JPH01202874A - Superconductor element - Google Patents
Superconductor elementInfo
- Publication number
- JPH01202874A JPH01202874A JP63027889A JP2788988A JPH01202874A JP H01202874 A JPH01202874 A JP H01202874A JP 63027889 A JP63027889 A JP 63027889A JP 2788988 A JP2788988 A JP 2788988A JP H01202874 A JPH01202874 A JP H01202874A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor layer
- electrodes
- voltage
- injection
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 43
- 238000002347 injection Methods 0.000 claims abstract description 33
- 239000007924 injection Substances 0.000 claims abstract description 33
- 239000000919 ceramic Substances 0.000 claims abstract description 18
- 239000000969 carrier Substances 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000005668 Josephson effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔目 次〕
概要
産業上の利用分野
従来の技術
発明が解決しようとする課題
課題を解決するための手段
作用
実施例
本発明の一実施例 (第1〜3図)
発明の効果
〔概 要〕
超伝導体素子に関し、
小さな電圧で超伝導電流を制御してスイッチング作用を
行うとともに、高ゲインの回路にすることと高速化にす
ることを可能にした超伝導体素子を提供することを目的
とし、
キャリア濃度が低いセラミックス系の超伝導体層の両端
に二つの電極を配設し、該超伝導体層に沿って超伝導を
担う主たるキャリアを注入する少なくとも1個の注入電
極を設け、前記二つの電極間に所定のバイアス電圧を加
えたとき、一方の電極と注入電極との間を流れる電流が
注入電極から注入されるキャリアに基づいて所定のスイ
ッチング特性を有するように構成する。[Detailed Description of the Invention] [Table of Contents] Overview Industrial Field of Application Conventional Technology Problems to be Solved by the Invention Means for Solving the Problems Action Embodiment An Embodiment of the Present Invention (Figures 1 to 3) Effects of the invention [Summary] A superconductor element that controls superconducting current with a small voltage to perform a switching action, and also makes it possible to create a high gain circuit and increase speed. Two electrodes are arranged at both ends of a ceramic superconductor layer with a low carrier concentration, and at least one electrode is injected along the superconductor layer to inject the main carrier responsible for superconductivity. An injection electrode is provided, and when a predetermined bias voltage is applied between the two electrodes, a current flowing between one electrode and the injection electrode has predetermined switching characteristics based on carriers injected from the injection electrode. Configure it as follows.
本発明は、超伝導体素子に係り、詳しくは、コンピュー
タ等の論理回路、メモリ等に使用され、スイッチング作
用を行う超伝導体素子に関する。The present invention relates to a superconductor element, and more particularly to a superconductor element that is used in logic circuits such as computers, memories, etc., and performs a switching action.
スイッチング素子としては、例えば2つの電極間に流れ
る超伝導電流をこれ以外の他の電極に加える電気信号で
制御するタイプのもの(F ET等)ヤクライオトロン
、ジョセフソン素子等がある。このようなスイッチング
素子は、超伝導現像を用いて超伝導電流を制御すること
により導通時に電圧がほぼ零で電流を流すことができ、
超伝導状態(電気抵抗がないのと同じ状態をいう)を得
ることができる。。Examples of the switching element include a type that controls a superconducting current flowing between two electrodes by an electric signal applied to another electrode (such as an FET), a Yakyotron, a Josephson element, and the like. By controlling superconducting current using superconducting development, such switching elements can allow current to flow with almost zero voltage when conducting.
A superconducting state (the same state as having no electrical resistance) can be obtained. .
スイッチング素子においては、近年コンピュータ等の高
速化によりスイッチング速度の向上が要求されている。In recent years, switching elements have been required to have higher switching speeds as computers and the like have become faster.
ここでは、高速化に有利なスイッチング素子としてジョ
セフソン素子を一例にあげて説明する。Here, a Josephson element will be explained as an example of a switching element that is advantageous for increasing speed.
