JP3221037B2 - Current modulator - Google Patents

Current modulator

Info

Publication number
JP3221037B2
JP3221037B2 JP06814292A JP6814292A JP3221037B2 JP 3221037 B2 JP3221037 B2 JP 3221037B2 JP 06814292 A JP06814292 A JP 06814292A JP 6814292 A JP6814292 A JP 6814292A JP 3221037 B2 JP3221037 B2 JP 3221037B2
Authority
JP
Japan
Prior art keywords
superconductor
electrode
circumscribed
channel
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06814292A
Other languages
Japanese (ja)
Other versions
JPH05275759A (en
Inventor
栄治 名取
武富 上川
節也 岩下
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP06814292A priority Critical patent/JP3221037B2/en
Publication of JPH05275759A publication Critical patent/JPH05275759A/en
Application granted granted Critical
Publication of JP3221037B2 publication Critical patent/JP3221037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はマイクロエレクトロニク
ス分野やパワーエレクトロニクス(電力)分野に適した
高速で且つ大電流容量化の可能な電流変調装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed and large-current current modulator suitable for the field of microelectronics and power electronics (power).

【0002】[0002]

【従来の技術】高速化、大電流容量化を目指した電流変
調装置の代表に超伝導体を用いた素子が挙げられる。
2. Description of the Related Art A device using a superconductor is a typical example of a current modulator aiming at high speed and large current capacity.

【0003】この超伝導体を用いた電流変調装置は一般
に2端子素子と3端子素子の2つに分類できるが、ここ
では3端子素子を考える。
A current modulator using this superconductor can be generally classified into a two-terminal element and a three-terminal element. Here, a three-terminal element is considered.

【0004】3端子素子は基本的には2つの電極超伝導
体の間にチャネル接合体を設け、該チャネル接合体に制
御電極を取り付けた構造からなる。チャネル接合体とし
ては、絶縁体、半導体、常伝導体、あるいは超伝導体が
用いられる。さて、チャネル接合体として超伝導体を用
いた電流変調装置、換言すると電極超伝導体・チャネル
超伝導体・電極超伝導体の構造を有する電流変調装置は
他のチャネル接合体を用いた電流変調装置と比較してチ
ャネル接合体のサイズ制限がほとんどなく、制御電極の
取り付けが容易であり且つ大電流容量化が可能と言う長
所を持っている。これは、他のチャネル接合体を用いる
場合にはトンネル効果や近接効果という数Å〜数100
Å以下のサイズでしか有効でない効果が素子特性を支配
しているのに対し、チャネル接合体として超伝導体を用
いる場合にはチャネル超伝導体の超伝導キャリヤが制御
電極信号によって変調される効果が素子特性を支配して
いるからである。それゆえ、通常のフォトリソグラフィ
ー技術が利用可能なミクロンオーダー以上のパターンル
ールで製造できる3端子素子は電極超伝導体・チャネル
超伝導体・電極超伝導体の構造からなる電流変調装置だ
けである。
A three-terminal device basically has a structure in which a channel junction is provided between two electrode superconductors, and a control electrode is attached to the channel junction. As the channel junction, an insulator, a semiconductor, a normal conductor, or a superconductor is used. Now, a current modulation device using a superconductor as a channel junction, in other words, a current modulation device having a structure of an electrode superconductor, a channel superconductor, and an electrode superconductor is a current modulation device using another channel junction. Compared with the device, there is an advantage that the size of the channel assembly is hardly limited, the control electrode can be easily attached, and the current capacity can be increased. This means that when another channel junction is used, a tunnel effect or a proximity effect of several Å to several hundreds
効果 Effects that are effective only at the following size dominates device characteristics, whereas when using a superconductor as a channel junction, the effect that the superconducting carrier of the channel superconductor is modulated by the control electrode signal Dominate the element characteristics. Therefore, the only three-terminal element that can be manufactured with a pattern rule on the order of microns or more that can be used by ordinary photolithography technology is only a current modulator having a structure of electrode superconductor, channel superconductor, and electrode superconductor.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の電極超
伝導体・チャネル超伝導体・電極超伝導体の構造を有す
る電流変調装置は、上記のように製造が容易であるとい
う長所がある反面、制御電極信号による制御性が低く、
スイッチング特性が他のチャネル接合体を用いた電流変
調装置、特に半導体をチャネル接合体に用いた電流変調
装置に比べて劣るという欠点があった。スイッチング特
性が悪いことは電流変調装置の応用上大きな制約にな
り、製造が容易であるという長所を生かせる応用分野が
限定されることを意味する。それゆえこれは大きな問題
である。
However, the current modulator having the structure of the conventional electrode superconductor / channel superconductor / electrode superconductor has the advantage that it is easy to manufacture as described above. , Low controllability by control electrode signal,
There is a disadvantage that the switching characteristic is inferior to a current modulator using another channel junction, particularly a current modulator using a semiconductor for the channel junction. Poor switching characteristics impose great restrictions on the application of the current modulator, which means that the application field in which the advantage of easy manufacturing can be utilized is limited. So this is a big problem.

