口、68…静翼、69…開口、71
…弁、80…油圧又は空気圧源。
Claims (1)
- 【特許請求の範囲】 1 ステータ構造体によつてそれと半径方向に近
接するように囲まれた複数のロータ段を有する型
の圧縮機を含むガスタービンエンジン用の間隙制
御系であつて、(a)前記ステータ構造体の熱膨張を
制御するために、前記ステータ構造体の外面に沿
つて軸方向に延びていて、前記ステータ構造体の
外面に沿う軸方向通路に冷却空気流を流す冷却空
気マニホルドと、(b)所定のガスタービンエンジン
運転状態中、前記冷却空気流を前記冷却空気マニ
ホルドから選択的にそらす空気導出ダクトおよび
弁と、を有する間隙制御系。 2 前記冷却空気マニホルドが、軸方向の一点に
おいて、前記ステータ構造体の外面に通ずる冷却
空気流入口を有し、また軸方向の他の点におい
て、前記ステータ構造体の外面と通ずる冷却空気
流出口を有する、特許請求の範囲第1項記載の間
隙制御系。 3 前記冷却空気流入口が前記ステータ構造体に
形成されている特許請求の範囲第2項記載の間隙
制御系。 4 前記冷却空気流出口が前記ステータ構造体か
ら半径方向外方に延びている特許請求の範囲第2
項記載の間隙制御系。 5 前記冷却空気マニホルドが、前記圧縮機と前
記ステータ構造体の外面との間の連通をなす冷却
空気流入口をさらに含む、特許請求の範囲第1項
記載の間隙制御系。 6 前記圧縮機が複数の静翼を備え、かつまた前
記冷却空気流入口が前記静翼の後縁域に配設され
ている、特許請求の範囲第5項記載の間隙制御
系。 7 前記所定のガスタービンエンジン運転状態の
一つが前記ガスタービンエンジンの過渡運転であ
る、特許請求の範囲第1項記載の間隙制御系。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/060,449 US4329114A (en) | 1979-07-25 | 1979-07-25 | Active clearance control system for a turbomachine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5634931A JPS5634931A (en) | 1981-04-07 |
JPH0120320B2 true JPH0120320B2 (ja) | 1989-04-14 |
Family
ID=22029551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10139480A Granted JPS5634931A (en) | 1979-07-25 | 1980-07-25 | Active gap control system for turboomachine |
Country Status (7)
Country | Link |
---|---|
US (1) | US4329114A (ja) |
JP (1) | JPS5634931A (ja) |
CA (1) | CA1159660A (ja) |
DE (1) | DE3028137A1 (ja) |
FR (1) | FR2462555B1 (ja) |
GB (1) | GB2054741B (ja) |
IT (1) | IT1228129B (ja) |
Families Citing this family (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4304093A (en) * | 1979-08-31 | 1981-12-08 | General Electric Company | Variable clearance control for a gas turbine engine |
US4338061A (en) * | 1980-06-26 | 1982-07-06 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Control means for a gas turbine engine |
JPS5872716U (ja) * | 1981-11-10 | 1983-05-17 | ソニー株式会社 | 磁気ヘツド装置 |
FR2535795B1 (fr) * | 1982-11-08 | 1987-04-10 | Snecma | Dispositif de suspension d'aubes statoriques de compresseur axial pour le controle actif des jeux entre rotor et stator |
US4648241A (en) * | 1983-11-03 | 1987-03-10 | United Technologies Corporation | Active clearance control |
US4576547A (en) * | 1983-11-03 | 1986-03-18 | United Technologies Corporation | Active clearance control |
DE3428892A1 (de) * | 1984-08-04 | 1986-02-13 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken |
US4645416A (en) * | 1984-11-01 | 1987-02-24 | United Technologies Corporation | Valve and manifold for compressor bore heating |
US4632635A (en) * | 1984-12-24 | 1986-12-30 | Allied Corporation | Turbine blade clearance controller |
GB2169962B (en) * | 1985-01-22 | 1988-07-13 | Rolls Royce | Blade tip clearance control |
DE3606597C1 (de) * | 1986-02-28 | 1987-02-19 | Mtu Muenchen Gmbh | Schaufel- und Dichtspaltoptimierungseinrichtung fuer Verdichter von Gasturbinentriebwerken |
FR2614073B1 (fr) * | 1987-04-15 | 1992-02-14 | Snecma | Dispositif d'ajustement en temps reel du jeu radial entre un rotor et un stator de turbomachine |
US4928240A (en) * | 1988-02-24 | 1990-05-22 | General Electric Company | Active clearance control |
US4893984A (en) * | 1988-04-07 | 1990-01-16 | General Electric Company | Clearance control system |