ジョセフソン素子はジョセフソン効果(2つの超伝導体
を極めて近い距離に接近させて電気的に導通させた場合
、超伝導体間に流れる電流がある条件下で超伝導を、他
の条件下で抵抗を示す現象をいう)を有する素子であり
、代表的な構造は超伏4体からなる電極の間に電子のト
ンネルが可能な薄さ(数nm)の絶縁膜をはさんだもの
である。Josephson elements are known for their Josephson effect (when two superconductors are brought very close together and electrically conductive, they exhibit superconductivity under conditions where there is a current flowing between them, but under other conditions). A typical structure is one in which a thin (several nanometer) insulating film that allows electron tunneling is sandwiched between electrodes made of super-flattened four bodies.
これを極低温に冷却し電極間に電流を流すと、しきい値
以下の電流では電極間に電圧は発生せず、しきい値以上
の電流が加わると電圧を発生する。When this is cooled to an extremely low temperature and a current is passed between the electrodes, no voltage will be generated between the electrodes if the current is below the threshold value, but a voltage will be generated if the current is above the threshold value.
したがって、ジョセフソン素子は超伝導状態から電圧状
態ヘスイッチする性質をもっていることがわかる。この
超伝導状態、電圧状態を利用することによって集積回路
を構成することができる。Therefore, it can be seen that the Josephson element has the property of switching from a superconducting state to a voltage state. An integrated circuit can be constructed by utilizing this superconducting state and voltage state.
−iにジョセフソン素子は、スイッチに要する時間が短
く、超高速化に有利であることが知られている(ジョセ
フソン素子で構成した集積回路も同様)。-i Josephson elements are known to have a short switching time and are advantageous for extremely high speeds (the same applies to integrated circuits made of Josephson elements).
しかしながら、このような従来のジョセフソン素子にあ
っては、高集積回路に用いる場合、高ゲインの回路を得
にくいという問題があり、タライオトロンにあってはス
イッチング速度が遅く高速化が得られないという問題点
があった。However, such conventional Josephson elements have the problem that it is difficult to obtain high gain circuits when used in highly integrated circuits, and with Talaiotrons, the switching speed is slow and high speed cannot be achieved. There was a problem.
また、電界効果を用いたFETタイプ等のスイッチング
素子においては、高集積回路に用いる場合、超伝導電流
を制御するためにゲート電圧にかなり大きな電圧(数v
L数十Vで、実用的に高すぎることを意味する。)をか
けなければならず実用的でないという問題がある。In addition, in switching elements such as FET type that use field effect, when used in highly integrated circuits, a considerably large voltage (several volts) is applied to the gate voltage in order to control the superconducting current.
L is several tens of volts, which means it is too high for practical use. ), which is impractical.
そこで本発明は、小さな電圧で超伝導電流を制御してス
イッチング作用を行うとともに、高ゲインの回路にする
ことと高速化にすることを可能にした超伝導体素子を提
供することを目的としている。Therefore, an object of the present invention is to provide a superconductor element that can control superconducting current with a small voltage to perform a switching action, as well as make it possible to create a high gain circuit and increase speed. .
本発明による超伝導体素子は上記目的達成のため、キャ
リア濃度が低いセラミックス系の超伏4体層の両端に二
つの電極を配設し、該超伝導体層に沿って超伝導を担う
主たるキャリアを注入する少なくとも1個の注入電極を
設け、前記二つの電極間に所定のバイアス電圧を加えた
とき、一方の電極と注入電極との間を流れる電流が注入
電極から注入されるキャリアに基づいて所定のスイッチ
ング特性を有するようにしている。In order to achieve the above object, the superconductor element according to the present invention has two electrodes disposed at both ends of a ceramic-based superflat four-body layer with a low carrier concentration, and a superconductor that is responsible for superconductivity along the superconductor layer. When at least one injection electrode for injecting carriers is provided and a predetermined bias voltage is applied between the two electrodes, the current flowing between one electrode and the injection electrode is based on the carriers injected from the injection electrode. It is made to have predetermined switching characteristics.