【0006】本発明は以上述べた問題点を解決するもの
であり、その目的はミクロンオーダーのパターンルール
で製造が可能であり、しかも制御電極信号による制御性
が良好で充分なスイッチング特性を有する電流変調装置
を提供することにある。
An object of the present invention is to solve the above-mentioned problems. An object of the present invention is to provide a current source which can be manufactured according to a pattern rule on the order of microns and has good controllability by control electrode signals and sufficient switching characteristics. A modulation device is provided.

【0007】[0007]

【課題を解決するための手段】本発明の電流変調装置
は、基板上に第1の電極超伝導体、チャネル超伝導体、
第2の電極超伝導体、及び制御電極を具備してなり、前
記チャネル超伝導体を介して前記第1の電極超伝導体と
前記第2の電極超伝導体との間を流れる電流を制御する
電流変調装置において、前記基板上に酸化物超伝導薄膜
からなる前記第1の電極超伝導体と前記第2の電極超伝
導体とが形成されてなり、前記第1の電極超伝導体と前
記第2の電極超伝導体の一部を覆うように酸化物超伝導
薄膜からなる外接常伝導体または外接超伝導体が形成さ
れてなり、前記外接常伝導体または外接超伝導体上に酸
化物超伝導薄膜からなる前記チャネル超伝導体が形成さ
れてなり、前記チャネル超伝導体上に前記制御電極が形
成されてなることを特徴とする。
A current modulator according to the present invention comprises a first electrode superconductor, a channel superconductor,
A second electrode superconductor, and a control electrode, for controlling a current flowing between the first electrode superconductor and the second electrode superconductor through the channel superconductor. In the current modulation device, the first electrode superconductor and the second electrode superconductor formed of an oxide superconducting thin film are formed on the substrate, and the first electrode superconductor is A circumscribed normal conductor or a circumscribed superconductor made of an oxide superconducting thin film is formed so as to cover a part of the second electrode superconductor, and oxidized on the circumscribed normal conductor or the circumscribed superconductor. The channel superconductor formed of a superconducting thin film is formed, and the control electrode is formed on the channel superconductor.

【0008】[0008]

【実施例】以下、本発明を実施例に従い詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.

【0009】(実施例1)図1は本発明の第1の実施例
における電流変調装置の断面構造を示す図である。図1
において電流変調装置は、第1の電極超伝導体1、第2
の電極超伝導体2、チャネル超伝導体3、外接超伝導体
4(または外接常伝導体4)、誘電体5、制御電極6、
および基板7から構成される。このとき外接超伝導体4
は第1の超伝導体1、第2の超伝導体2とチャネル超伝
導体3にサンドイッチされた構造となっている。
(Embodiment 1) FIG. 1 is a diagram showing a cross-sectional structure of a current modulator according to a first embodiment of the present invention. FIG.
In the current modulation device, the first electrode superconductor 1 and the second electrode superconductor 1
, Electrode superconductor 2, channel superconductor 3, circumscribed superconductor 4 (or circumscribed normal conductor 4), dielectric 5, control electrode 6,
And the substrate 7. At this time, the circumscribed superconductor 4
Has a structure sandwiched between a first superconductor 1, a second superconductor 2 and a channel superconductor 3.