US4893983A (en) * | 1988-04-07 | 1990-01-16 | General Electric Company | Clearance control system |
US5005352A (en) * | 1989-06-23 | 1991-04-09 | United Technologies Corporation | Clearance control method for gas turbine engine |
US5090193A (en) * | 1989-06-23 | 1992-02-25 | United Technologies Corporation | Active clearance control with cruise mode |
US5076050A (en) * | 1989-06-23 | 1991-12-31 | United Technologies Corporation | Thermal clearance control method for gas turbine engine |
US5088885A (en) * | 1989-10-12 | 1992-02-18 | United Technologies Corporation | Method for protecting gas turbine engine seals |
US4999991A (en) * | 1989-10-12 | 1991-03-19 | United Technologies Corporation | Synthesized feedback for gas turbine clearance control |
US5098133A (en) * | 1990-01-31 | 1992-03-24 | General Electric Company | Tube coupling with swivelable piston |
US5100291A (en) * | 1990-03-28 | 1992-03-31 | General Electric Company | Impingement manifold |
US5134844A (en) * | 1990-07-30 | 1992-08-04 | General Electric Company | Aft entry cooling system and method for an aircraft engine |
US5123242A (en) * | 1990-07-30 | 1992-06-23 | General Electric Company | Precooling heat exchange arrangement integral with mounting structure fairing of gas turbine engine |
DE69017685T2 (de) * | 1990-10-17 | 1995-07-06 | United Technologies Corp | Aktive Rotor-Statorspielregelung für Gasturbine. |
US5281085A (en) * | 1990-12-21 | 1994-01-25 | General Electric Company | Clearance control system for separately expanding or contracting individual portions of an annular shroud |
GB9027986D0 (en) * | 1990-12-22 | 1991-02-13 | Rolls Royce Plc | Gas turbine engine clearance control |
US5351478A (en) * | 1992-05-29 | 1994-10-04 | General Electric Company | Compressor casing assembly |
US5273396A (en) * | 1992-06-22 | 1993-12-28 | General Electric Company | Arrangement for defining improved cooling airflow supply path through clearance control ring and shroud |
US5261228A (en) * | 1992-06-25 | 1993-11-16 | General Electric Company | Apparatus for bleeding air |
US5399066A (en) * | 1993-09-30 | 1995-03-21 | General Electric Company | Integral clearance control impingement manifold and environmental shield |
US5685693A (en) * | 1995-03-31 | 1997-11-11 | General Electric Co. | Removable inner turbine shell with bucket tip clearance control |
US5996331A (en) * | 1997-09-15 | 1999-12-07 | Alliedsignal Inc. | Passive turbine coolant regulator responsive to engine load |
JP3564286B2 (ja) * | 1997-12-08 | 2004-09-08 | 三菱重工業株式会社 | ガスタービン静翼の段間シールアクティブクリアランス制御システム |
US6190127B1 (en) * | 1998-12-22 | 2001-02-20 | General Electric Co. | Tuning thermal mismatch between turbine rotor parts with a thermal medium |
EP1028230B2 (de) * | 1999-02-09 | 2008-09-03 | ALSTOM (Switzerland) Ltd | Gekühlte Gasturbinenkomponente mit verstellbarer Kühlung |
US6397576B1 (en) * | 1999-10-12 | 2002-06-04 | Alm Development, Inc. | Gas turbine engine with exhaust compressor having outlet tap control |
DE10032454A1 (de) * | 2000-07-04 | 2002-01-17 | Man Turbomasch Ag Ghh Borsig | Vorrichtung zum Kühlen eines ungleichmäßig stark temperaturbelasteten Bauteiles |
US6435823B1 (en) * | 2000-12-08 | 2002-08-20 | General Electric Company | Bucket tip clearance control system |