本発明では、キャリア濃度の低いセラミックス系の超伝
導体層の両端に二つの電極が配設され、該超伝導体層に
沿って超伝導を担う主たるキャリアを注入する少なくと
も1個の注入電極が設けられる。そして、前記二つの電
極間に所定のバイアス電圧を加えて、一方の電極と注入
電極との間に制御電圧を印加したとき、両電極間を流れ
る電流は当初は小さく制御電圧がしきい値を超えると、
注入電圧からの注入キャリアに基づき大きくなって(超
伝導状B)スイッチング作用が行われる。In the present invention, two electrodes are disposed at both ends of a ceramic superconductor layer with a low carrier concentration, and at least one injection electrode for injecting the main carriers responsible for superconductivity along the superconductor layer. provided. When a predetermined bias voltage is applied between the two electrodes and a control voltage is applied between one electrode and the injection electrode, the current flowing between the two electrodes is initially small and the control voltage exceeds the threshold. If you exceed
Due to the injected carriers from the injected voltage, a large (superconducting state B) switching action takes place.
したがって、小さな制御電圧でキャリア密度が変化し、
超伝導電流を制御するスイッチング素子が実現できる。Therefore, a small control voltage changes the carrier density,
A switching element that controls superconducting current can be realized.
以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.
第1図は本発明に係る超伝導体素子の一実施例の構造を
示す断面図である。図示例は、電圧制御型の負性抵抗素
子に適用する場合を示している。FIG. 1 is a sectional view showing the structure of an embodiment of a superconductor element according to the present invention. The illustrated example shows a case where the present invention is applied to a voltage-controlled negative resistance element.
この図において、1は例えば5rTiO,からなる基板
、2は例えば(Lat−x Snx ) z CuOa
(x = 0.02)からなるセラミックス系の超
伝導体層で、層厚が例えば5000人で、キャリア濃度
が低くなっている。3は例えば(L a l−X S
r X) z Cu Os (x =0.075 )
からなる注入電極で、膜厚が例えば5000人である@
4as4bs4cは例えばAuからなる電極である。In this figure, 1 is a substrate made of, for example, 5rTiO, and 2 is a substrate made of, for example, (Lat-x Snx) z CuOa.
(x = 0.02), the layer thickness is, for example, 5,000 layers, and the carrier concentration is low. 3 is for example (L a l-X S
r X) z Cu Os (x = 0.075)
An injection electrode consisting of a film with a film thickness of, for example, 5000 @
4as4bs4c is an electrode made of, for example, Au.
なお、ここでエミッタ電極は注入電極3と電極4bから
構成されている。また、セラミックス系の超伝導体層2
は超伝導電流が流れ、制御される媒体として機能する。Note that the emitter electrode here consists of an injection electrode 3 and an electrode 4b. In addition, ceramic-based superconductor layer 2
acts as a medium through which superconducting currents flow and are controlled.
注入電極2は超伝導体層2の超伝導を担う主たるキャリ
アを注入する電極として機能し、超伝導体層2のキャリ
ア密度を増加させるためのものである。The injection electrode 2 functions as an electrode for injecting the main carriers responsible for the superconductivity of the superconductor layer 2, and is used to increase the carrier density of the superconductor layer 2.
次に、その動作について説明する。Next, its operation will be explained.
第2図に示すようにバイアス電圧(エミッタ電圧Vt、
ベース電圧Vm)を印加してニーミッタ電流!。を注入
電極3からセラミックス系の超伝導体層2に流すと、エ
ミッタの電圧−電流特性は第3図に示すようになる。エ
ミッタ電圧■Eが負性抵抗のしきい値電圧V、以下では
、注入電極3とセラミックス系の超伝導体層2間のエミ
ッタ接合5が逆バイアスされ、注入電極3からセラミッ
クス系の超伝導体層2ヘキヤリア(正孔)の注入はほと
んど生じない。したがって、セラミックス系の超伝導体
層2はあたかも高抵抗になっているようにみえる。また
、エミッタ電圧■、がしきい値電圧vPを超えると、エ
ミッタ接合5が順バイアスされて注入電極3からセラミ
ックス系の超伝導体層2ヘキヤリアが注入され、そのた
めセラミックス系の超伝導体層2の抵抗率が減少し、つ
いには超伝導状態(第3図A部)になる。As shown in FIG. 2, the bias voltage (emitter voltage Vt,
Neemitter current by applying base voltage Vm)! . When flowing from the injection electrode 3 to the ceramic superconductor layer 2, the voltage-current characteristics of the emitter become as shown in FIG. When the emitter voltage ■E is the threshold voltage V of negative resistance, the emitter junction 5 between the injection electrode 3 and the ceramic superconductor layer 2 is reverse biased, and the ceramic superconductor layer Almost no injection of layer 2 carriers (holes) occurs. Therefore, the ceramic superconductor layer 2 appears to have high resistance. Furthermore, when the emitter voltage (■) exceeds the threshold voltage vP, the emitter junction 5 is forward biased and carriers are injected from the injection electrode 3 into the ceramic superconductor layer 2. The resistivity of the material decreases, and it finally becomes a superconducting state (section A in Figure 3).