【0010】本実施例の電流変調装置を作製するプロセ
スと材料のポイントは次のとうりである。まず、チタン
酸ストロンチウム単結晶よりなる基板7上に膜厚が50
0Å〜1000ÅのNdBa2Cu37ーX系酸化物超伝
導薄膜を形成する。このNdBa2Cu37ーX膜の臨界
温度は88Kである。尚基板は超伝導薄膜との反応が少
なく格子定数整合性が良い材料でさえあればチタン酸ス
トロンチウムに限られるものではない。次に超伝導薄膜
形成後にフォトリソグラフィーを用いてパターニングを
おこない、第1の電極超伝導体1と第2の電極超伝導体
2を同時に得る。第1の電極超伝導体1と第2の電極超
伝導体2の間隔は5μmである。
The process and materials for manufacturing the current modulator of this embodiment are as follows. First, a film having a thickness of 50 on a substrate 7 made of strontium titanate single crystal.
Forming the NdBa 2 Cu 3 O 7-X-based oxide superconducting thin film of 0A~1000A. The critical temperature of this NdBa 2 Cu 3 O 7 -X film is 88K. The substrate is not limited to strontium titanate as long as the substrate does not react with the superconducting thin film and has good lattice constant matching. Next, after forming the superconducting thin film, patterning is performed using photolithography to obtain the first electrode superconductor 1 and the second electrode superconductor 2 at the same time. The distance between the first electrode superconductor 1 and the second electrode superconductor 2 is 5 μm.

【0011】次に、膜厚が約20Å〜120ÅのNd
1.85Ce0.15CuO4-X系酸化物超伝導体薄膜と膜厚が
50Å〜200ÅのLa1.85Ba0.15CuO4-X系酸化
物超伝導体薄膜を連続成膜した後パターニングを行い外
接超伝導体4(または外接常伝導体4、使用温度により
異なる)とチャネル超伝導体3を形成する。外接超伝導
体4とチャネル超伝導体3の臨界温度はそれぞれ22K
と30Kである。その後、誘電体5と制御電極6を形成
・パターニングする。以上のプロセスにより電流変調装
置を得る。
Next, Nd having a film thickness of about 20 ° to 120 °
1.85 Ce 0.15 CuO 4-X-based oxide superconductor thin film and the thickness and patterned after continuously formed La 1.85 Ba 0.15 CuO 4-X-based oxide superconductor thin film of 50Å~200Å circumscribed superconductors 4 (or the circumscribed normal conductor 4, depending on the operating temperature) and the channel superconductor 3 are formed. The critical temperatures of the circumscribed superconductor 4 and the channel superconductor 3 are each 22 K
And 30K. Thereafter, a dielectric 5 and a control electrode 6 are formed and patterned. The current modulator is obtained by the above process.

【0012】得られた電流変調装置のスイッチング比を
調べた。測定温度は20Kと25Kである。形成された
Nd1.85Ce0.15CuO4-X系酸化物超伝導体の臨界温
度は22Kであるためチャネル超伝導体3に隣接する外
接体は測定温度が20Kのとき外接超伝導体4となり2
5Kのとき外接常伝導体4となる。スイッチング比は制
御電極6に電圧を印加したときとしないときの第1の超
伝導電極1と第2の超伝導電極2間に流れる電流比(J
c on/Jc off)により表した。表1に結果を外
接常伝導体4または外接超伝導体4を形成しない比較例
と共に示した。
The switching ratio of the obtained current modulator was examined. The measurement temperatures are 20K and 25K. Since the critical temperature of the formed Nd 1.85 Ce 0.15 CuO 4-x- based oxide superconductor is 22K, the circumscriber adjacent to the channel superconductor 3 becomes the circumscribed superconductor 4 when the measurement temperature is 20K.
At 5K, it becomes the circumscribed normal conductor 4. The switching ratio is the ratio of the current flowing between the first superconducting electrode 1 and the second superconducting electrode 2 when a voltage is applied to the control electrode 6 and when the voltage is not applied (J
con / Jc off). Table 1 shows the results together with comparative examples in which the circumscribed normal conductor 4 or the circumscribed superconductor 4 was not formed.

【0013】[0013]

【表1】 [Table 1]

【0014】表より判るようにチャネル超伝導体(ここ
では正孔ドープ型:p型)とキャリヤ種の異なる外接常
伝導体または外接超伝導体(ここでは電子ドープ型:n
型)をチャネル超伝導体周部に隣接形成することにより
顕著にスイッチング比が向上している。
As can be seen from the table, a channel superconductor (here, a hole-doped type: p-type) and a circumscribed normal conductor or a circumscribed superconductor of different carrier types (here, an electron-doped type: n)
) Is formed adjacent to the periphery of the channel superconductor, thereby significantly improving the switching ratio.