FR2829193B1 (fr) * | 2001-08-30 | 2005-04-08 | Snecma Moteurs | Systeme de prelevement d'air d'un compresseur |
US6487491B1 (en) * | 2001-11-21 | 2002-11-26 | United Technologies Corporation | System and method of controlling clearance between turbine engine blades and case based on engine components thermal growth model |
US6732530B2 (en) * | 2002-05-31 | 2004-05-11 | Mitsubishi Heavy Industries, Ltd. | Gas turbine compressor and clearance controlling method therefor |
US6910851B2 (en) * | 2003-05-30 | 2005-06-28 | Honeywell International, Inc. | Turbofan jet engine having a turbine case cooling valve |
DE102004032978A1 (de) * | 2004-07-08 | 2006-02-09 | Mtu Aero Engines Gmbh | Strömungsstruktur für einen Turboverdichter |
US7434402B2 (en) * | 2005-03-29 | 2008-10-14 | Siemens Power Generation, Inc. | System for actively controlling compressor clearances |
US7708518B2 (en) * | 2005-06-23 | 2010-05-04 | Siemens Energy, Inc. | Turbine blade tip clearance control |
DE102005045255A1 (de) * | 2005-09-22 | 2007-03-29 | Mtu Aero Engines Gmbh | Verbesserter Verdichter in Axialbauart |
US7293953B2 (en) * | 2005-11-15 | 2007-11-13 | General Electric Company | Integrated turbine sealing air and active clearance control system and method |
DE102006052786B4 (de) * | 2006-11-09 | 2011-06-30 | MTU Aero Engines GmbH, 80995 | Turbomaschine |
JP4304541B2 (ja) * | 2007-06-27 | 2009-07-29 | トヨタ自動車株式会社 | 抽気型ガスタービン |
US8197186B2 (en) | 2007-06-29 | 2012-06-12 | General Electric Company | Flange with axially extending holes for gas turbine engine clearance control |
US8393855B2 (en) | 2007-06-29 | 2013-03-12 | General Electric Company | Flange with axially curved impingement surface for gas turbine engine clearance control |
US8434997B2 (en) * | 2007-08-22 | 2013-05-07 | United Technologies Corporation | Gas turbine engine case for clearance control |
US7921653B2 (en) * | 2007-11-26 | 2011-04-12 | General Electric Company | Internal manifold air extraction system for IGCC combustor and method |
EP2078837A1 (de) | 2008-01-11 | 2009-07-15 | Siemens Aktiengesellschaft | Zapfluftentnahmevorrichtung für einen Verdichter eines Gasturbinentriebwerks |
US8296037B2 (en) * | 2008-06-20 | 2012-10-23 | General Electric Company | Method, system, and apparatus for reducing a turbine clearance |
EP2138676B1 (en) | 2008-06-24 | 2013-01-30 | Siemens Aktiengesellschaft | Method and device for cooling a gas turbine casing |
US8517663B2 (en) * | 2008-09-30 | 2013-08-27 | General Electric Company | Method and apparatus for gas turbine engine temperature management |
US8172521B2 (en) * | 2009-01-15 | 2012-05-08 | General Electric Company | Compressor clearance control system using turbine exhaust |
US8092146B2 (en) * | 2009-03-26 | 2012-01-10 | Pratt & Whitney Canada Corp. | Active tip clearance control arrangement for gas turbine engine |
DE102009023061A1 (de) | 2009-05-28 | 2010-12-02 | Mtu Aero Engines Gmbh | Spaltkontrollsystem, Strömungsmaschine und Verfahren zum Einstellen eines Laufspalts zwischen einem Rotor und einer Ummantelung einer Strömungsmaschine |
DE102009023062A1 (de) | 2009-05-28 | 2010-12-02 | Mtu Aero Engines Gmbh | Spaltkontrollsystem, Strömungsmaschine und Verfahren zum Einstellen eines Laufspalts zwischen einem Rotor und einer Ummantelung einer Strömungsmaschine |