すなわち、上記実施例では、キャリア濃度が低いセラミ
ックス系の超伝導体層2と接合させて、超伝導体層2の
超伝導を担う主たるキャリアを注入する注入電極3を設
けたので、小さな電圧(具体的にはエミッタ電圧Vえて
数10mV程度)で超伝導体層2のキャリア密度を従来
のものより大きく変化させることができ、超伝導特性も
大きく変化させることができざ。したがって、小さな電
圧で超伝導電流を制御することのできるいわゆる電圧制
御型のスイッチング素子(本実施例は負性抵抗素子)を
得ることができ、高ゲインの回路を得ることができるう
え高速化も可能になる。That is, in the above embodiment, since the injection electrode 3 for injecting the main carriers responsible for the superconductivity of the superconductor layer 2 is provided in contact with the ceramic superconductor layer 2 having a low carrier concentration, a small voltage ( Specifically, it is possible to change the carrier density of the superconductor layer 2 to a greater degree than in the conventional case by changing the emitter voltage V (approximately several tens of mV), and the superconducting properties can also be changed significantly. Therefore, it is possible to obtain a so-called voltage-controlled switching element (a negative resistance element in this example) that can control superconducting current with a small voltage, and it is possible to obtain a high-gain circuit as well as a high-speed circuit. It becomes possible.
なお、上記実施例では、セラミックス系の超伝導体層が
(Lat−x S rx ) t Cubs (x=
0゜02)からなる組成のものを用いた場合について説
明したが、本発明はこれに限定されるものではなく、C
uとOを共に含んでいるものであればよく、具体的には
例えばY+ B a ! Cus O6,9であっても
よい。In the above embodiment, the ceramic superconductor layer has (Lat-x S rx ) t Cubs (x=
0°02), the present invention is not limited to this, and the present invention is not limited to this.
It only needs to contain both u and O, specifically, for example, Y+ B a ! It may also be Cus O6,9.
また、上記実施例では注入電極3からセラミックス系の
超伝導体層2へのキャリアの注入を電流注入によって行
なう場合について述べたが、本発明はこれに限定される
ものではなく、光によってキャリアを励起することによ
って行なう場合であってもよい。Further, in the above embodiment, a case was described in which carriers were injected from the injection electrode 3 into the ceramic superconductor layer 2 by current injection, but the present invention is not limited to this, and the carriers are injected by light. It may also be carried out by excitation.
また、上記実施例では注入電極3をセラミックス系の超
伝導体層2上に1個設けた場合について説明したが、本
発明はこれに限定されるものではなく、2個以上設けて
構成してもよい。Further, in the above embodiment, the case where one injection electrode 3 is provided on the ceramic superconductor layer 2 has been described, but the present invention is not limited to this, and two or more injection electrodes may be provided. Good too.
また、上記実施例では注入電極3をセラミックス系の超
伝導体層2と直接接合させて構成したものについて説明
したが、本発明はこれに限定されるものではなく、注入
電極3を超伝導体層2と直接接合させる以外の構造にし
てもよく、具体的には注入電極3の機能、即ち超伝導体
層2の超伝導を担う主たるキャリアを注入することを防
げない程度の例えば半導体層等を間に介するように設け
てもよい。Further, in the above embodiment, the injection electrode 3 was constructed by directly joining the ceramic superconductor layer 2, but the present invention is not limited to this. A structure other than direct bonding to the layer 2 may be used, and specifically, the function of the injection electrode 3, that is, the injection of the main carriers responsible for the superconductivity of the superconductor layer 2, cannot be prevented, such as a semiconductor layer, etc. may be provided in between.