【0015】これは電子ドープ型である外接常伝導体ま
たは外接超伝導体と正孔ドープ型であるチャネル超伝導
体とを隣接させることによりチャネル超伝導体内のキャ
リヤを減少させ変調し易くさせているためと考えられ
る。また外接常伝導体と外接超伝導体とを比較すると外
接超伝導体の方がスイッチング比の改善はより顕著であ
るためより好ましいことが判る。チャネル超伝導体3内
のキャリヤ密度を効率よく減少させるには外接体も適当
な電子状態(エネルギーギャップ)を持つ必要があるも
のと考えられる。
This is because the circumscribed normal conductor or the circumscribed superconductor of the electron-doped type and the channel superconductor of the hole-doped type are adjacent to each other to reduce carriers in the channel superconductor and facilitate modulation. It is thought that there is. In addition, comparing the circumscribed normal conductor and the circumscribed superconductor, it can be seen that the circumscribed superconductor is more preferable because the improvement of the switching ratio is more remarkable. It is considered that the circumscriber also needs to have an appropriate electronic state (energy gap) in order to efficiently reduce the carrier density in the channel superconductor 3.

【0016】(実施例2)実施例1と同構造、同プロセ
スでチャネル超伝導体3に臨界温度が80KのYBa2
Cu48超伝導体を、第1の超伝導電極1と第2の超伝
導電極2に臨界温度が90KのYBa2Cu37-X超伝
導体を、外接常伝導体4にNd1.85Ce0.15CuO4-X
系酸化物常伝導体を用い電流変調装置を得る。
(Embodiment 2) In the same structure and the same process as Embodiment 1, YBa 2 having a critical temperature of 80 K is applied to the channel superconductor 3.
The Cu 4 O 8 superconductor, a first superconducting electrode 1 and the second superconducting YBa electrode critical temperature 2 is 90K 2 Cu 3 0 7-X superconductor, circumscribed normal conductor 4 Nd 1.85 Ce 0.15 CuO 4-X
A current modulator is obtained using a normal oxide-based conductor.

【0017】測定温度77K(液体窒素温度)に於て外
接常伝導体4の厚さを変えスイッチング比を調べた。結
果を図4のAに示した。実施例1と同様に外接常伝導体
4を形成することにより顕著にスイッチング比は向上し
ている。また外接常伝導体4の膜厚には適性値があり2
0Å〜120Åの範囲が好ましいことがわかる。特に1
20Åを越えると逆にスイッチング比は低下するため注
意が必要である。
At a measurement temperature of 77 K (liquid nitrogen temperature), the thickness of the circumscribed normal conductor 4 was changed and the switching ratio was examined. The results are shown in FIG. By forming the circumscribed normal conductor 4 as in the first embodiment, the switching ratio is significantly improved. The thickness of the circumscribed normal conductor 4 has an appropriate value.
It is understood that the range of 0 ° to 120 ° is preferable. Especially 1
If the angle exceeds 20 °, the switching ratio will be reduced.

【0018】(実施例3)図2は本発明の第3の実施例
における電流変調装置の断面構造を示す図である。図2
において電流変調装置は、第1の電極超伝導体1、第2
の電極超伝導体2、チャネル超伝導体3、外接常伝導体
4、誘電体5、制御電極6、および基板7から構成され
る。構成要素は実施例2と変わらないが大きな違いは外
接常伝導体4は第1の超伝導体1、第2の超伝導体2と
チャネル超伝導体3にサンドイッチされていないことで
ある。
(Embodiment 3) FIG. 2 is a diagram showing a sectional structure of a current modulator according to a third embodiment of the present invention. FIG.
In the current modulation device, the first electrode superconductor 1 and the second electrode superconductor 1
, A channel superconductor 3, a circumscribing normal conductor 4, a dielectric 5, a control electrode 6, and a substrate 7. The components are the same as those of the second embodiment, but a major difference is that the circumscribed normal conductor 4 is not sandwiched between the first superconductor 1, the second superconductor 2, and the channel superconductor 3.