JP5629321B2 (ja) | 2009-09-13 | 2014-11-19 | リーン フレイム インコーポレイテッド | 燃焼装置用の入口予混合器 |
US8662831B2 (en) * | 2009-12-23 | 2014-03-04 | General Electric Company | Diaphragm shell structures for turbine engines |
US9347334B2 (en) * | 2010-03-31 | 2016-05-24 | United Technologies Corporation | Turbine blade tip clearance control |
JP4841680B2 (ja) * | 2010-05-10 | 2011-12-21 | 川崎重工業株式会社 | ガスタービン圧縮機の抽気構造 |
US20120070271A1 (en) | 2010-09-21 | 2012-03-22 | Urban Justin R | Gas turbine engine with bleed duct for minimum reduction of bleed flow and minimum rejection of hail during hail ingestion events |
RU2543101C2 (ru) * | 2010-11-29 | 2015-02-27 | Альстом Текнолоджи Лтд | Осевая газовая турбина |
RU2547541C2 (ru) * | 2010-11-29 | 2015-04-10 | Альстом Текнолоджи Лтд | Осевая газовая турбина |
US9458855B2 (en) * | 2010-12-30 | 2016-10-04 | Rolls-Royce North American Technologies Inc. | Compressor tip clearance control and gas turbine engine |
US20120301275A1 (en) * | 2011-05-26 | 2012-11-29 | Suciu Gabriel L | Integrated ceramic matrix composite rotor module for a gas turbine engine |
US8967951B2 (en) | 2012-01-10 | 2015-03-03 | General Electric Company | Turbine assembly and method for supporting turbine components |
JP6010348B2 (ja) * | 2012-06-01 | 2016-10-19 | 三菱日立パワーシステムズ株式会社 | 軸流圧縮機及びこれを備えたガスタービン |
US9528391B2 (en) | 2012-07-17 | 2016-12-27 | United Technologies Corporation | Gas turbine engine outer case with contoured bleed boss |
US9341074B2 (en) | 2012-07-25 | 2016-05-17 | General Electric Company | Active clearance control manifold system |
US9394792B2 (en) * | 2012-10-01 | 2016-07-19 | United Technologies Corporation | Reduced height ligaments to minimize non-integral vibrations in rotor blades |
US9982598B2 (en) * | 2012-10-22 | 2018-05-29 | General Electric Company | Gas turbine engine variable bleed valve for ice extraction |
CN104956035B (zh) * | 2013-02-08 | 2017-07-28 | 通用电气公司 | 基于抽吸装置的主动间隙控制系统 |
DE102013202786B4 (de) * | 2013-02-20 | 2015-04-30 | Rolls-Royce Deutschland Ltd & Co Kg | Vorrichtung zum Abblasen von Verdichterluft in einem Turbofantriebwerk |
US9598974B2 (en) | 2013-02-25 | 2017-03-21 | Pratt & Whitney Canada Corp. | Active turbine or compressor tip clearance control |
WO2014143296A1 (en) | 2013-03-14 | 2014-09-18 | United Technologies Corporation | Splitter for air bleed manifold |
US10184348B2 (en) | 2013-12-05 | 2019-01-22 | Honeywell International Inc. | System and method for turbine blade clearance control |
US9963994B2 (en) * | 2014-04-08 | 2018-05-08 | General Electric Company | Method and apparatus for clearance control utilizing fuel heating |
EP2957503B1 (en) * | 2014-06-19 | 2016-08-17 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Aircraft with two engines having by-pass air inlet openings and bleed air outlets as well as engine for an aircraft |
BE1024024B1 (fr) * | 2014-10-09 | 2017-10-30 | Safran Aero Boosters S.A. | Compresseur de turbomachine axiale avec rotor contrarotatif |
US10337353B2 (en) | 2014-12-31 | 2019-07-02 | General Electric Company | Casing ring assembly with flowpath conduction cut |