本発明によれば、セラミックス系の超伝導体層に、超伝
導体層の超伝導を担う主たるキャリアを注入する注入電
極を設けたので、小さな電圧で超伝導電流を制御してス
イッチング作用を行わせることができ、高ゲインの回路
を得ることができるうえ、高速化も可能になる。According to the present invention, an injection electrode is provided in the ceramic superconductor layer for injecting the main carriers responsible for superconductivity in the superconductor layer, so a switching action is performed by controlling the superconducting current with a small voltage. This makes it possible to obtain a high-gain circuit and also to increase the speed.
第1図は本発明に係る超伝導体素子の一実施例の構造を
示す断面図、
第2図は第1図に示す超伝導体素子の動作を説明する概
略図、
第3図は第1図に示す超伝導体素子のエミッタの電圧−
電流特性を示す図である。
1・・・・・・基板、
2・・・・・・セラミックス系の超伝導体層、3・・・
・・・注入電極、
4a、4C・・・・・・電極。
1 輿
値FIG. 1 is a sectional view showing the structure of an embodiment of a superconductor element according to the present invention, FIG. 2 is a schematic diagram explaining the operation of the superconductor element shown in FIG. 1, and FIG. The emitter voltage of the superconductor element shown in the figure -
FIG. 3 is a diagram showing current characteristics. 1... Substrate, 2... Ceramic superconductor layer, 3...
... Injection electrode, 4a, 4C... Electrode. 1 palanquin price
Claims (1)
端に二つの電極を配設し、 該超伝導体層に沿って超伝導を担う主たるキヤリアを注
入する少なくとも1個の注入電極を設け、前記二つの電
極間に所定のバイアス電圧を加えたとき、一方の電極と
注入電極との間を流れる電流が注入電極から注入される
キャリアに基づいて所定のスイッチング特性を有するよ
うに構成したことを特徴とする超伝導体素子。[Claims] Two electrodes are arranged at both ends of a ceramic superconductor layer with a low carrier concentration, and at least one injection of a main carrier responsible for superconductivity is carried out along the superconductor layer. electrodes are provided, and when a predetermined bias voltage is applied between the two electrodes, the current flowing between one electrode and the injection electrode has predetermined switching characteristics based on the carriers injected from the injection electrode. A superconductor element characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027889A JPH01202874A (en) | 1988-02-09 | 1988-02-09 | Superconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63027889A JPH01202874A (en) | 1988-02-09 | 1988-02-09 | Superconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01202874A true JPH01202874A (en) | 1989-08-15 |
Family
ID=12233459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63027889A Pending JPH01202874A (en) | 1988-02-09 | 1988-02-09 | Superconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01202874A (en) |
-
1988
- 1988-02-09 JP JP63027889A patent/JPH01202874A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5401714A (en) | Field-effect device with a superconducting channel | |
US4831421A (en) | Superconducting device | |
JPH0834320B2 (en) | Superconducting element | |
US6573526B1 (en) | Single electron tunneling transistor having multilayer structure | |
JPH01202874A (en) | Superconductor element | |
JP3123164B2 (en) | Superconducting device | |
US3204115A (en) | Four-terminal solid state superconductive device with control current flowing transverse to controlled output current | |
JPS6288381A (en) | Superconducting switching apparatus | |
JPH0315355B2 (en) | ||
JP2955415B2 (en) | Superconducting element | |
JP2955407B2 (en) | Superconducting element | |
JP3026482B2 (en) | Superconducting element, method of manufacturing and operating method | |
US3384794A (en) | Superconductive logic device | |
JP3212088B2 (en) | Superconducting device | |
JP2583922B2 (en) | Superconducting switching element | |
JP2867956B2 (en) | Superconducting transistor | |
JP3221037B2 (en) | Current modulator | |
JP2583923B2 (en) | Superconducting switching element | |
Mimura | Voltage-controlled DNR in unijunction transistor structure | |
EP0565452B1 (en) | Superconducting device having a superconducting channel formed of oxide superconductor material | |
JP2596337B2 (en) | Superconducting element | |
JP3000166B2 (en) | Superconducting switching element | |
JP2978738B2 (en) | Electrostatic Josephson interferometer | |
JPS6212212A (en) | Superconduction circuit | |
RU2051445C1 (en) | Superconductor current amplifier using josephson effect |