【0019】本実施例の電流変調装置を作製するプロセ
スと材料のポイントは次のとうりである。チタン酸スト
ロンチウム単結晶よりなる基板7上に膜厚が20Å〜3
00ÅのNd1.85Ce0.15CuO4-X系酸化物膜を成膜
し外接常伝導体を形成する。次に外接常伝導体4上に膜
厚が500Å〜1000ÅのYBa2Cu37-X超伝導
体よりなる第1の超伝導電極1と第2超伝導電極を形成
・パターニングする。第1の超伝導電極1と第2の超伝
導電極2との間隔は5μmである。次に第1の超伝導電
極1と第2の超伝導電極2間にYBa2Cu48超伝導
体薄膜よりなるチャネル超伝導体3、誘電体5と制御電
極6を形成・パターニングする。以上のプロセスにより
電流変調装置を得る。
The process and materials for manufacturing the current modulator of this embodiment are as follows. On the substrate 7 made of strontium titanate single crystal, a film thickness of
A Nd 1.85 Ce 0.15 CuO 4-x- based oxide film of 00% is formed to form a circumscribed normal conductor. Then circumscribed normal conductor 4 thickness on to YBa 2 Cu 3 0 7-X first formed and patterned superconducting electrode 1 and the second superconducting electrodes made of a superconductor of 500A~1000A. The distance between the first superconducting electrode 1 and the second superconducting electrode 2 is 5 μm. Next, a channel superconductor 3 made of a YBa 2 Cu 4 O 8 superconductor thin film, a dielectric 5 and a control electrode 6 are formed and patterned between the first superconducting electrode 1 and the second superconducting electrode 2. The current modulator is obtained by the above process.

【0020】得られた電流変調装置の77Kに於けるス
イッチング比を調べた。結果を図4のBに示す。スイッ
チング比は外接常伝導体4を形成することにより顕著に
向上する。外接常伝導体4の膜厚依存性は少なく20Å
〜50Å以上あれば殆ど変化しない。実施例2と特性を
比較すると本実施例は膜厚依存性が少なく製造は容易と
なる反面スイッチング比の改善効果は少し落ちるため用
途に応じた使い分けを行うとより優れた効果を引き出せ
る。
The switching ratio of the obtained current modulator at 77K was examined. The results are shown in FIG. The switching ratio is significantly improved by forming the circumscribed normal conductor 4. The thickness of the circumscribed normal conductor 4 is less dependent on the thickness of 20 mm.
If it is Å50 ° or more, there is almost no change. Comparing the characteristics with the second embodiment, the second embodiment has less dependency on the film thickness and is easy to manufacture. On the other hand, the effect of improving the switching ratio is slightly lowered.

【0021】また比較例として本実施例のチャネル超伝
導体3と異なるキャリヤ種を持つn型酸化物の外接常伝
導体4の代わりにn型Si基板、チャネル超伝導体3と
同じキャリヤ種のLa1.85Ba0.15CuO4-Xよりなる
p型酸化物を用いたときのスイッチング比を表2に示
す。
As a comparative example, instead of the circumscribed normal conductor 4 of an n-type oxide having a carrier type different from that of the channel superconductor 3 of the present embodiment, an n-type Si substrate and the same carrier type as the channel superconductor 3 are used. Table 2 shows the switching ratio when a p-type oxide made of La 1.85 Ba 0.15 CuO 4-X was used.

【0022】表2より外接常伝導体4はn型酸化物が最
も良いことが判る。n型Si基板を用いた場合は逆にス
イッチング比が低下しているがこれはチャネル超伝導体
や第1の電極超伝導体1と第2の電極超伝導体2を形成
するとき超伝導体内にSiが拡散したり、Siが酸化し
相互に結晶構造を悪くしているためである。また酸化物
超伝導体は周知の如く異方性が強く且つコヒーレント長
が短いため粒界の発生を極力押え且つ結晶を配向させる
必要があるがn型Siを用いた場合は格子定数のミスマ
ッチが大きくこの点を解決出来ないことも大きな問題と
いえる。
From Table 2, it can be seen that the circumscribing normal conductor 4 is most preferably an n-type oxide. On the contrary, when the n-type Si substrate is used, the switching ratio is lowered. This is because the switching ratio is low when the channel superconductor and the first electrode superconductor 1 and the second electrode superconductor 2 are formed. This is because Si diffuses into the crystal, and Si is oxidized to deteriorate the mutual crystal structure. Also, as is well known, oxide superconductors have a strong anisotropy and a short coherent length, so it is necessary to suppress the generation of grain boundaries as much as possible and to orient the crystals. It is also a big problem that this point cannot be largely solved.