GB201504010D0 (en) * | 2015-03-10 | 2015-04-22 | Rolls Royce Plc | Gas bleed arrangement |
CA2959708C (en) * | 2016-03-11 | 2019-04-16 | General Electric Company | Method and apparatus for active clearance control |
US10329941B2 (en) * | 2016-05-06 | 2019-06-25 | United Technologies Corporation | Impingement manifold |
US10731663B2 (en) * | 2016-06-21 | 2020-08-04 | Rolls-Royce North American Technologies Inc. | Axial compressor with radially outer annulus |
CN106194846A (zh) * | 2016-07-12 | 2016-12-07 | 中国航空工业集团公司沈阳发动机设计研究所 | 一种双层机匣结构压气机及具有其的航空发动机 |
US10544803B2 (en) | 2017-04-17 | 2020-01-28 | General Electric Company | Method and system for cooling fluid distribution |
DE102017216119A1 (de) * | 2017-09-13 | 2019-03-14 | MTU Aero Engines AG | Gasturbinenverdichtergehäuse |
US10711629B2 (en) * | 2017-09-20 | 2020-07-14 | Generl Electric Company | Method of clearance control for an interdigitated turbine engine |
US11225915B2 (en) | 2017-11-16 | 2022-01-18 | General Electric Company | Engine core speed reducing method and system |
US11015475B2 (en) | 2018-12-27 | 2021-05-25 | Rolls-Royce Corporation | Passive blade tip clearance control system for gas turbine engine |
US11174798B2 (en) * | 2019-03-20 | 2021-11-16 | United Technologies Corporation | Mission adaptive clearance control system and method of operation |
DE102019208342A1 (de) * | 2019-06-07 | 2020-12-10 | MTU Aero Engines AG | Gasturbinenkühlung |
US20200400073A1 (en) * | 2019-06-21 | 2020-12-24 | United Technologies Corporation | High pressure clearance control system for gas turbine engine |
US11215074B2 (en) * | 2019-07-08 | 2022-01-04 | General Electric Company | Oxidation activated cooling flow |
US11255214B2 (en) * | 2019-11-04 | 2022-02-22 | Raytheon Technologies Corporation | Negative thermal expansion compressor case for improved tip clearance |
US11293298B2 (en) | 2019-12-05 | 2022-04-05 | Raytheon Technologies Corporation | Heat transfer coefficients in a compressor case for improved tip clearance control system |
EP3842619B1 (en) | 2019-12-23 | 2022-09-28 | Hamilton Sundstrand Corporation | Valve assembly for an active clearance control system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5317814A (en) * | 1976-08-02 | 1978-02-18 | Gen Electric | Turbine shroud gap reducing equipment |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2837270A (en) * | 1952-07-24 | 1958-06-03 | Gen Motors Corp | Axial flow compressor |
US2848156A (en) * | 1956-12-18 | 1958-08-19 | Gen Electric | Fixed stator vane assemblies |
US3108767A (en) * | 1960-03-14 | 1963-10-29 | Rolls Royce | By-pass gas turbine engine with air bleed means |
DE1426818A1 (de) * | 1963-07-26 | 1969-03-13 | Licentia Gmbh | Einrichtung zur Radialverstellung von Segmenten eines Ringes einer Axialturbomaschine,insbesondere -gasturbine,der Leitschaufeln traegt und/oder Laufschaufeln umgibt |
DE1286810B (de) * | 1963-11-19 | 1969-01-09 | Licentia Gmbh | Laufschaufelradialspalt-Abdeckring einer Axialturbomaschine, insbesondere -gasturbine |
FR2280791A1 (fr) * | 1974-07-31 | 1976-02-27 | Snecma | Perfectionnements au reglage du jeu entre les aubes et le stator d'une turbine |
US3945759A (en) * | 1974-10-29 | 1976-03-23 | General Electric Company | Bleed air manifold |
US3966354A (en) * | 1974-12-19 | 1976-06-29 | General Electric Company | Thermal actuated valve for clearance control |
US4069662A (en) * | 1975-12-05 | 1978-01-24 | United Technologies Corporation | Clearance control for gas turbine engine |
US4019320A (en) * | 1975-12-05 | 1977-04-26 | United Technologies Corporation | External gas turbine engine cooling for clearance control |
US4127357A (en) * | 1977-06-24 | 1978-11-28 | General Electric Company | Variable shroud for a turbomachine |
US4213296A (en) * | 1977-12-21 | 1980-07-22 | United Technologies Corporation | Seal clearance control system for a gas turbine |
-
1979
- 1979-07-25 US US06/060,449 patent/US4329114A/en not_active Expired - Lifetime
-
1980
- 1980-07-18 CA CA000356513A patent/CA1159660A/en not_active Expired
- 1980-07-23 GB GB8024092A patent/GB2054741B/en not_active Expired
- 1980-07-24 DE DE19803028137 patent/DE3028137A1/de active Granted
- 1980-07-24 IT IT8023676A patent/IT1228129B/it active
- 1980-07-25 FR FR8016476A patent/FR2462555B1/fr not_active Expired
- 1980-07-25 JP JP10139480A patent/JPS5634931A/ja active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5317814A (en) * | 1976-08-02 | 1978-02-18 | Gen Electric | Turbine shroud gap reducing equipment |
Also Published As
Publication number | Publication date |
---|---|
DE3028137A1 (de) | 1981-02-12 |
DE3028137C2 (ja) | 1989-12-07 |
CA1159660A (en) | 1984-01-03 |
IT8023676A0 (it) | 1980-07-24 |
FR2462555A1 (fr) | 1981-02-13 |
FR2462555B1 (fr) | 1987-07-31 |
US4329114A (en) | 1982-05-11 |
GB2054741B (en) | 1983-10-05 |
JPS5634931A (en) | 1981-04-07 |
GB2054741A (en) | 1981-02-18 |
IT1228129B (it) | 1991-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0120320B2 (ja) | ||
EP1038093B1 (en) | Turbine passive thermal valve for improved tip clearance control | |
US3966354A (en) | Thermal actuated valve for clearance control | |
US4023919A (en) | Thermal actuated valve for clearance control | |
US5351732A (en) | Gas turbine engine clearance control | |
US4023731A (en) | Thermal actuated valve for clearance control | |
CA2519823C (en) | Methods and apparatus for assembling a gas turbine engine | |
EP0790390B1 (en) | Turbomachine rotor blade tip sealing | |
US6126390A (en) | Passive clearance control system for a gas turbine | |
EP1555393B1 (en) | Gas turbine engine component having bypass circuit | |
EP2375005B1 (en) | Method for controlling turbine blade tip seal clearance | |
JPS6020561B2 (ja) | タービン型パワープラント | |
JPS6363721B2 (ja) | ||
JPH0122459B2 (ja) | ||
CN109083690B (zh) | 具有可变有效喉道的涡轮发动机 | |
JP2000186572A (ja) | ガスタ―ビンエンジン | |
US20160153291A1 (en) | Cooling system of a stator assembly for a gas turbine engine having a variable cooling flow mechanism and method of operation | |
JP2016121690A (ja) | エンジンおよび前記エンジンを作動させる方法 | |
GB2319308A (en) | Cooling gas turbine blades | |
US11619170B1 (en) | Gas turbine engine with radial turbine having modulated fuel cooled cooling air | |
EP3246524B1 (en) | Impingement manifold | |
EP0952309B1 (en) | Fluid seal | |
WO2015094990A1 (en) | Adjustable clearance control system for airfoil tip in gas turbine engine | |
EP3441593B1 (en) | Lobed gas discharge fairing for a turbofan engine | |
GB2420830A (en) | Casing arrangement |