【0023】[0023]

【表2】 [Table 2]

【0024】以上に述べた3つの実施例では、外接常伝
導体4または外接超伝導体4にNd1.85Ce0.15CuO
4-X系酸化物膜を用いたがNd1.85Th0.15CuO4-y
Pr1.85Ce0.15CuO4-y、Pr1.85Th0.15CuO
4-y、Sm1.85Ce0.15CuO4-y等チャネル超伝導体3
と異なるキャリヤ種を持つ材料で有れば何等差し支えな
い。なお結晶構造が類似(格子定数が近くミスマッチが
少ない)した酸化物であればより好ましい。また図3の
様に外接超伝導体4、チャネル超伝導体3上に第1の電
極1と第2の電極を形成した構造であっても良く、電流
制御方法も準粒子注入や電流注入型で有っても何等差し
支えない。
In the three embodiments described above, the circumscribed normal conductor 4 or the circumscribed superconductor 4 is provided with Nd 1.85 Ce 0.15 CuO
A 4-X type oxide film was used, but Nd 1.85 Th 0.15 CuO 4-y ,
Pr 1.85 Ce 0.15 CuO 4-y , Pr 1.85 Th 0.15 CuO
4-y , Sm 1.85 Ce 0.15 CuO 4-y equal channel superconductor 3
Any material having a carrier type different from that described above may be used. Note that an oxide having a similar crystal structure (having a close lattice constant and low mismatch) is more preferable. Further, as shown in FIG. 3, the structure may be such that the first electrode 1 and the second electrode are formed on the circumscribed superconductor 4 and the channel superconductor 3, and the current control method is quasiparticle injection or current injection type. There is no problem even if it is.

【0025】[0025]

【発明の効果】以上説明してきたように本発明によれ
ば、第1の電極超伝導体、中間部超伝導体、第2の電極
超伝導体、および制御電極を具備し、中間部超伝導体を
介して第1の電極超伝導体と第2の電極超伝導体の間を
流れる電流を制御電極信号によって制御する電流変調装
置においてチャネル超伝導体周部に、外接し且つチャネ
ル超伝導体とは注入キャリヤ種(正孔または電子)の異
なる外接常伝導体または外接超伝導体を形成したことに
よりミクロンオーダー以上のサイズだけから構成でき
て、しかも制御電極信号による制御性が良好で充分なス
イッチイグ特性を有する電流変調装置を提供することが
できる。
As described above, according to the present invention, a first electrode superconductor, an intermediate superconductor, a second electrode superconductor, and a control electrode are provided. In a current modulator for controlling a current flowing between a first electrode superconductor and a second electrode superconductor through a body by a control electrode signal, the channel superconductor is circumscribed around a channel superconductor periphery. A circumscribing normal conductor or circumscribing superconductor having different injection carrier types (holes or electrons) can be formed from a micron order size or more, and the controllability by the control electrode signal is good and sufficient. A current modulation device having switching characteristics can be provided.

【0026】本発明を酸化物超伝導体を用いた電流変調
装置に応用すれば、制御性がよく大電流容量に対応でき
使用環境の制限の少ない3端子素子を通常のフォトリソ
グラフィー技術を用いて製造できるからその効果は極め
て大である。
If the present invention is applied to a current modulator using an oxide superconductor, a three-terminal element having good controllability and capable of coping with a large current capacity and having a limited use environment can be formed by using ordinary photolithography technology. The effect is extremely large because it can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における電流変調装置の
断面構造を示す図。
FIG. 1 is a diagram showing a cross-sectional structure of a current modulation device according to a first embodiment of the present invention.

【図2】本発明の第3の実施例における電流変調装置の
断面構造を示す図。
FIG. 2 is a diagram showing a cross-sectional structure of a current modulation device according to a third embodiment of the present invention.

【図3】本発明よりなる実施例以外の電流変調装置の断
面構造を示す図。
FIG. 3 is a diagram showing a sectional structure of a current modulation device other than the embodiment according to the present invention.

【図4】実施例2と実施例3のスイッチング比の外接常
伝導体4の膜厚依存性を示す図。
FIG. 4 is a graph showing the dependency of the switching ratio of Example 2 and Example 3 on the film thickness of the circumscribed normal conductor 4;

【符号の説明】[Explanation of symbols]

1・・・ 第1の電極超伝導体 2・・・ 第2の電極超伝導体 3・・・ チャネル超伝導体 4・・・ 外接常伝導体または外接常伝導体 5・・・ 誘電体 6・・・ 制御電極 7・・・ 基板 DESCRIPTION OF SYMBOLS 1 ... 1st electrode superconductor 2 ... 2nd electrode superconductor 3 ... Channel superconductor 4 ... Circumscribed normal conductor or circumscribed normal conductor 5 ... Dielectric 6 ... Control electrode 7 ... Substrate

フロントページの続き (72)発明者 下田 達也 長野県諏訪市大和3丁目3番5号セイコ ーエプソン株式会社内 (56)参考文献 特開 昭63−283177(JP,A) 特開 昭64−53474(JP,A) 特開 平3−41783(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/22 - 39/24 H01L 39/00 Continuation of the front page (72) Inventor Tatsuya Shimoda 3-5-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (56) References JP-A-63-283177 (JP, A) JP-A-64-53474 ( JP, A) JP-A-3-41783 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 39/22-39/24 H01L 39/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に第1の電極超伝導体、チャネル
超伝導体、第2の電極超伝導体、及び制御電極を具備し
てなり、前記チャネル超伝導体を介して前記第1の電極
超伝導体と前記第2の電極超伝導体との間を流れる電流
を制御する電流変調装置において、 前記基板上に酸化物超伝導薄膜からなる前記第1の電極
超伝導体と前記第2の電極超伝導体とが形成されてな
り、前記第1の電極超伝導体と前記第2の電極超伝導体
の一部を覆うように酸化物超伝導薄膜からなる外接常伝
導体または外接超伝導体が形成されてなり、前記外接常
伝導体または外接超伝導体上に酸化物超伝導薄膜からな
る前記チャネル超伝導体が形成されてなり、前記チャネ
ル超伝導体上に前記制御電極が形成されてなることを特
徴とする電流変調装置。
A first electrode superconductor, a channel superconductor, a second electrode superconductor, and a control electrode on a substrate, wherein the first electrode superconductor is provided via the channel superconductor. A current modulator for controlling a current flowing between an electrode superconductor and the second electrode superconductor, wherein the first electrode superconductor comprising an oxide superconducting thin film on the substrate and the second electrode superconductor And a circumscribed normal conductor or circumscribed superconductor made of an oxide superconducting thin film so as to cover a part of the first electrode superconductor and a part of the second electrode superconductor. A conductor is formed, the channel superconductor made of an oxide superconducting thin film is formed on the circumscribed normal conductor or the circumscribed superconductor, and the control electrode is formed on the channel superconductor. A current modulator characterized by being performed.
JP06814292A 1992-03-26 1992-03-26 Current modulator Expired - Fee Related JP3221037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06814292A JP3221037B2 (en) 1992-03-26 1992-03-26 Current modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06814292A JP3221037B2 (en) 1992-03-26 1992-03-26 Current modulator

Publications (2)

Publication Number Publication Date
JPH05275759A JPH05275759A (en) 1993-10-22
JP3221037B2 true JP3221037B2 (en) 2001-10-22

Family

ID=13365202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06814292A Expired - Fee Related JP3221037B2 (en) 1992-03-26 1992-03-26 Current modulator

Country Status (1)

Country Link
JP (1) JP3221037B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701732B2 (en) * 1994-03-02 1998-01-21 株式会社日立製作所 Superconducting three-terminal element

Also Published As

Publication number Publication date
JPH05275759A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US5401714A (en) Field-effect device with a superconducting channel
US5399546A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
US5416072A (en) Superconducting device having an thin superconducting channel formed of oxide superconducting material
EP0475838B1 (en) Superconducting device having a reduced thickness of oxide superconducting layer and method for manufacturing the same
US5106822A (en) Transistor with superconducting collector, base, and emitter separated by non-superconducting barrier layers
JP3221037B2 (en) Current modulator
US5721197A (en) Controllable superconductor component
US5430013A (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
JP3232642B2 (en) Current modulator
US5861361A (en) Superconducting field effect device having a superconducting channel and method for manufacturing the same
US5441926A (en) Superconducting device structure with Pr-Ba-Cu-O barrier layer
JP2955407B2 (en) Superconducting element
EP0478463B1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2597745B2 (en) Superconducting element and fabrication method
JP2679610B2 (en) Superconducting element manufacturing method
JP3126410B2 (en) Semiconductor device
JP2691065B2 (en) Superconducting element and fabrication method
JPH0621521A (en) Current modulating device
JP2597747B2 (en) Superconducting element and fabrication method
JP2641966B2 (en) Superconducting element and fabrication method
JP2597743B2 (en) Superconducting element fabrication method
JP3155641B2 (en) Superconducting tunnel junction device
JPH09312424A (en) Superconducting transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees